organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1575-o1576

(E)-1-(2-Thien­yl)-3-(3,4,5-tri­meth­oxy­phen­yl)prop-2-en-1-one

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bDepartment of Physics, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 21 May 2009; accepted 9 June 2009; online 13 June 2009)

The mol­ecule of the title heteroaryl chalcone, C16H16O4S, which consists of substituted thio­phene and benzene rings bridged by the prop-2-en-1-one group, is slightly twisted. The dihedral angle between the thio­phene and 3,4,5-trimethoxy­phenyl rings is 12.18 (4)°. The three meth­oxy groups have two different conformations; two meth­oxy groups are coplanar [C—O—C—C torsion angles = −1.38 (12) and 0.47 (12)°] whereas the third is (-)-synclinal with the benzene ring. In the crystal structure, adjacent mol­ecules are linked in a face-to-side manner into chains along the c axis by weak C—H⋯O(enone) inter­actions. These chains are stacked along the b axis by weak C—H⋯O(meth­oxy) inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Chantrapromma et al. (2009[Chantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893-o894.]); Patil et al. (2006[Patil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A., Puranik, V. G. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o4798-o4799.]; 2007[Patil, P. S., Chantrapromma, S., Fun, H.-K., Dharmaprakash, S. M. & Babu, H. B. R. (2007). Acta Cryst. E63, o2612.]); Suwunwong et al. (2009a[Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009a). Acta Cryst. E65, o120.],b[Suwunwong, T., Chantrapromma, S., Karalai, C., Pakdeevanich, P. & Fun, H.-K. (2009b). Acta Cryst. E65, o420-o421.]). For background to and applications of chalcones, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Go et al. (2005[Go, M.-L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem. 12, 483-499.]); Jung et al. (2008[Jung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron, 27, 861-867.]); Ni et al. (2004[Ni, L., Meng, C. Q. & Sikorski, J. A. (2004). Expert Opin. Ther. Patents, 14, 1669-1691.]); Patil et al. (2007[Patil, P. S., Chantrapromma, S., Fun, H.-K., Dharmaprakash, S. M. & Babu, H. B. R. (2007). Acta Cryst. E63, o2612.]); Patil & Dharmaprakash (2008[Patil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett. 62, 451-453.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16O4S

  • Mr = 304.36

  • Orthorhombic, P n a 21

  • a = 25.3323 (8) Å

  • b = 3.9816 (1) Å

  • c = 14.0163 (4) Å

  • V = 1413.73 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.58 × 0.31 × 0.21 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.872, Tmax = 0.951

  • 56940 measured reflections

  • 7416 independent reflections

  • 7177 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.099

  • S = 1.10

  • 7416 reflections

  • 193 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.54 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3588 Friedel pairs

  • Flack parameter: 0.04 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.93 2.52 3.1827 (14) 129
C15—H15C⋯O3ii 0.96 2.39 3.3340 (11) 169
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcone or 1,3-diaryl-2-propen-1-one, originally isolated from natural sources, and its derivatives are known to display a variety of biological activities, demonstrating analgesic, anti-inflammatory, antibacterial and antimycotic properties (Dimmock et al., 1999; Go et al., 2005; Ni et al., 2004). Moreover synthetic chalcones have also been found to be non-linear optical (NLO) (Patil & Dharmaprakash, 2008) and electro-active fluorescent materials (Jung et al., 2008). We have previously reported the synthesis and crystal structures of chalcone derivatives (Chantrapromma et al., 2009; Suwunwong et al., 2009a, b). Our research into the NLO and biological properties of chalcone derivatives led us to synthesize the title heteroaryl chalcone (I). (I) crystallizes in the non-centrosymmetric orthorhombic space group Pna21 and should therefore exhibit second-order nonlinear optical properties.

The molecule of the title heteroaryl chalcone (Fig. 1) exists in an E configuration with respect to the C6C7 double bond [1.3437 (11) Å] with a C5–C6–C7–C8 torsion angle 176.81 (8)°. The whole molecule is twisted as shown by the interplanar angle between thiophene and 3,4,5-trimethoxyphenyl rings being 12.18 (4)°. The propenone unit (C5—C7/O1) is also twisted with the O1–C5–C6–C7 torsion angle 10.94 (15)°. The three substituted methoxy groups of 3,4,5-trimethoxyphenyl unit have two different orientations: two methoxy groups (at the C10 and C12 positions) are co-planar with the phenyl ring with torsion angles C14–O2–C10–C9 = -1.38 (12)° and C16–O4–C12–C13 = 0.47 (12)° whereas the one at C11 is (-)-syn-clinally attached with the C15–O3–C11–C12 torsion angle -76.76 (10)°. In the structure, weak intramolecular C7—H7A···O1 and C15—H15B···O4 interactions generate S(5) and S(6) ring motifs, respectively (Bernstein et al., 1995). The bond distances have normal values (Allen et al., 1987) and bond lengths and angles are comparable with closely related structures (Chantrapromma et al., 2009; Patil et al., 2006; 2007; Suwunwong et al., 2009a, b).

In the crystal packing, the adjacent molecules are linked in a face-to-side manner into chains along the c axis through the enone unit by weak C1—H1A···O1 interactions (Fig. 2, Table 1). Weak C15—H15C···O3 interactions involving one of methoxy groups further stack these chains along the b axis (Fig. 3, Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Chantrapromma et al. (2009); Patil et al. (2006; 2007); Suwunwong et al. (2009a,b). For background to and applications of chalcones, see: Dimmock et al. (1999); Go et al. (2005); Jung et al. (2008); Ni et al. (2004); Patil et al. (2007); Patil & Dharmaprakash (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986).

Experimental top

The title compound was synthesized by the condensation of 3,4,5-trimethoxybenzaldehyde (0.40 g, 2 mmol) with 2-acetylthiophene (0.35 ml, 2 mmol) in ethanol (30 ml) in the presence of 30% NaOH (aq) (5 ml). After stirring for 3 h in ice bath at 278 K, the resulting pale yellow solid was collected by filtration, washed with distilled water, dried in air and purified by repeated recrystallization from acetone (72% yield). Pale yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from acetone/ethanol (1:1 v/v) by the slow evaporation of the solvent at room temperature after several days, Mp. 420–421 K.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic and CH and C—H = 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.22 Å from C3 and the deepest hole is located at 0.20 Å from S1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis, showing chains running along the c axis. Weak C—H···O interactions are shown as dashed lines.
[Figure 3] Fig. 3. The crystal packing of the title compound viewed along the a axis, showing chains stacking along the b axis. Weak C—H···O interactions are shown as dashed lines and hydrogen atoms not involved in C—H···O interactions were omitted for clarity.
(E)-1-(2-Thienyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H16O4SDx = 1.430 Mg m3
Mr = 304.36Melting point = 420–421 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 7416 reflections
a = 25.3323 (8) Åθ = 2.2–37.5°
b = 3.9816 (1) ŵ = 0.24 mm1
c = 14.0163 (4) ÅT = 100 K
V = 1413.73 (7) Å3Block, pale yellow
Z = 40.58 × 0.31 × 0.21 mm
F(000) = 640
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7416 independent reflections
Radiation source: sealed tube7177 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 37.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 4343
Tmin = 0.872, Tmax = 0.951k = 66
56940 measured reflectionsl = 2324
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.1429P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
7416 reflectionsΔρmax = 0.66 e Å3
193 parametersΔρmin = 0.54 e Å3
1 restraintAbsolute structure: Flack (1983), 3588 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (4)
Crystal data top
C16H16O4SV = 1413.73 (7) Å3
Mr = 304.36Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 25.3323 (8) ŵ = 0.24 mm1
b = 3.9816 (1) ÅT = 100 K
c = 14.0163 (4) Å0.58 × 0.31 × 0.21 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7416 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
7177 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 0.951Rint = 0.028
56940 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.66 e Å3
S = 1.10Δρmin = 0.54 e Å3
7416 reflectionsAbsolute structure: Flack (1983), 3588 Friedel pairs
193 parametersAbsolute structure parameter: 0.04 (4)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.249987 (8)0.46794 (6)0.47989 (2)0.01892 (5)
O10.25370 (3)0.4617 (3)0.68801 (7)0.02618 (18)
O20.40965 (3)0.51095 (18)1.13056 (5)0.01662 (11)
O30.49824 (2)0.83176 (19)1.08244 (5)0.01615 (10)
O40.51691 (3)1.02802 (19)0.90201 (5)0.01753 (11)
C10.28105 (4)0.5872 (3)0.37853 (6)0.02121 (16)
H1A0.26790.54650.31770.025*
C20.32771 (4)0.7503 (3)0.39595 (7)0.02174 (16)
H2A0.34930.83310.34770.026*
C30.34021 (3)0.7815 (2)0.49530 (5)0.01517 (12)
H3A0.37020.88440.52000.018*
C40.29890 (3)0.6283 (2)0.55061 (6)0.01440 (12)
C50.29401 (3)0.5880 (2)0.65390 (6)0.01617 (13)
C60.33914 (3)0.6919 (2)0.71401 (6)0.01613 (13)
H6A0.36620.82020.68780.019*
C70.34122 (3)0.6018 (2)0.80632 (6)0.01549 (13)
H7A0.31220.48360.82940.019*
C80.38341 (3)0.6666 (2)0.87483 (5)0.01329 (11)
C90.37539 (3)0.5559 (2)0.96864 (6)0.01372 (11)
H9A0.34410.44790.98490.016*
C100.41415 (3)0.6073 (2)1.03751 (5)0.01261 (11)
C110.46146 (3)0.7683 (2)1.01284 (5)0.01296 (11)
C120.46951 (3)0.8767 (2)0.91840 (5)0.01333 (12)
C130.43078 (3)0.8266 (2)0.84955 (6)0.01399 (12)
H13A0.43620.89850.78720.017*
C140.36101 (4)0.3538 (2)1.15750 (6)0.01816 (14)
H14A0.36190.30011.22430.027*
H14B0.35630.15161.12120.027*
H14C0.33220.50431.14520.027*
C150.54355 (3)0.6178 (2)1.07845 (8)0.02027 (15)
H15A0.56810.68171.12740.030*
H15B0.56010.63911.01720.030*
H15C0.53290.38901.08810.030*
C160.52661 (4)1.1439 (3)0.80695 (6)0.01969 (15)
H16A0.55981.25970.80490.030*
H16B0.49891.29410.78800.030*
H16C0.52760.95550.76420.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01673 (9)0.02390 (10)0.01613 (9)0.00032 (6)0.00311 (6)0.00034 (9)
O10.0181 (3)0.0441 (5)0.0164 (3)0.0106 (3)0.0019 (2)0.0083 (3)
O20.0169 (2)0.0225 (3)0.0104 (2)0.0028 (2)0.00034 (19)0.00240 (19)
O30.0152 (2)0.0203 (3)0.0130 (2)0.00066 (19)0.00317 (18)0.0026 (2)
O40.0148 (2)0.0241 (3)0.0136 (2)0.0053 (2)0.0005 (2)0.0021 (2)
C10.0243 (4)0.0266 (4)0.0127 (3)0.0053 (3)0.0033 (3)0.0005 (3)
C20.0220 (4)0.0247 (4)0.0185 (3)0.0027 (3)0.0059 (3)0.0038 (3)
C30.0144 (3)0.0203 (3)0.0108 (3)0.0051 (2)0.0017 (2)0.0003 (2)
C40.0135 (3)0.0168 (3)0.0129 (3)0.0002 (2)0.0012 (2)0.0020 (2)
C50.0142 (3)0.0215 (3)0.0128 (3)0.0013 (3)0.0015 (2)0.0025 (2)
C60.0147 (3)0.0199 (3)0.0138 (3)0.0014 (2)0.0017 (2)0.0012 (2)
C70.0134 (3)0.0206 (3)0.0125 (3)0.0006 (2)0.0014 (2)0.0006 (2)
C80.0123 (3)0.0168 (3)0.0108 (2)0.0004 (2)0.0006 (2)0.0002 (2)
C90.0125 (3)0.0169 (3)0.0117 (3)0.0006 (2)0.0001 (2)0.0002 (2)
C100.0128 (3)0.0149 (3)0.0101 (3)0.0006 (2)0.0003 (2)0.0001 (2)
C110.0130 (3)0.0153 (3)0.0105 (2)0.0002 (2)0.0003 (2)0.0003 (2)
C120.0127 (3)0.0157 (3)0.0116 (3)0.0003 (2)0.0010 (2)0.0007 (2)
C130.0129 (3)0.0178 (3)0.0113 (3)0.0000 (2)0.0002 (2)0.0001 (2)
C140.0186 (3)0.0206 (4)0.0152 (3)0.0016 (3)0.0039 (2)0.0030 (3)
C150.0174 (3)0.0188 (3)0.0246 (4)0.0001 (3)0.0066 (3)0.0001 (3)
C160.0171 (3)0.0252 (4)0.0168 (3)0.0013 (3)0.0032 (3)0.0051 (3)
Geometric parameters (Å, º) top
S1—C11.6921 (11)C7—C81.4598 (11)
S1—C41.7104 (8)C7—H7A0.9300
O1—C51.2347 (11)C8—C91.4015 (11)
O2—C101.3642 (10)C8—C131.4040 (11)
O2—C141.4325 (11)C9—C101.3920 (11)
O3—C111.3725 (10)C9—H9A0.9300
O3—C151.4304 (12)C10—C111.4023 (11)
O4—C121.3630 (10)C11—C121.4073 (11)
O4—C161.4312 (11)C12—C131.3905 (11)
C1—C21.3704 (15)C13—H13A0.9300
C1—H1A0.9300C14—H14A0.9600
C2—C31.4335 (13)C14—H14B0.9600
C2—H2A0.9300C14—H14C0.9600
C3—C41.4382 (12)C15—H15A0.9600
C3—H3A0.9300C15—H15B0.9600
C4—C51.4619 (12)C15—H15C0.9600
C5—C61.4792 (12)C16—H16A0.9600
C6—C71.3437 (11)C16—H16B0.9600
C6—H6A0.9300C16—H16C0.9600
C1—S1—C492.57 (5)O2—C10—C9124.24 (7)
C10—O2—C14116.54 (7)O2—C10—C11115.83 (7)
C11—O3—C15114.04 (7)C9—C10—C11119.93 (7)
C12—O4—C16116.78 (7)O3—C11—C10119.29 (7)
C2—C1—S1112.61 (7)O3—C11—C12120.91 (7)
C2—C1—H1A123.7C10—C11—C12119.73 (7)
S1—C1—H1A123.7O4—C12—C13124.62 (7)
C1—C2—C3113.88 (8)O4—C12—C11114.94 (7)
C1—C2—H2A123.1C13—C12—C11120.43 (7)
C3—C2—H2A123.1C12—C13—C8119.54 (7)
C2—C3—C4109.02 (8)C12—C13—H13A120.2
C2—C3—H3A125.5C8—C13—H13A120.2
C4—C3—H3A125.5O2—C14—H14A109.5
C3—C4—C5129.94 (7)O2—C14—H14B109.5
C3—C4—S1111.91 (6)H14A—C14—H14B109.5
C5—C4—S1118.14 (6)O2—C14—H14C109.5
O1—C5—C4119.89 (8)H14A—C14—H14C109.5
O1—C5—C6122.19 (8)H14B—C14—H14C109.5
C4—C5—C6117.90 (7)O3—C15—H15A109.5
C7—C6—C5120.26 (8)O3—C15—H15B109.5
C7—C6—H6A119.9H15A—C15—H15B109.5
C5—C6—H6A119.9O3—C15—H15C109.5
C6—C7—C8127.94 (8)H15A—C15—H15C109.5
C6—C7—H7A116.0H15B—C15—H15C109.5
C8—C7—H7A116.0O4—C16—H16A109.5
C9—C8—C13120.22 (7)O4—C16—H16B109.5
C9—C8—C7117.10 (7)H16A—C16—H16B109.5
C13—C8—C7122.68 (7)O4—C16—H16C109.5
C10—C9—C8120.15 (7)H16A—C16—H16C109.5
C10—C9—H9A119.9H16B—C16—H16C109.5
C8—C9—H9A119.9
C4—S1—C1—C20.66 (8)C14—O2—C10—C11178.47 (7)
S1—C1—C2—C30.53 (11)C8—C9—C10—O2179.44 (8)
C1—C2—C3—C40.06 (11)C8—C9—C10—C110.40 (12)
C2—C3—C4—C5178.30 (9)C15—O3—C11—C10106.33 (9)
C2—C3—C4—S10.43 (9)C15—O3—C11—C1276.76 (10)
C1—S1—C4—C30.62 (7)O2—C10—C11—O32.98 (11)
C1—S1—C4—C5178.27 (7)C9—C10—C11—O3176.88 (8)
C3—C4—C5—O1176.49 (10)O2—C10—C11—C12179.93 (7)
S1—C4—C5—O14.85 (13)C9—C10—C11—C120.07 (12)
C3—C4—C5—C65.52 (14)C16—O4—C12—C130.47 (12)
S1—C4—C5—C6173.14 (7)C16—O4—C12—C11179.67 (8)
O1—C5—C6—C710.94 (15)O3—C11—C12—O43.51 (11)
C4—C5—C6—C7166.99 (8)C10—C11—C12—O4179.59 (7)
C5—C6—C7—C8176.81 (8)O3—C11—C12—C13176.63 (8)
C6—C7—C8—C9177.83 (9)C10—C11—C12—C130.27 (12)
C6—C7—C8—C133.34 (14)O4—C12—C13—C8179.86 (8)
C13—C8—C9—C100.69 (12)C11—C12—C13—C80.01 (12)
C7—C8—C9—C10179.55 (8)C9—C8—C13—C120.49 (12)
C14—O2—C10—C91.38 (12)C7—C8—C13—C12179.29 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.932.523.1827 (14)129
C7—H7A···O10.932.482.8243 (12)102
C15—H15B···O40.962.493.0396 (13)116
C15—H15C···O3ii0.962.393.3340 (11)169
C7—H7A···O10.932.482.8243 (12)102
C15—H15B···O40.962.493.0396 (13)116
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H16O4S
Mr304.36
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)25.3323 (8), 3.9816 (1), 14.0163 (4)
V3)1413.73 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.58 × 0.31 × 0.21
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.872, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
56940, 7416, 7177
Rint0.028
(sin θ/λ)max1)0.857
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.099, 1.10
No. of reflections7416
No. of parameters193
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.54
Absolute structureFlack (1983), 3588 Friedel pairs
Absolute structure parameter0.04 (4)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.932.523.1827 (14)129
C7—H7A···O10.932.482.8243 (12)102
C15—H15B···O40.962.493.0396 (13)116
C15—H15C···O3ii0.962.393.3340 (11)169
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y1, z.
 

Footnotes

This paper is dedicated to the late Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of Science in Thailand.

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my; Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

Financial support from the Prince of Songkla University through the Crystal Materials Research Unit is gratefully acknowledged. TS thanks the Graduate School, Prince of Songkla University, for partial financial support. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893–o894.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGo, M.-L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem. 12, 483–499.  CrossRef CAS Google Scholar
First citationJung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron, 27, 861–867.  Web of Science CSD CrossRef CAS Google Scholar
First citationNi, L., Meng, C. Q. & Sikorski, J. A. (2004). Expert Opin. Ther. Patents, 14, 1669–1691.  Google Scholar
First citationPatil, P. S., Chantrapromma, S., Fun, H.-K., Dharmaprakash, S. M. & Babu, H. B. R. (2007). Acta Cryst. E63, o2612.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett. 62, 451–453.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A., Puranik, V. G. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o4798–o4799.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009a). Acta Cryst. E65, o120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S., Karalai, C., Pakdeevanich, P. & Fun, H.-K. (2009b). Acta Cryst. E65, o420–o421.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1575-o1576
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds