metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromidobis(1,10-phenanthroline-κ2N,N′)cadmium(II)

aCollege of Chemistry and Life Science, Gannan Normal University, Ganzhou, Jiangxi 341000, People's Republic of China
*Correspondence e-mail: ziyidu@gmail.com

(Received 23 May 2009; accepted 28 May 2009; online 6 June 2009)

The title compound, [CdBr2(C12H8N2)2], synthesized by the hydro­thermal reaction of Cd(CH3COO)2·2H2O with NaBr and 1,10-phenanthroline, has the CdII cation coordinated by two Br anions and four N atoms from two 1,10-phenanthroline ligands in a distorted octa­hedral geometry. The crystal packing is stabilized by inter­molecular ππ inter­actions with centroid–centroid distances 3.572 (1) and 3.671 (1) Å together with C—H⋯Br hydrogen bonds.

Related literature

For other cadmium–halogen compounds with 1,10-phenanthroline (phen) as a coligand, see: Cao et al. (2007[Cao, M.-L., Fang, X., Yu, H.-Y. & Wang, J.-D. (2007). Acta Cryst. E63, m1951.]); Chen et al. (2003[Chen, H.-B., Zhou, Z.-H., Wan, H.-L. & Ng, S. W. (2003). Acta Cryst. E59, m845-m846.]); Guo et al. (2006[Guo, H.-X., Yang, L.-M., Lin, Z.-X. & Zou, X.-J. (2006). Acta Cryst. E62, m2863-m2865.]); He et al. (2005[He, H.-Y., Zhou, Y.-L., Chen, J. & Zhu, L.-G. (2005). Z. Kristallogr. New Cryst. Struct. 220, 209-210.]); Li et al. (2007[Li, W.-H., Liu, F.-Q., Pang, X.-H. & Hou, B.-R. (2007). Acta Cryst. E63, m1050-m1051.]); Wang et al. (1996[Wang, H., Xiong, R.-G., Chen, H.-Y., Huang, X.-Y. & You, X.-Z. (1996). Acta Cryst. C52, 1658-1661.]); Zhang (2007[Zhang, B.-S. (2007). Acta Cryst. E63, m1562.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [CdBr2(C12H8N2)2]

  • Mr = 632.63

  • Triclinic, [P \overline 1]

  • a = 9.3996 (2) Å

  • b = 10.1421 (3) Å

  • c = 12.8441 (3) Å

  • α = 78.927 (2)°

  • β = 81.303 (1)°

  • γ = 70.633 (1)°

  • V = 1128.58 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.53 mm−1

  • T = 296 K

  • 0.30 × 0.28 × 0.06 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.279, Tmax = 0.762

  • 15420 measured reflections

  • 5656 independent reflections

  • 4515 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.109

  • S = 1.03

  • 5656 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −1.16 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—N3 2.359 (3)
Cd1—N2 2.367 (3)
Cd1—N1 2.442 (3)
Cd1—N4 2.471 (3)
Cd1—Br1 2.6249 (6)
Cd1—Br2 2.6913 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯Br2i 0.93 2.81 3.731 (5) 171
C20—H20A⋯Br2ii 0.93 2.88 3.776 (5) 162
Symmetry codes: (i) x-1, y, z; (ii) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, there have been a number of reports of cadmium-halogen complexes with 1,10-phenanthroline (phen) as a coligand (Cao et al., 2007; Chen et al., 2003; Guo et al., 2006; He et al., 2005; Li et al., 2007; Wang et al., 1996; Zhang, et al., 2007). We have synthesized the mononuclear title complex [CdBr2(phen)2], (I), Fig 1. The CdII cation is coordinated by two Br- anions and four N atoms from two 1,10-phenanthroline ligands in a distorted octahedral geometry, Table 1. The Cd—Br and Cd—N bond lengths are in the expected ranges (Allen et al. 1987). It is worthy of note that compound I crystallizes in the triclinic space group P-1 , while the analogous mononuclear chlorido and iodido complexes [CdCl2(phen)2] (Wang et al., 1996) and [CdI2(phen)2] (Cao et al., 2007) crystallize in the monoclinic, P21/c, and orthorhombic, Pbcn, space groups respectively.

The crystal packing is stabilized by intermolecular ππ interactions between the phen rings, with centroid-centroid distances of 3.572 (1) Å (from two adjacent C13/C14/C15/C16/C24/N3 rings) and 3.671 (1) Å (from two adjacent C7/C8/C9/C10/N2/C11 rings), and C—H···Br hydrogen bonds, Table 2.

Related literature top

For other cadmium–halogen compounds with 1,10-phenanthroline (phen) as a coligand, see: Cao et al. (2007); Chen et al. (2003); Guo et al. (2006); He et al. (2005); Li et al. (2007); Wang et al. (1996); Zhang (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of Cd(CH3COO)2.2(H2O) (67 mg, 0.25 mmol), NaBr (36 mg, 0.35 mmol) and 1,10-phenanthroline (69 mg, 0.35 mmol) in 10 ml distilled water was put into a Parr Teflon-lined autoclave (23 ml) and heated at 413 K for 3 days. On cooling, yellow block-shaped crystals of compound I were collected in a ca 55% yield based on Cd.

Refinement top

All H atoms were placed at calculated positions and refined with isotropic displacement parameters using a riding model [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. The highest electron density peaks in the difference map, 1.05 and -1.16 Å, are close to the Cd1 and Br1 atoms, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound I, with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
Dibromidobis(1,10-phenanthroline-κ2N,N')cadmium(II) top
Crystal data top
[CdBr2(C12H8N2)2]Z = 2
Mr = 632.63F(000) = 612
Triclinic, P1Dx = 1.862 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3996 (2) ÅCell parameters from 15420 reflections
b = 10.1421 (3) Åθ = 1.6–28.4°
c = 12.8441 (3) ŵ = 4.53 mm1
α = 78.927 (2)°T = 296 K
β = 81.303 (1)°Block, yellow
γ = 70.633 (1)°0.30 × 0.28 × 0.06 mm
V = 1128.58 (5) Å3
Data collection top
Bruker SMART APEXII
diffractometer
5656 independent reflections
Radiation source: fine-focus sealed tube4515 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.279, Tmax = 0.762k = 1312
15420 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0576P)2 + 1.3724P]
where P = (Fo2 + 2Fc2)/3
5656 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 1.16 e Å3
Crystal data top
[CdBr2(C12H8N2)2]γ = 70.633 (1)°
Mr = 632.63V = 1128.58 (5) Å3
Triclinic, P1Z = 2
a = 9.3996 (2) ÅMo Kα radiation
b = 10.1421 (3) ŵ = 4.53 mm1
c = 12.8441 (3) ÅT = 296 K
α = 78.927 (2)°0.30 × 0.28 × 0.06 mm
β = 81.303 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
5656 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4515 reflections with I > 2σ(I)
Tmin = 0.279, Tmax = 0.762Rint = 0.026
15420 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.03Δρmax = 1.05 e Å3
5656 reflectionsΔρmin = 1.16 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.55044 (3)0.23874 (3)0.24464 (2)0.03912 (10)
Br10.74883 (7)0.36969 (6)0.16057 (4)0.06865 (16)
Br20.71950 (5)0.02183 (4)0.32529 (4)0.05049 (13)
N10.3404 (4)0.1407 (3)0.2733 (3)0.0423 (7)
N20.4886 (4)0.2069 (4)0.0812 (2)0.0430 (7)
N30.4726 (4)0.3143 (4)0.4127 (3)0.0451 (8)
N40.3237 (4)0.4503 (4)0.2368 (3)0.0492 (8)
C10.2693 (5)0.1083 (5)0.3666 (4)0.0557 (11)
H1A0.30480.11580.42830.067*
C20.1434 (6)0.0635 (7)0.3752 (5)0.0752 (16)
H2A0.09630.04130.44230.090*
C30.0887 (6)0.0519 (7)0.2884 (6)0.0803 (17)
H3A0.00260.02400.29480.096*
C40.1629 (5)0.0824 (5)0.1871 (5)0.0616 (12)
C50.1163 (6)0.0697 (7)0.0888 (6)0.0797 (17)
H5A0.03160.04110.09050.096*
C60.1928 (7)0.0986 (6)0.0054 (5)0.0750 (16)
H6A0.16180.08640.06740.090*
C70.3194 (6)0.1471 (5)0.0124 (4)0.0545 (11)
C80.4023 (7)0.1798 (5)0.1086 (4)0.0663 (14)
H8A0.37500.16970.17250.080*
C90.5217 (8)0.2258 (6)0.1086 (4)0.0716 (15)
H9A0.57610.24850.17240.086*
C100.5626 (6)0.2389 (5)0.0119 (3)0.0569 (11)
H10A0.64450.27120.01260.068*
C110.3688 (5)0.1622 (4)0.0822 (3)0.0427 (9)
C120.2892 (4)0.1273 (4)0.1839 (3)0.0436 (9)
C130.5464 (6)0.2500 (5)0.4971 (3)0.0561 (11)
H13A0.63280.17290.48950.067*
C140.5008 (7)0.2923 (6)0.5971 (4)0.0678 (14)
H14A0.55700.24520.65440.081*
C150.3737 (8)0.4027 (6)0.6098 (4)0.0707 (15)
H15A0.34210.43210.67610.085*
C160.2903 (6)0.4723 (5)0.5235 (4)0.0593 (12)
C170.1551 (8)0.5900 (6)0.5292 (5)0.0803 (18)
H17A0.12010.62390.59370.096*
C180.0766 (8)0.6533 (7)0.4438 (5)0.0835 (18)
H18A0.01320.72720.45110.100*
C190.1298 (6)0.6082 (5)0.3421 (4)0.0666 (14)
C200.0546 (7)0.6714 (7)0.2503 (5)0.089 (2)
H20A0.03600.74510.25430.106*
C210.1138 (8)0.6255 (7)0.1547 (5)0.090 (2)
H21A0.06510.66810.09330.108*
C220.2493 (6)0.5126 (5)0.1514 (4)0.0639 (13)
H22A0.28860.48010.08680.077*
C230.2659 (5)0.4952 (4)0.3313 (4)0.0505 (10)
C240.3446 (5)0.4250 (4)0.4241 (3)0.0467 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04326 (16)0.04325 (16)0.03189 (14)0.01209 (11)0.00285 (10)0.01124 (11)
Br10.0775 (4)0.0791 (4)0.0600 (3)0.0404 (3)0.0076 (3)0.0180 (3)
Br20.0427 (2)0.0468 (2)0.0585 (3)0.00646 (17)0.00875 (18)0.01007 (19)
N10.0415 (17)0.0412 (17)0.0432 (17)0.0114 (13)0.0039 (13)0.0065 (14)
N20.0506 (19)0.0442 (18)0.0348 (16)0.0137 (15)0.0054 (14)0.0081 (13)
N30.059 (2)0.0428 (17)0.0360 (16)0.0165 (15)0.0029 (14)0.0122 (14)
N40.060 (2)0.0411 (18)0.0392 (17)0.0078 (16)0.0006 (15)0.0049 (14)
C10.055 (3)0.060 (3)0.051 (2)0.020 (2)0.005 (2)0.010 (2)
C20.055 (3)0.089 (4)0.082 (4)0.033 (3)0.021 (3)0.016 (3)
C30.044 (3)0.100 (4)0.106 (5)0.036 (3)0.004 (3)0.024 (4)
C40.040 (2)0.066 (3)0.084 (3)0.015 (2)0.011 (2)0.021 (3)
C50.054 (3)0.094 (4)0.107 (5)0.027 (3)0.034 (3)0.023 (4)
C60.070 (3)0.079 (4)0.084 (4)0.012 (3)0.040 (3)0.027 (3)
C70.069 (3)0.046 (2)0.051 (2)0.011 (2)0.027 (2)0.0098 (19)
C80.094 (4)0.058 (3)0.046 (2)0.011 (3)0.031 (3)0.011 (2)
C90.110 (5)0.073 (3)0.035 (2)0.033 (3)0.007 (2)0.010 (2)
C100.074 (3)0.065 (3)0.035 (2)0.028 (2)0.001 (2)0.0093 (19)
C110.045 (2)0.0382 (19)0.0409 (19)0.0033 (16)0.0134 (16)0.0078 (16)
C120.0322 (18)0.042 (2)0.055 (2)0.0053 (15)0.0084 (16)0.0110 (17)
C130.076 (3)0.055 (3)0.042 (2)0.021 (2)0.012 (2)0.0130 (19)
C140.102 (4)0.070 (3)0.041 (2)0.035 (3)0.012 (2)0.012 (2)
C150.113 (5)0.072 (3)0.040 (2)0.048 (3)0.016 (3)0.024 (2)
C160.081 (3)0.052 (3)0.050 (2)0.028 (2)0.015 (2)0.022 (2)
C170.098 (4)0.070 (3)0.068 (4)0.021 (3)0.029 (3)0.038 (3)
C180.082 (4)0.073 (4)0.082 (4)0.002 (3)0.017 (3)0.037 (3)
C190.066 (3)0.050 (3)0.069 (3)0.002 (2)0.007 (2)0.014 (2)
C200.075 (4)0.068 (4)0.089 (4)0.017 (3)0.004 (3)0.009 (3)
C210.089 (4)0.071 (4)0.074 (4)0.023 (3)0.019 (3)0.005 (3)
C220.067 (3)0.058 (3)0.051 (3)0.000 (2)0.007 (2)0.005 (2)
C230.058 (2)0.037 (2)0.052 (2)0.0112 (18)0.0064 (19)0.0112 (17)
C240.063 (3)0.0366 (19)0.042 (2)0.0199 (18)0.0084 (18)0.0128 (16)
Geometric parameters (Å, º) top
Cd1—N32.359 (3)C7—C111.415 (5)
Cd1—N22.367 (3)C8—C91.350 (9)
Cd1—N12.442 (3)C8—H8A0.9300
Cd1—N42.471 (3)C9—C101.396 (6)
Cd1—Br12.6249 (6)C9—H9A0.9300
Cd1—Br22.6913 (5)C10—H10A0.9300
N1—C11.319 (5)C11—C121.448 (6)
N1—C121.356 (5)C13—C141.393 (6)
N2—C101.329 (5)C13—H13A0.9300
N2—C111.344 (5)C14—C151.354 (8)
N3—C131.318 (6)C14—H14A0.9300
N3—C241.358 (5)C15—C161.391 (8)
N4—C221.328 (6)C15—H15A0.9300
N4—C231.351 (5)C16—C241.413 (6)
C1—C21.384 (7)C16—C171.430 (8)
C1—H1A0.9300C17—C181.350 (9)
C2—C31.336 (9)C17—H17A0.9300
C2—H2A0.9300C18—C191.430 (7)
C3—C41.410 (8)C18—H18A0.9300
C3—H3A0.9300C19—C201.401 (8)
C4—C121.399 (6)C19—C231.416 (6)
C4—C51.438 (8)C20—C211.370 (8)
C5—C61.344 (9)C20—H20A0.9300
C5—H5A0.9300C21—C221.404 (7)
C6—C71.417 (8)C21—H21A0.9300
C6—H6A0.9300C22—H22A0.9300
C7—C81.402 (8)C23—C241.437 (6)
N3—Cd1—N2149.72 (12)C7—C8—H8A119.9
N3—Cd1—N188.27 (12)C8—C9—C10119.4 (5)
N2—Cd1—N169.02 (12)C8—C9—H9A120.3
N3—Cd1—N468.75 (12)C10—C9—H9A120.3
N2—Cd1—N486.08 (12)N2—C10—C9122.4 (5)
N1—Cd1—N476.42 (12)N2—C10—H10A118.8
N3—Cd1—Br1103.12 (9)C9—C10—H10A118.8
N2—Cd1—Br196.15 (9)N2—C11—C7122.3 (4)
N1—Cd1—Br1163.88 (8)N2—C11—C12118.4 (3)
N4—Cd1—Br196.90 (9)C7—C11—C12119.3 (4)
N3—Cd1—Br294.02 (9)N1—C12—C4122.3 (4)
N2—Cd1—Br2103.63 (8)N1—C12—C11118.1 (4)
N1—Cd1—Br285.87 (8)C4—C12—C11119.6 (4)
N4—Cd1—Br2155.34 (9)N3—C13—C14123.0 (5)
Br1—Cd1—Br2104.380 (19)N3—C13—H13A118.5
C1—N1—C12118.6 (4)C14—C13—H13A118.5
C1—N1—Cd1125.6 (3)C15—C14—C13119.2 (5)
C12—N1—Cd1115.7 (3)C15—C14—H14A120.4
C10—N2—C11118.8 (4)C13—C14—H14A120.4
C10—N2—Cd1122.5 (3)C14—C15—C16120.0 (4)
C11—N2—Cd1118.6 (2)C14—C15—H15A120.0
C13—N3—C24118.6 (4)C16—C15—H15A120.0
C13—N3—Cd1122.3 (3)C15—C16—C24117.7 (5)
C24—N3—Cd1119.1 (3)C15—C16—C17123.9 (5)
C22—N4—C23119.0 (4)C24—C16—C17118.3 (5)
C22—N4—Cd1125.6 (3)C18—C17—C16122.0 (5)
C23—N4—Cd1115.0 (3)C18—C17—H17A119.0
N1—C1—C2121.9 (5)C16—C17—H17A119.0
N1—C1—H1A119.0C17—C18—C19120.7 (5)
C2—C1—H1A119.0C17—C18—H18A119.6
C3—C2—C1120.8 (5)C19—C18—H18A119.6
C3—C2—H2A119.6C20—C19—C23117.2 (5)
C1—C2—H2A119.6C20—C19—C18123.3 (5)
C2—C3—C4119.3 (5)C23—C19—C18119.5 (5)
C2—C3—H3A120.3C21—C20—C19120.3 (5)
C4—C3—H3A120.3C21—C20—H20A119.8
C12—C4—C3117.0 (5)C19—C20—H20A119.8
C12—C4—C5119.0 (5)C20—C21—C22118.6 (5)
C3—C4—C5124.0 (5)C20—C21—H21A120.7
C6—C5—C4121.3 (5)C22—C21—H21A120.7
C6—C5—H5A119.4N4—C22—C21122.6 (5)
C4—C5—H5A119.4N4—C22—H22A118.7
C5—C6—C7121.5 (5)C21—C22—H22A118.7
C5—C6—H6A119.3N4—C23—C19122.2 (4)
C7—C6—H6A119.3N4—C23—C24118.9 (4)
C8—C7—C11117.0 (5)C19—C23—C24119.0 (4)
C8—C7—C6123.8 (5)N3—C24—C16121.5 (4)
C11—C7—C6119.3 (5)N3—C24—C23118.1 (3)
C9—C8—C7120.2 (4)C16—C24—C23120.4 (4)
C9—C8—H8A119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Br2i0.932.813.731 (5)171
C20—H20A···Br2ii0.932.883.776 (5)162
Symmetry codes: (i) x1, y, z; (ii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[CdBr2(C12H8N2)2]
Mr632.63
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.3996 (2), 10.1421 (3), 12.8441 (3)
α, β, γ (°)78.927 (2), 81.303 (1), 70.633 (1)
V3)1128.58 (5)
Z2
Radiation typeMo Kα
µ (mm1)4.53
Crystal size (mm)0.30 × 0.28 × 0.06
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.279, 0.762
No. of measured, independent and
observed [I > 2σ(I)] reflections
15420, 5656, 4515
Rint0.026
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.109, 1.03
No. of reflections5656
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 1.16

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—N32.359 (3)Cd1—N42.471 (3)
Cd1—N22.367 (3)Cd1—Br12.6249 (6)
Cd1—N12.442 (3)Cd1—Br22.6913 (5)
N3—Cd1—N2149.72 (12)N1—Cd1—Br1163.88 (8)
N3—Cd1—N188.27 (12)N4—Cd1—Br196.90 (9)
N2—Cd1—N169.02 (12)N3—Cd1—Br294.02 (9)
N3—Cd1—N468.75 (12)N2—Cd1—Br2103.63 (8)
N2—Cd1—N486.08 (12)N1—Cd1—Br285.87 (8)
N1—Cd1—N476.42 (12)N4—Cd1—Br2155.34 (9)
N3—Cd1—Br1103.12 (9)Br1—Cd1—Br2104.380 (19)
N2—Cd1—Br196.15 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Br2i0.932.813.731 (5)171.4
C20—H20A···Br2ii0.932.883.776 (5)162.3
Symmetry codes: (i) x1, y, z; (ii) x1, y+1, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation (NSF) of Jiangxi Province (grant No. 2008GQH0013), the NSF of Jiangxi Provincial Education Department (grant No. GJJ09317), and the Key Laboratory of Jiangxi University for Functional Materials Chemistry.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, M.-L., Fang, X., Yu, H.-Y. & Wang, J.-D. (2007). Acta Cryst. E63, m1951.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, H.-B., Zhou, Z.-H., Wan, H.-L. & Ng, S. W. (2003). Acta Cryst. E59, m845–m846.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuo, H.-X., Yang, L.-M., Lin, Z.-X. & Zou, X.-J. (2006). Acta Cryst. E62, m2863–m2865.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, H.-Y., Zhou, Y.-L., Chen, J. & Zhu, L.-G. (2005). Z. Kristallogr. New Cryst. Struct. 220, 209–210.  CAS Google Scholar
First citationLi, W.-H., Liu, F.-Q., Pang, X.-H. & Hou, B.-R. (2007). Acta Cryst. E63, m1050–m1051.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Xiong, R.-G., Chen, H.-Y., Huang, X.-Y. & You, X.-Z. (1996). Acta Cryst. C52, 1658–1661.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhang, B.-S. (2007). Acta Cryst. E63, m1562.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds