organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1578-o1579

(4Z,6Z,12Z,14Z)-2,10-Di­methyl-2,8,10,16-tetra­hydro­di­pyrazolo[3,4-e:3′,4′-l][1,2,4,8,9,11]hexa­aza­cyclo­tetra­decine-4,12-di­amine

aDepartment of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore, and bDepartment of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
*Correspondence e-mail: phada@nus.edu.sg

(Received 3 June 2009; accepted 10 June 2009; online 13 June 2009)

The title compound, C12H16N12, is a centrosymmetric mol­ecule which comprises of a hexa­aza[14]annulene macrocyclic ring fused with two pyrazole rings. The macrocyclic ring is essentially planar, with an r.m.s. deviation of 0.0381 Å. The electron pairs of the amino groups are delocalized with the conjugated system of the macrocycle. Strong intra­molecular N—H⋯N hydrogen bonds arranged in an S22(10) graph-set motif are present in the macrocyclic ring. In the crystal, the amino groups act as donors for inter­molecular N—H⋯N inter­actions with the N atoms of the heterocyclic system, forming a network of two types of extended chains oriented parallel to the [101] and [011] directions. The crystal packing is also stabilized by weak inter­molecular C—H⋯N hydrogen bonds formed between pyrazole C—H groups and N atoms of the macrocyclic ring, running in the [10[\overline{1}]] direction.

Related literature

The title compound was synthesized according to Dolzhenko et al. (2009[Dolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2009). Tetrahedron Lett. In the press.]). For the synthesis and crystal structure studies of related macrocyclic compounds (as nickel complexes), see: Gradinaru et al. (2001[Gradinaru, J. I., Simonov, Y. A., Arion, V. B., Bourosh, P. N., Popovici, M. A., Bel'skii, V. K. & Gerbeleu, N. V. (2001). Inorg. Chim. Acta, 313, 30-36.]); Gerbeleu et al. (1991[Gerbeleu, N. V., Simonov, Y. A., Arion, V. B., Gredinaru, D. I., Zavodnik, V. E., Indrichan, K. M. & Malinovskii, T. I. (1991). Russ. J. Inorg. Chem. 36, 52-54.]); Leovac et al. (1993[Leovac, V. M., Češljević, V. I., Gerbeleu, N. V., Simonov, Y. A., Dvorkin, A. A. & Arion, V. B. (1993). Transition Met. Chem. 18, 309-311.]) and references cited therein; Simonov et al. (1988[Simonov, Y. A., Bourosh, P. N., Arion, V. B., Mazus, M. D. & Gerbeleu, N. V. (1988). Kristallografiya, 33, 1535-1537.]). For a review of the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N12

  • Mr = 328.37

  • Monoclinic, P 21 /n

  • a = 7.1470 (6) Å

  • b = 7.5593 (7) Å

  • c = 13.9174 (13) Å

  • β = 91.866 (3)°

  • V = 751.51 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 223 K

  • 0.22 × 0.08 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.994

  • 5126 measured reflections

  • 1721 independent reflections

  • 1272 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.151

  • S = 1.06

  • 1721 reflections

  • 122 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N4 0.85 (3) 2.09 (3) 2.770 (3) 136 (2)
N5—H5A⋯N1i 0.88 (3) 2.33 (3) 3.065 (3) 141 (2)
N5—H5B⋯N6ii 0.85 (3) 2.61 (3) 3.466 (3) 174 (2)
C3—H3⋯N6ii 0.94 2.51 3.402 (3) 158
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Macrocyclic compounds, various classes of which have been known for a long time, attract significant attention of the chemists' community due to their unique physico-chemical properties. Several studies on the synthesis and the crystal structure of the planar 1,2,4,8,9,11-hexaaza[14]annulene macrocyclic system have appeared (Gradinaru et al., 2001; Gerbeleu et al., 1991; Leovac et al., 1993; Simonov et al., 1988). However, all of the compounds were prepared and investigated as nickel complexes. Herein, we report the first crystal structure of the ligand with the 1,2,4,8,9,11-hexaaza[14]annulene macrocyclic ring. The title compound is a centrosymmetric molecule, which comprises the hexaaza[14]annulene macrocyclic ring fused with two pyrazole rings. The macrocyclic ring is essentially planar with an r.m.s. deviation of 0.0381 Å. The most outlying from the least-squares plane of the marcocyclic ring are atoms C6 (C6A) and N4 (N4A) with deviations of 0.0654 (17) Å and 0.0577 (18) Å, respectively. The C6—N5 bond distance (1.340 (3) Å) indicates delocalization of the electron pair of the N5 atom, though the amino group adopts a slightly pyramidal geometry with 0.084 (15) Å deviation of N5 from the C6/H5A/H5B mean plane. The strong intramolecular N—H···N hydrogen bonds arranged in a S22(10) graph-set motif (Bernstein et al., 1995) are present inside the macrocyclic ring.

In the crystal, the amino groups act as donors for intermolecular N—H···N interaction with the nitrogen atoms N1 (N1A) and N6 (N6A), thereby forming two types of extended chains. The nitrogen atoms N1 (N1A) are acceptors in C(6) chains running parallel to the [101] direction, while the nitrogen atoms N6 (N6A) are acceptors in C(5) chains oriented in the [011] direction. Together, these hydrogen bonds form a centrosymmetric R44(22) motif. The crystal packing is also stabilized by weak intermolecular C—H···N hydrogen bonds, formed between C3—H (C3A—H) of the pyrazole rings and nitrogen atoms N6 (N6A) of the macrocyclic ring, running in the [101] direction.

Related literature top

The title compound was synthesized according to Dolzhenko et al. (2009). For the synthesis and crystal structure studies of related macrocyclic compounds (as nickel complexes), see: Gradinaru et al. (2001); Gerbeleu et al. (1991); Leovac et al. (1993) and references cited therein; Simonov et al. (1988). For a review of the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized according to Dolzhenko et al. (2009). Single crystals suitable for crystallographic analysis were grown by recrystallization from methanol.

Refinement top

All the H atoms attached to the carbon atoms were constrained in a riding motion approximation [0.94 Å for Caryl—H and 0.97 Å for methyl groups; Uiso(H) =1.2Ueq(Caryl) and Uiso(H) =1.5Ueq(Cmethyl)] while the N-bound H atoms were located in a difference map and refined freely.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular parking in the crystal, viewed along the b axis.
(4Z,6Z,12Z,14Z)-2,10-Dimethyl-2,8,10,16- tetrahydrodipyrazolo[3,4-e:3',4'- l][1,2,4,8,9,11]hexaazacyclotetradecine-4,12-diamine top
Crystal data top
C12H16N12F(000) = 344
Mr = 328.37Dx = 1.451 Mg m3
Monoclinic, P21/nMelting point: 537 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.1470 (6) ÅCell parameters from 734 reflections
b = 7.5593 (7) Åθ = 2.9–21.6°
c = 13.9174 (13) ŵ = 0.10 mm1
β = 91.866 (3)°T = 223 K
V = 751.51 (12) Å3Block, colourless
Z = 20.22 × 0.08 × 0.06 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1721 independent reflections
Radiation source: fine-focus sealed tube1272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 98
Tmin = 0.978, Tmax = 0.994k = 89
5126 measured reflectionsl = 1815
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.2208P]
where P = (Fo2 + 2Fc2)/3
1721 reflections(Δ/σ)max = 0.002
122 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H16N12V = 751.51 (12) Å3
Mr = 328.37Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.1470 (6) ŵ = 0.10 mm1
b = 7.5593 (7) ÅT = 223 K
c = 13.9174 (13) Å0.22 × 0.08 × 0.06 mm
β = 91.866 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1721 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
1272 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.994Rint = 0.037
5126 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.26 e Å3
1721 reflectionsΔρmin = 0.17 e Å3
122 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5186 (2)0.7646 (2)0.56112 (13)0.0318 (5)
N20.6151 (3)0.6882 (2)0.48829 (14)0.0331 (5)
N30.2241 (3)0.9124 (3)0.56302 (13)0.0330 (5)
H3N0.135 (4)0.945 (3)0.5254 (18)0.041 (7)*
N40.0731 (2)0.9323 (2)0.37750 (13)0.0329 (5)
N50.2238 (4)0.7748 (3)0.25680 (16)0.0483 (6)
H5A0.125 (4)0.790 (4)0.218 (2)0.050 (8)*
H5B0.312 (4)0.702 (3)0.2455 (19)0.040 (7)*
N60.0650 (3)0.9742 (3)0.30609 (14)0.0417 (5)
C10.3648 (3)0.8253 (3)0.51677 (15)0.0286 (5)
C20.3588 (3)0.7909 (3)0.41682 (15)0.0291 (5)
C30.5250 (3)0.7009 (3)0.40344 (16)0.0331 (5)
H30.56660.65660.34480.040*
C40.8014 (3)0.6185 (3)0.50829 (19)0.0416 (6)
H4A0.84430.55660.45210.062*
H4B0.79810.53720.56210.062*
H4C0.88630.71510.52400.062*
C50.2062 (3)0.9460 (3)0.65708 (17)0.0381 (6)
H50.30350.90880.69940.046*
C60.2100 (3)0.8348 (3)0.34691 (15)0.0305 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0292 (10)0.0340 (10)0.0322 (10)0.0006 (8)0.0010 (8)0.0006 (8)
N20.0271 (10)0.0347 (10)0.0378 (11)0.0028 (8)0.0043 (8)0.0001 (8)
N30.0293 (10)0.0434 (11)0.0264 (10)0.0052 (9)0.0009 (8)0.0012 (9)
N40.0288 (10)0.0427 (10)0.0272 (9)0.0007 (8)0.0014 (8)0.0031 (8)
N50.0422 (14)0.0694 (16)0.0330 (12)0.0178 (12)0.0036 (10)0.0110 (11)
N60.0367 (11)0.0604 (13)0.0279 (10)0.0100 (10)0.0002 (9)0.0016 (10)
C10.0263 (11)0.0294 (10)0.0301 (11)0.0045 (9)0.0009 (9)0.0016 (9)
C20.0294 (11)0.0293 (10)0.0288 (11)0.0029 (9)0.0045 (9)0.0006 (9)
C30.0332 (12)0.0340 (11)0.0324 (12)0.0010 (10)0.0064 (10)0.0010 (10)
C40.0289 (12)0.0424 (13)0.0536 (15)0.0047 (10)0.0023 (11)0.0050 (12)
C50.0341 (13)0.0511 (14)0.0291 (12)0.0049 (11)0.0014 (10)0.0035 (11)
C60.0304 (12)0.0343 (11)0.0269 (11)0.0038 (9)0.0035 (9)0.0003 (9)
Geometric parameters (Å, º) top
N1—C11.325 (3)N5—H5B0.85 (3)
N1—N21.372 (3)N6—C5i1.295 (3)
N2—C31.330 (3)C1—C21.414 (3)
N2—C41.450 (3)C2—C31.387 (3)
N3—C51.344 (3)C2—C61.456 (3)
N3—C11.379 (3)C3—H30.9400
N3—H3N0.85 (3)C4—H4A0.9700
N4—C61.307 (3)C4—H4B0.9700
N4—N61.413 (3)C4—H4C0.9700
N5—C61.340 (3)C5—N6i1.295 (3)
N5—H5A0.88 (3)C5—H50.9400
C1—N1—N2103.35 (18)C1—C2—C6127.84 (19)
C3—N2—N1112.65 (18)N2—C3—C2108.0 (2)
C3—N2—C4127.7 (2)N2—C3—H3126.0
N1—N2—C4119.45 (19)C2—C3—H3126.0
C5—N3—C1129.7 (2)N2—C4—H4A109.5
C5—N3—H3N116.9 (17)N2—C4—H4B109.5
C1—N3—H3N113.3 (17)H4A—C4—H4B109.5
C6—N4—N6114.22 (18)N2—C4—H4C109.5
C6—N5—H5A116.4 (17)H4A—C4—H4C109.5
C6—N5—H5B117.8 (18)H4B—C4—H4C109.5
H5A—N5—H5B124 (2)N6i—C5—N3125.0 (2)
C5i—N6—N4111.17 (19)N6i—C5—H5117.5
N1—C1—N3123.7 (2)N3—C5—H5117.5
N1—C1—C2113.13 (19)N4—C6—N5125.0 (2)
N3—C1—C2123.2 (2)N4—C6—C2116.68 (19)
C3—C2—C1102.91 (19)N5—C6—C2118.3 (2)
C3—C2—C6129.2 (2)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N40.85 (3)2.09 (3)2.770 (3)136 (2)
N5—H5A···N1ii0.88 (3)2.33 (3)3.065 (3)141 (2)
N5—H5B···N6iii0.85 (3)2.61 (3)3.466 (3)174 (2)
C3—H3···N6iii0.942.513.402 (3)158
Symmetry codes: (ii) x1/2, y+3/2, z1/2; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H16N12
Mr328.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)223
a, b, c (Å)7.1470 (6), 7.5593 (7), 13.9174 (13)
β (°) 91.866 (3)
V3)751.51 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.08 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.978, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
5126, 1721, 1272
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.151, 1.06
No. of reflections1721
No. of parameters122
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.17

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT (Bruker, 2001, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N40.85 (3)2.09 (3)2.770 (3)136 (2)
N5—H5A···N1i0.88 (3)2.33 (3)3.065 (3)141 (2)
N5—H5B···N6ii0.85 (3)2.61 (3)3.466 (3)174 (2)
C3—H3···N6ii0.942.513.402 (3)158.3
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This work is supported by the National Medical Research Council, Singapore (NMRC/NIG/0020/2008) and the National University of Singapore (R-148–050-091–101/133).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationDolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2009). Tetrahedron Lett. In the press.  Google Scholar
First citationGerbeleu, N. V., Simonov, Y. A., Arion, V. B., Gredinaru, D. I., Zavodnik, V. E., Indrichan, K. M. & Malinovskii, T. I. (1991). Russ. J. Inorg. Chem. 36, 52–54.  Google Scholar
First citationGradinaru, J. I., Simonov, Y. A., Arion, V. B., Bourosh, P. N., Popovici, M. A., Bel'skii, V. K. & Gerbeleu, N. V. (2001). Inorg. Chim. Acta, 313, 30–36.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeovac, V. M., Češljević, V. I., Gerbeleu, N. V., Simonov, Y. A., Dvorkin, A. A. & Arion, V. B. (1993). Transition Met. Chem. 18, 309-311.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimonov, Y. A., Bourosh, P. N., Arion, V. B., Mazus, M. D. & Gerbeleu, N. V. (1988). Kristallografiya, 33, 1535–1537.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1578-o1579
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds