metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m842-m843

Chlorido[(E)-2-hydr­­oxy-6-(isonicotinoyl­hydrazonometh­yl)phen­yl]mercury(II) monohydrate

aCollege of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467002, People's Republic of China, bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China, and cChemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
*Correspondence e-mail: lxh-9802@163.com

(Received 12 June 2009; accepted 22 June 2009; online 27 June 2009)

The asymmetric unit of the title compound, [Hg(C13H10N3O2)Cl]·H2O, contains two independent mercury(II) complexes with slightly different conformations, related via a pseudo-inversion centre, and two water mol­ecules. The HgII atoms show a typical linear geometry to a C atom of the benzene ring and to a Cl atom. A benzene C and the azomethine N atom chelate the HgII atoms with weak intra­molecular Hg⋯N bonding distances of 2.735 (3) and 2.739 (3) Å, respectively. The resulting five-membered metallacycles are nearly coplanar with the benzene rings [dihedral angles = 0.9 (1) and 0.7 (1)°], while the pyridine rings make dihedral angles with the benzene units of 58.17 (1) and 56.58 (1)°. In the crystal structure, the HgII complexes are linked by hydr­oxy donor and pyridine acceptor groups into chains along [010]. The water mol­ecules connect the complexes through inter­molecular O—H⋯Ocarbon­yl bonds in the a-axis direction, and the azomethine H atoms donate towards the water O atoms, forming a three-dimensional network of inter­molecular O—H⋯N, O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For general background, see: Gruter et al. (1995[Gruter, G. M., Van Klink, G. P. M., Akkerman, O. S. & Bickelhaupt, F. (1995). Chem. Rev. 95, 2405-2456]); Soro et al. (2005[Soro, B., Stoccoro, S., Minghetti, G., Zucca, A., Cinellu, M. A., Gladiali, S., Manassero, M. & Sansoni, M. (2005). Organometallics, 24, 53-61.]); Xu et al. (2009b[Xu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. & Ji, B. M. (2009b). Organometallics, 28, 1909-1916.]). For related structures, see: Hao et al. (2007[Hao, X. Q., Gong, J. F., Song, W. T., Wu, Y. J. & Song, M. P. (2007). Inorg. Chem. Commun. 10, 371-375.]); Lin et al. (2002[Lin, K. H., Song, M. P., Zhu, Y. & Wu, Y. J. (2002). J. Organomet. Chem. 660, 139-144.]); For the synthesis of related cyclomercurated compounds, see: Xu et al. (2009a[Xu, C., Cen, F.-F., Wang, Z.-Q. & Zhang, Y.-Q. (2009a). Acta Cryst. E65, m754.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg(C13H10N3O2)Cl]·H2O

  • Mr = 494.30

  • Monoclinic, P 21 /n

  • a = 14.5932 (16) Å

  • b = 14.0111 (15) Å

  • c = 15.3711 (17) Å

  • β = 104.6850 (10)°

  • V = 3040.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 10.31 mm−1

  • T = 296 K

  • 0.37 × 0.28 × 0.25 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.113, Tmax = 0.179 (expected range = 0.048–0.076)

  • 22798 measured reflections

  • 5658 independent reflections

  • 4683 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.046

  • S = 1.05

  • 5658 reflections

  • 381 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H4W⋯O2i 0.83 2.15 2.898 (4) 150
O6—H3W⋯O3 0.83 2.30 3.023 (4) 146
O5—H2W⋯O1 0.83 2.17 2.963 (4) 159
O5—H1W⋯O4ii 0.84 2.06 2.876 (4) 166
N5—H5D⋯O6iii 0.86 2.04 2.872 (4) 162
N2—H2D⋯O5iv 0.86 2.06 2.890 (4) 161
O3—H3⋯N6v 0.82 1.92 2.737 (4) 171
O1—H1⋯N3vi 0.82 1.93 2.733 (4) 167
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x, y-1, z; (vi) x, y+1, z.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Cyclometallated compounds have attracted much research interest owing to theirs utility in synthesis, catalysis and materials (Gruter et al., 1995; Xu et al., 2009b). Among them, cyclomercurated compounds are easy to prepare through a C—H activation process and are stable but reasonably reactive. Although numerous cyclomercurated compounds have been widely investigated, and many examples have been reported(Soro et al., 2005; Hao et al., 2007), only a few cyclometallated Schiff bases containing heterocyclic ring are known(Lin et al., 2002).

The asymmetric unit of the title compound (Fig.1) contains two independent mercury(II) complexes with slightly different conformations, related via a pseudo-inversion centre (1/2a, 3/4b, 1/4c), and two water molecules. The HgII atoms show a typical linear coordination geometry with a carbon atom of the benzene ring and the chloride atom in trans position. A benzene carbon and the azomethine nitrogen atom chelate the mercury(II) atoms with weak intramolecular Hg···N bonding distances of 2.735 (3)Å and 2.739 (3) Å. which are shorter than those of the related HgII complex (Hao et al., (2007); Lin et al., (2002); Xu et al., (2009a). The C—Hg and Hg—Cl bond distances are within normal ranges. The C1—Hg1—Cl1 and C14—Hg2—Cl2 angles are 173.85 (10)° and 174.67 (10)°, slightly smaller than the ideal value of 180° in organic derivatives of mercury. The resulting five-membered metallacycles are nearly coplanar with the benzene ring, while the pyridine are not coplanar with the benzene. In the crystal structure, intermolecular O—H···O, N—H···O and O—H···N hydrogen bonds (Table 1) link the independent HgII complexes and the water molecules into a three-dimensional network.

Related literature top

For general background, see: Gruter et al. (1995); Soro et al. (2005); Xu et al. (2009b). For related structures, see: Hao et al. (2007); Lin et al. (2002); For the synthesis, see: Xu et al. (2009a).

Experimental top

Chlorido(2-formyl-6-hydroxybenzaldehyde-kC1)mercury(II) was synthesized according to the reported procedure (Xu et al., 2009a). The title compound was prepared from the above compound with isonicotinoylhydrazine and recrystallized from ethanol solution at room temperature to give the desired product as colourless crystals suitable for single-crystal X-ray diffraction.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their patent atoms, with distances: C—H = 0.93 Å, N—H = 0.86 Å, and O—H = 0.82 Å. The Uiso(H) values were set at 1.2Ueq (C,N) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 30% probability level.
Chlorido[(E)-2-hydroxy-6-(isonicotinoylhydrazonomethyl)phenyl]mercury(II) monohydrate top
Crystal data top
[Hg(C13H10N3O2)Cl]·H2OF(000) = 1856
Mr = 494.30Dx = 2.160 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.5932 (16) ÅCell parameters from 5064 reflections
b = 14.0111 (15) Åθ = 2.7–28.3°
c = 15.3711 (17) ŵ = 10.31 mm1
β = 104.685 (1)°T = 296 K
V = 3040.2 (6) Å3Block, colorless
Z = 80.37 × 0.28 × 0.25 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5658 independent reflections
Radiation source: fine-focus sealed tube4683 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.113, Tmax = 0.179k = 1616
22798 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0197P)2 + 1.3364P]
where P = (Fo2 + 2Fc2)/3
5658 reflections(Δ/σ)max = 0.002
381 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Hg(C13H10N3O2)Cl]·H2OV = 3040.2 (6) Å3
Mr = 494.30Z = 8
Monoclinic, P21/nMo Kα radiation
a = 14.5932 (16) ŵ = 10.31 mm1
b = 14.0111 (15) ÅT = 296 K
c = 15.3711 (17) Å0.37 × 0.28 × 0.25 mm
β = 104.685 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5658 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4683 reflections with I > 2σ(I)
Tmin = 0.113, Tmax = 0.179Rint = 0.030
22798 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.046H-atom parameters constrained
S = 1.05Δρmax = 0.52 e Å3
5658 reflectionsΔρmin = 0.83 e Å3
381 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.909422 (9)0.795528 (10)0.140566 (10)0.03271 (5)
Hg20.088755 (10)0.667392 (10)0.363229 (10)0.03354 (5)
Cl11.06292 (6)0.74039 (8)0.15848 (7)0.0482 (3)
Cl20.06489 (7)0.72341 (8)0.34424 (7)0.0485 (3)
O10.85291 (17)1.00819 (18)0.13735 (19)0.0444 (7)
H10.84091.06410.12310.067*
O20.91602 (18)0.54581 (19)0.0795 (2)0.0539 (8)
O30.14451 (18)0.45504 (17)0.3573 (2)0.0473 (7)
H30.15650.39870.36930.071*
O40.08053 (18)0.91980 (18)0.4187 (2)0.0494 (7)
N10.7764 (2)0.6537 (2)0.1123 (2)0.0339 (7)
N20.7733 (2)0.55515 (19)0.11402 (19)0.0338 (7)
H2D0.72530.52550.12390.041*
N30.8374 (2)0.2013 (2)0.1131 (2)0.0397 (8)
N40.2225 (2)0.8089 (2)0.3911 (2)0.0362 (7)
N50.2266 (2)0.9077 (2)0.39086 (19)0.0352 (7)
H5D0.27600.93680.38360.042*
N60.1645 (2)1.2624 (2)0.3851 (2)0.0397 (8)
C10.7779 (2)0.8579 (2)0.1197 (2)0.0279 (8)
C20.7707 (3)0.9568 (3)0.1195 (2)0.0349 (8)
C30.6823 (3)1.0005 (3)0.1066 (3)0.0431 (10)
H3A0.67791.06670.10760.052*
C40.6011 (3)0.9454 (3)0.0924 (3)0.0495 (11)
H40.54220.97460.08300.059*
C50.6075 (3)0.8465 (3)0.0920 (3)0.0411 (9)
H50.55280.80970.08300.049*
C60.6953 (2)0.8023 (2)0.1051 (2)0.0313 (8)
C70.6986 (3)0.6972 (2)0.1046 (2)0.0331 (8)
H70.64300.66250.09860.040*
C80.8484 (3)0.5069 (2)0.0996 (2)0.0351 (9)
C90.8433 (2)0.4003 (2)0.1063 (2)0.0302 (8)
C100.8804 (2)0.3447 (2)0.0486 (3)0.0361 (9)
H100.90890.37310.00750.043*
C110.8744 (2)0.2467 (3)0.0532 (3)0.0379 (9)
H110.89730.21020.01270.046*
C120.8025 (3)0.2558 (3)0.1688 (3)0.0416 (9)
H120.77600.22540.21040.050*
C130.8035 (3)0.3542 (3)0.1680 (3)0.0393 (9)
H130.77820.38900.20790.047*
C140.2197 (2)0.6052 (2)0.3792 (2)0.0291 (8)
C150.3026 (3)0.6602 (2)0.3951 (2)0.0324 (8)
C160.3903 (3)0.6153 (3)0.4047 (3)0.0446 (10)
H160.44530.65180.41490.054*
C170.3955 (3)0.5171 (3)0.3992 (3)0.0510 (11)
H170.45400.48760.40570.061*
C180.3143 (3)0.4625 (3)0.3840 (3)0.0447 (10)
H180.31800.39650.37980.054*
C190.2271 (3)0.5063 (3)0.3751 (2)0.0350 (9)
C200.3007 (3)0.7648 (3)0.3986 (2)0.0361 (9)
H200.35680.79920.40630.043*
C210.1510 (2)0.9574 (3)0.4023 (2)0.0352 (8)
C220.1583 (2)1.0639 (2)0.3948 (2)0.0305 (8)
C230.1992 (3)1.1083 (3)0.3340 (2)0.0381 (9)
H230.22591.07270.29550.046*
C240.1997 (3)1.2072 (2)0.3315 (3)0.0392 (9)
H240.22651.23670.28960.047*
C250.1267 (3)1.2190 (3)0.4458 (3)0.0386 (9)
H250.10361.25670.48540.046*
C260.1205 (2)1.1212 (3)0.4521 (2)0.0372 (9)
H260.09191.09360.49350.045*
O50.89687 (19)0.9980 (2)0.33618 (19)0.0566 (8)
H1W0.94710.97520.36830.085*
H2W0.90021.00180.28290.085*
O60.10303 (19)0.4671 (2)0.1547 (2)0.0618 (8)
H3W0.08900.45810.20310.093*
H4W0.05710.48820.11610.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.03055 (8)0.02692 (10)0.04319 (9)0.00303 (6)0.01399 (6)0.00319 (6)
Hg20.03092 (8)0.02783 (10)0.04418 (9)0.00243 (6)0.01377 (6)0.00243 (6)
Cl10.0326 (5)0.0563 (7)0.0615 (7)0.0070 (4)0.0225 (5)0.0088 (5)
Cl20.0337 (5)0.0583 (7)0.0585 (7)0.0064 (4)0.0213 (5)0.0088 (5)
O10.0416 (15)0.0241 (15)0.0673 (19)0.0017 (11)0.0136 (14)0.0059 (13)
O20.0427 (16)0.0345 (16)0.092 (2)0.0030 (12)0.0304 (16)0.0051 (15)
O30.0496 (17)0.0181 (14)0.074 (2)0.0002 (12)0.0163 (14)0.0048 (14)
O40.0429 (16)0.0295 (16)0.081 (2)0.0021 (12)0.0254 (15)0.0056 (14)
N10.0407 (18)0.0175 (16)0.0423 (18)0.0007 (13)0.0085 (15)0.0004 (13)
N20.0329 (16)0.0204 (17)0.0505 (19)0.0019 (12)0.0151 (14)0.0009 (13)
N30.045 (2)0.026 (2)0.047 (2)0.0007 (13)0.0098 (16)0.0011 (14)
N40.0443 (19)0.0212 (17)0.0430 (19)0.0063 (14)0.0108 (15)0.0037 (14)
N50.0349 (17)0.0217 (17)0.0505 (19)0.0045 (13)0.0135 (14)0.0018 (14)
N60.0408 (18)0.0281 (19)0.050 (2)0.0005 (14)0.0120 (16)0.0004 (15)
C10.0333 (19)0.0218 (19)0.0300 (19)0.0068 (14)0.0103 (15)0.0038 (14)
C20.040 (2)0.028 (2)0.037 (2)0.0015 (16)0.0096 (17)0.0025 (16)
C30.048 (2)0.025 (2)0.057 (3)0.0112 (18)0.014 (2)0.0000 (18)
C40.042 (2)0.041 (3)0.063 (3)0.0197 (19)0.010 (2)0.004 (2)
C50.032 (2)0.035 (2)0.054 (3)0.0009 (16)0.0046 (18)0.0005 (18)
C60.036 (2)0.025 (2)0.034 (2)0.0047 (15)0.0097 (16)0.0003 (15)
C70.037 (2)0.025 (2)0.038 (2)0.0028 (15)0.0117 (17)0.0013 (16)
C80.036 (2)0.024 (2)0.044 (2)0.0021 (16)0.0075 (17)0.0039 (16)
C90.0301 (18)0.021 (2)0.037 (2)0.0014 (14)0.0052 (15)0.0032 (15)
C100.037 (2)0.029 (2)0.044 (2)0.0006 (16)0.0154 (18)0.0009 (17)
C110.039 (2)0.030 (2)0.046 (2)0.0082 (16)0.0132 (18)0.0025 (18)
C120.049 (2)0.037 (3)0.042 (2)0.0021 (18)0.0186 (19)0.0061 (19)
C130.052 (2)0.024 (2)0.044 (2)0.0024 (17)0.0164 (19)0.0021 (17)
C140.0347 (19)0.023 (2)0.0320 (19)0.0054 (14)0.0118 (16)0.0031 (15)
C150.038 (2)0.026 (2)0.033 (2)0.0030 (15)0.0092 (17)0.0014 (15)
C160.034 (2)0.040 (3)0.057 (3)0.0023 (17)0.0062 (19)0.0017 (19)
C170.038 (2)0.041 (3)0.070 (3)0.0165 (18)0.006 (2)0.005 (2)
C180.048 (2)0.026 (2)0.058 (3)0.0120 (18)0.009 (2)0.0042 (18)
C190.041 (2)0.023 (2)0.040 (2)0.0009 (16)0.0077 (17)0.0044 (16)
C200.034 (2)0.028 (2)0.046 (2)0.0025 (16)0.0108 (17)0.0024 (17)
C210.031 (2)0.032 (2)0.041 (2)0.0013 (16)0.0066 (17)0.0004 (17)
C220.0282 (18)0.023 (2)0.039 (2)0.0017 (14)0.0065 (16)0.0007 (16)
C230.047 (2)0.034 (2)0.037 (2)0.0030 (17)0.0175 (18)0.0026 (17)
C240.050 (2)0.026 (2)0.046 (2)0.0040 (16)0.0194 (19)0.0040 (17)
C250.040 (2)0.030 (2)0.048 (2)0.0069 (16)0.0135 (19)0.0033 (17)
C260.034 (2)0.040 (2)0.041 (2)0.0041 (16)0.0151 (17)0.0042 (17)
O50.0477 (17)0.068 (2)0.0577 (19)0.0121 (15)0.0196 (15)0.0016 (15)
O60.0449 (17)0.072 (2)0.071 (2)0.0108 (15)0.0201 (16)0.0060 (17)
Geometric parameters (Å, º) top
Hg1—C12.059 (3)C8—C91.501 (5)
Hg1—Cl12.3189 (9)C9—C131.390 (5)
Hg2—C142.058 (3)C9—C101.389 (5)
Hg2—Cl22.3231 (10)C10—C111.379 (5)
O1—C21.366 (4)C10—H100.9300
O1—H10.8200C11—H110.9300
O2—C81.233 (4)C12—C131.379 (5)
O3—C191.369 (4)C12—H120.9300
O3—H30.8200C13—H130.9300
O4—C211.237 (4)C14—C191.391 (5)
N1—C71.268 (4)C14—C151.402 (5)
N1—N21.382 (4)C15—C161.400 (5)
N2—C81.354 (4)C15—C201.468 (5)
N2—H2D0.8600C16—C171.383 (5)
N3—C121.340 (5)C16—H160.9300
N3—C111.341 (5)C17—C181.379 (5)
N4—C201.277 (4)C17—H170.9300
N4—N51.386 (4)C18—C191.389 (5)
N5—C211.353 (4)C18—H180.9300
N5—H5D0.8600C20—H200.9300
N6—C241.323 (4)C21—C221.502 (5)
N6—C251.345 (4)C22—C231.379 (5)
C1—C21.388 (5)C22—C261.402 (5)
C1—C61.405 (5)C23—C241.387 (5)
C2—C31.397 (5)C23—H230.9300
C3—C41.384 (5)C24—H240.9300
C3—H3A0.9300C25—C261.378 (5)
C4—C51.389 (5)C25—H250.9300
C4—H40.9300C26—H260.9300
C5—C61.392 (5)O5—H1W0.8363
C5—H50.9300O5—H2W0.8344
C6—C71.473 (5)O6—H3W0.8298
C7—H70.9300O6—H4W0.8293
C1—Hg1—Cl1173.85 (10)N3—C12—C13123.8 (3)
C14—Hg2—Cl2174.67 (10)N3—C12—H12118.1
C2—O1—H1109.5C13—C12—H12118.1
C19—O3—H3109.5C12—C13—C9118.5 (3)
C7—N1—N2116.7 (3)C12—C13—H13120.7
C8—N2—N1117.6 (3)C9—C13—H13120.7
C8—N2—H2D121.2C19—C14—C15118.8 (3)
N1—N2—H2D121.2C19—C14—Hg2119.7 (3)
C12—N3—C11117.0 (3)C15—C14—Hg2121.4 (2)
C20—N4—N5116.5 (3)C16—C15—C14119.8 (3)
C21—N5—N4118.5 (3)C16—C15—C20118.0 (3)
C21—N5—H5D120.7C14—C15—C20122.2 (3)
N4—N5—H5D120.7C17—C16—C15120.2 (4)
C24—N6—C25117.4 (3)C17—C16—H16119.9
C2—C1—C6119.5 (3)C15—C16—H16119.9
C2—C1—Hg1119.4 (3)C18—C17—C16120.2 (4)
C6—C1—Hg1121.1 (2)C18—C17—H17119.9
O1—C2—C1117.6 (3)C16—C17—H17119.9
O1—C2—C3122.0 (3)C17—C18—C19119.9 (4)
C1—C2—C3120.3 (3)C17—C18—H18120.0
C4—C3—C2120.0 (4)C19—C18—H18120.0
C4—C3—H3A120.0O3—C19—C18121.7 (3)
C2—C3—H3A120.0O3—C19—C14117.2 (3)
C3—C4—C5120.2 (3)C18—C19—C14121.0 (3)
C3—C4—H4119.9N4—C20—C15120.3 (3)
C5—C4—H4119.9N4—C20—H20119.9
C4—C5—C6120.2 (3)C15—C20—H20119.9
C4—C5—H5119.9O4—C21—N5123.6 (3)
C6—C5—H5119.9O4—C21—C22121.2 (3)
C5—C6—C1119.8 (3)N5—C21—C22115.2 (3)
C5—C6—C7118.3 (3)C23—C22—C26118.4 (3)
C1—C6—C7121.9 (3)C23—C22—C21123.4 (3)
N1—C7—C6120.6 (3)C26—C22—C21118.3 (3)
N1—C7—H7119.7C22—C23—C24118.3 (3)
C6—C7—H7119.7C22—C23—H23120.8
O2—C8—N2123.6 (3)C24—C23—H23120.8
O2—C8—C9121.0 (3)N6—C24—C23124.1 (3)
N2—C8—C9115.4 (3)N6—C24—H24117.9
C13—C9—C10118.2 (3)C23—C24—H24117.9
C13—C9—C8123.1 (3)N6—C25—C26122.9 (3)
C10—C9—C8118.7 (3)N6—C25—H25118.6
C11—C10—C9119.1 (3)C26—C25—H25118.6
C11—C10—H10120.5C25—C26—C22118.8 (3)
C9—C10—H10120.5C25—C26—H26120.6
N3—C11—C10123.3 (3)C22—C26—H26120.6
N3—C11—H11118.4H1W—O5—H2W110.1
C10—C11—H11118.4H3W—O6—H4W111.0
C7—N1—N2—C8163.9 (3)C8—C9—C13—C12179.9 (3)
C20—N4—N5—C21166.2 (3)Cl2—Hg2—C14—C192.9 (12)
Cl1—Hg1—C1—C223.9 (11)Cl2—Hg2—C14—C15176.6 (8)
Cl1—Hg1—C1—C6155.6 (7)C19—C14—C15—C161.2 (5)
C6—C1—C2—O1177.6 (3)Hg2—C14—C15—C16179.3 (3)
Hg1—C1—C2—O12.8 (4)C19—C14—C15—C20178.7 (3)
C6—C1—C2—C31.2 (5)Hg2—C14—C15—C201.8 (5)
Hg1—C1—C2—C3179.2 (3)C14—C15—C16—C170.4 (6)
O1—C2—C3—C4177.4 (4)C20—C15—C16—C17178.0 (4)
C1—C2—C3—C41.1 (6)C15—C16—C17—C180.1 (6)
C2—C3—C4—C50.8 (6)C16—C17—C18—C190.6 (6)
C3—C4—C5—C60.6 (6)C17—C18—C19—O3178.0 (4)
C4—C5—C6—C10.8 (6)C17—C18—C19—C141.4 (6)
C4—C5—C6—C7179.7 (3)C15—C14—C19—O3178.5 (3)
C2—C1—C6—C51.1 (5)Hg2—C14—C19—O32.1 (4)
Hg1—C1—C6—C5179.4 (3)C15—C14—C19—C181.7 (5)
C2—C1—C6—C7179.9 (3)Hg2—C14—C19—C18178.8 (3)
Hg1—C1—C6—C70.5 (5)N5—N4—C20—C15177.1 (3)
N2—N1—C7—C6178.0 (3)C16—C15—C20—N4179.3 (4)
C5—C6—C7—N1176.9 (3)C14—C15—C20—N43.2 (5)
C1—C6—C7—N14.2 (5)N4—N5—C21—O44.8 (5)
N1—N2—C8—O24.8 (5)N4—N5—C21—C22175.9 (3)
N1—N2—C8—C9177.4 (3)O4—C21—C22—C23143.1 (4)
O2—C8—C9—C13145.8 (4)N5—C21—C22—C2337.6 (5)
N2—C8—C9—C1336.3 (5)O4—C21—C22—C2636.2 (5)
O2—C8—C9—C1033.8 (5)N5—C21—C22—C26143.1 (3)
N2—C8—C9—C10144.1 (3)C26—C22—C23—C241.0 (5)
C13—C9—C10—C111.5 (5)C21—C22—C23—C24178.3 (3)
C8—C9—C10—C11178.9 (3)C25—N6—C24—C230.5 (6)
C12—N3—C11—C102.0 (5)C22—C23—C24—N61.1 (6)
C9—C10—C11—N32.5 (5)C24—N6—C25—C262.2 (5)
C11—N3—C12—C130.6 (5)N6—C25—C26—C222.3 (5)
N3—C12—C13—C90.2 (6)C23—C22—C26—C250.6 (5)
C10—C9—C13—C120.3 (5)C21—C22—C26—C25179.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H4W···O2i0.832.152.898 (4)150
O6—H3W···O30.832.303.023 (4)146
O5—H2W···O10.832.172.963 (4)159
O5—H1W···O4ii0.842.062.876 (4)166
N5—H5D···O6iii0.862.042.872 (4)162
N2—H2D···O5iv0.862.062.890 (4)161
O3—H3···N6v0.821.922.737 (4)171
O1—H1···N3vi0.821.932.733 (4)167
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2; (v) x, y1, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Hg(C13H10N3O2)Cl]·H2O
Mr494.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)14.5932 (16), 14.0111 (15), 15.3711 (17)
β (°) 104.685 (1)
V3)3040.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)10.31
Crystal size (mm)0.37 × 0.28 × 0.25
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.113, 0.179
No. of measured, independent and
observed [I > 2σ(I)] reflections
22798, 5658, 4683
Rint0.030
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.046, 1.05
No. of reflections5658
No. of parameters381
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.83

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H4W···O2i0.832.152.898 (4)150.3
O6—H3W···O30.832.303.023 (4)145.5
O5—H2W···O10.832.172.963 (4)158.8
O5—H1W···O4ii0.842.062.876 (4)166.2
N5—H5D···O6iii0.862.042.872 (4)161.9
N2—H2D···O5iv0.862.062.890 (4)161.1
O3—H3···N6v0.821.922.737 (4)170.7
O1—H1···N3vi0.821.932.733 (4)166.6
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2; (v) x, y1, z; (vi) x, y+1, z.
 

Acknowledgements

This work was supported by the High-Level Personnel to Start Research Fund of Pingdingshan University (No. 2006044).

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGruter, G. M., Van Klink, G. P. M., Akkerman, O. S. & Bickelhaupt, F. (1995). Chem. Rev. 95, 2405–2456  CrossRef CAS Web of Science Google Scholar
First citationHao, X. Q., Gong, J. F., Song, W. T., Wu, Y. J. & Song, M. P. (2007). Inorg. Chem. Commun. 10, 371–375.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, K. H., Song, M. P., Zhu, Y. & Wu, Y. J. (2002). J. Organomet. Chem. 660, 139–144.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoro, B., Stoccoro, S., Minghetti, G., Zucca, A., Cinellu, M. A., Gladiali, S., Manassero, M. & Sansoni, M. (2005). Organometallics, 24, 53–61.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, C., Cen, F.-F., Wang, Z.-Q. & Zhang, Y.-Q. (2009a). Acta Cryst. E65, m754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. & Ji, B. M. (2009b). Organometallics, 28, 1909–1916.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m842-m843
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds