organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 6-(6-meth­­oxy-2-naphth­yl)-2-oxo-4-(2-thien­yl)cyclo­hex-3-ene-1-carboxyl­ate

aKey Laboratory of the Science & Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, People's Republic of China, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: hongqili@dhu.edu.cn

(Received 28 May 2009; accepted 4 June 2009; online 10 June 2009)

The title compound, C24H22O4S, was prepared by reaction between (2E)-3-(6-meth­oxy-2-naphth­yl)-1-(2-thien­yl)prop-2-en-1-one and ethyl acetoacetate. In the crystal, the cyclo­hexenone ring shows a distorted half-chair conformation. The length of the double bond in the cyclohexenone ring [1.343 (4) Å] is normal.

Related literature

For related structures, see: Fischer et al. (2007a[Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007a). Acta Cryst. E63, o254-o255.],b[Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007b). Acta Cryst. E63, o3616.]; 2008a[Fischer, A., Swamy, M. T., Narayana, B. & Yathirajan, H. S. (2008a). Acta Cryst. E64, o2152.],b[Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2008b). Acta Cryst. E64, o560.]). For the use of cyclo­hexenones in organic synthesis, see: Padmavathi et al. (1999[Padmavathi, V., Sharmila, K., Padmaja, A. & Bhaskar Reddy, D. (1999). Heterocycl. Commun. 5, 451-456.], 2001[Padmavathi, V., Sharmila, K., Somashekara Reddy, A. & Bhaskar Reddy, D. (2001). Ind. J. Chem. Sect. B, 40, 11-14.]). For pharmaceutical applications of cyclo­hexenone derivatives, see: Hoye & Tennakoon (2000[Hoye, T. R. & Tennakoon, M. A. (2000). Org. Lett. 2, 1481-1483.]); Hiromichi et al. (2002[Hiromichi, F., Naoyuki, K., Yoshinari, S., Yasushi, N. & Yasuyuki, K. (2002). Tetrahedron Lett. 43, 4825-4828.]).

[Scheme 1]

Experimental

Crystal data
  • C24H22O4S

  • Mr = 406.48

  • Monoclinic, P 21 /c

  • a = 18.2501 (4) Å

  • b = 11.7176 (2) Å

  • c = 9.6846 (2) Å

  • β = 93.048 (1)°

  • V = 2068.10 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 296 K

  • 0.45 × 0.29 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.922, Tmax = 0.972

  • 17446 measured reflections

  • 4035 independent reflections

  • 2880 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.202

  • S = 1.02

  • 4035 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cyclohexenones are efficient synthons in building spiro compounds (Padmavathi et al., 2001) or intermediates in the synthesis of benzisoxazole or carbazole derivatives (Padmavathi et al., 1999). Cyclohexenone derivatives are well known lead compounds for the treatment of inflammation and autoimmune diseases (Hoye & Tennakoon, 2000; Hiromichi et al., 2002).

The crystal structures of a series of ethyl 6-substituted 2-oxocyclohex- 3-ene-1-carboxylates have been reported (Fischer et al., 2007; 2007a,b; 2008ab). In view of the importance of these derivatives and continuing our efforts in this field, the title compound, ethyl 6-(6- methoxynaphthalen-2-yl)-2-oxo-4-(2-thienyl)cyclohexa-3-ene-1- carboxylate, was synthesized and its crystal structure is reported in this paper.

Related literature top

For related structures, see: Fischer et al. (2007a,b; 2008a,b). For the use of cyclohexenones in organic synthesis, see: Padmavathi et al. (1999, 2001). For pharmaceutical applications of cyclohexenone derivatives, see: Hoye & Tennakoon (2000); Hiromichi et al. (2002).

Experimental top

(2E)-3-(6-methoxy-2-naphthyl)-1-(2-thienyl)prop-2-en-1-one (1.51 g, 5 mmol) and ethyl acetoacetate (0.65 g, 5 mmol) were refluxed for 6 hr in 10–15 ml of ethanol in the presence of 0.8 ml 10% NaOH. The reaction mixture was cooled to room temperature and the resulting product was filtered and recrystallized from acetonitrile (m.p.: 415–418 K). Analysis % found (calculated): C, 71.19 (71.27); H, 4.94 (4.98); S, 7.89 (7.93).

Refinement top

All H atoms were placed in idealized locations (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate, but not to tip, to best fit the electron density. The large difference between min and max Uiso values for the H atoms is a result of unresolved disorder in the ethyl side chain.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the crystal structure of the title compound.
Ethyl 6-(6-methoxy-2-naphthyl)-2-oxo-4-(2-thienyl)cyclohex-3-ene-1-carboxylate top
Crystal data top
C24H22O4SF(000) = 856
Mr = 406.48Dx = 1.305 Mg m3
Monoclinic, P21/cMelting point = 415–418 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 18.2501 (4) ÅCell parameters from 8575 reflections
b = 11.7176 (2) Åθ = 2.3–28.1°
c = 9.6846 (2) ŵ = 0.18 mm1
β = 93.048 (1)°T = 296 K
V = 2068.10 (7) Å3Block, colourless
Z = 40.45 × 0.29 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4035 independent reflections
Radiation source: fine-focus sealed tube2880 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2222
Tmin = 0.922, Tmax = 0.972k = 1114
17446 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.095P)2 + 0.9907P]
where P = (Fo2 + 2Fc2)/3
4035 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C24H22O4SV = 2068.10 (7) Å3
Mr = 406.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.2501 (4) ŵ = 0.18 mm1
b = 11.7176 (2) ÅT = 296 K
c = 9.6846 (2) Å0.45 × 0.29 × 0.16 mm
β = 93.048 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4035 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2880 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.972Rint = 0.028
17446 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.202H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
4035 reflectionsΔρmin = 0.38 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1379 (2)0.5193 (3)0.4085 (3)0.0917 (10)
H1A0.15240.45680.46250.110*
C20.0777 (2)0.5795 (4)0.4405 (4)0.0955 (12)
H2A0.05160.55770.51600.115*
C30.05423 (16)0.6739 (3)0.3619 (4)0.0845 (9)
C40.09205 (15)0.7057 (3)0.2525 (3)0.0733 (8)
H4A0.07620.76820.19970.088*
C50.15546 (13)0.6457 (2)0.2168 (3)0.0593 (6)
C60.17879 (16)0.5499 (2)0.2952 (3)0.0661 (7)
C70.24126 (19)0.4896 (3)0.2584 (3)0.0810 (9)
H7A0.25670.42670.31080.097*
C80.28020 (16)0.5208 (3)0.1474 (3)0.0787 (9)
C90.25672 (16)0.6164 (3)0.0705 (3)0.0768 (8)
H9A0.28290.63920.00450.092*
C100.19634 (15)0.6766 (3)0.1033 (3)0.0694 (7)
H10A0.18180.73930.04970.083*
C11A0.3387 (4)0.4303 (7)0.1361 (8)0.0567 (17)0.489 (11)
H11A0.32740.36490.19440.068*0.489 (11)
C11B0.3537 (3)0.4735 (6)0.0866 (7)0.0498 (15)0.511 (11)
H11B0.36420.51400.00130.060*0.511 (11)
C120.41517 (14)0.4837 (2)0.1877 (3)0.0587 (6)
H12A0.42120.55680.14260.070*
H12B0.41490.49740.28640.070*
C130.47940 (14)0.4085 (2)0.1587 (3)0.0563 (6)
C140.47374 (16)0.3283 (2)0.0596 (3)0.0654 (7)
H14A0.51560.28750.03960.078*
C150.40620 (18)0.3025 (3)0.0168 (3)0.0779 (8)
C16A0.3403 (3)0.3921 (6)0.0137 (8)0.0659 (19)0.511 (11)
H16A0.34720.45650.07630.079*0.511 (11)
C16B0.3388 (3)0.3456 (5)0.0561 (7)0.0501 (17)0.489 (11)
H16B0.33230.30310.14180.060*0.489 (11)
C170.27068 (18)0.3302 (3)0.0483 (4)0.0771 (8)
C180.1848 (5)0.3678 (7)0.2222 (6)0.190 (3)
H18A0.17000.29100.19870.228*
H18B0.19060.37100.32110.228*
C190.1297 (5)0.4479 (7)0.1848 (8)0.212 (3)
H19A0.08390.42940.23290.317*
H19B0.14420.52360.20950.317*
H19C0.12400.44430.08690.317*
C200.54589 (14)0.4261 (2)0.2453 (3)0.0628 (7)
C210.56318 (14)0.5200 (2)0.3318 (3)0.0689 (7)
H21A0.53310.58310.34240.083*
C220.63359 (19)0.5044 (3)0.4008 (4)0.0956 (10)
H22A0.65560.55880.45950.115*
C230.66455 (19)0.4056 (3)0.3736 (5)0.1036 (12)
H23A0.70980.38280.41280.124*
C240.0321 (3)0.8260 (6)0.3341 (8)0.169 (3)
H24A0.07670.85240.37130.254*
H24B0.04080.80820.23790.254*
H24C0.00470.88440.34430.254*
S10.61390 (5)0.32512 (7)0.26068 (12)0.0945 (4)
O10.2523 (2)0.3953 (3)0.1501 (3)0.1250 (10)
O20.23644 (17)0.2511 (2)0.0137 (3)0.1130 (9)
O30.00726 (14)0.7259 (3)0.4069 (3)0.1238 (11)
O40.40154 (14)0.2313 (2)0.1083 (2)0.0996 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.127 (3)0.076 (2)0.070 (2)0.028 (2)0.0062 (19)0.0070 (16)
C20.106 (3)0.110 (3)0.071 (2)0.048 (2)0.0134 (18)0.006 (2)
C30.0610 (16)0.109 (3)0.084 (2)0.0190 (16)0.0062 (14)0.015 (2)
C40.0597 (15)0.080 (2)0.0794 (18)0.0007 (13)0.0029 (13)0.0023 (15)
C50.0576 (13)0.0555 (15)0.0637 (14)0.0041 (11)0.0067 (11)0.0018 (12)
C60.0832 (17)0.0517 (15)0.0614 (15)0.0115 (13)0.0138 (13)0.0029 (12)
C70.104 (2)0.0579 (17)0.077 (2)0.0198 (16)0.0339 (17)0.0135 (15)
C80.0733 (17)0.079 (2)0.080 (2)0.0214 (15)0.0240 (15)0.0337 (17)
C90.0673 (16)0.085 (2)0.0781 (18)0.0060 (15)0.0041 (14)0.0083 (16)
C100.0680 (16)0.0662 (18)0.0738 (17)0.0069 (13)0.0020 (13)0.0082 (14)
C11A0.067 (3)0.047 (4)0.056 (4)0.003 (3)0.002 (3)0.006 (3)
C11B0.062 (3)0.037 (3)0.050 (3)0.001 (2)0.003 (2)0.005 (2)
C120.0691 (14)0.0452 (13)0.0620 (14)0.0002 (11)0.0051 (11)0.0005 (11)
C130.0683 (14)0.0429 (13)0.0588 (14)0.0007 (10)0.0134 (11)0.0065 (11)
C140.0757 (16)0.0535 (15)0.0682 (16)0.0077 (12)0.0151 (13)0.0001 (13)
C150.089 (2)0.0624 (17)0.0824 (19)0.0045 (15)0.0099 (15)0.0215 (16)
C16A0.085 (4)0.052 (4)0.061 (4)0.002 (3)0.003 (3)0.002 (3)
C16B0.068 (3)0.037 (3)0.045 (3)0.002 (2)0.001 (2)0.001 (3)
C170.0830 (19)0.0625 (19)0.086 (2)0.0068 (15)0.0024 (16)0.0232 (17)
C180.266 (8)0.195 (6)0.103 (4)0.108 (6)0.067 (5)0.030 (4)
C190.222 (8)0.195 (7)0.209 (7)0.017 (7)0.066 (6)0.024 (6)
C200.0628 (14)0.0547 (15)0.0719 (16)0.0001 (11)0.0139 (12)0.0094 (13)
C210.0631 (14)0.0668 (17)0.0753 (17)0.0019 (12)0.0092 (12)0.0095 (14)
C220.084 (2)0.090 (2)0.110 (3)0.0001 (19)0.0164 (19)0.011 (2)
C230.0742 (19)0.091 (3)0.144 (3)0.0013 (18)0.015 (2)0.014 (2)
C240.101 (3)0.190 (6)0.220 (6)0.053 (4)0.038 (4)0.022 (5)
S10.0799 (5)0.0638 (5)0.1391 (9)0.0073 (4)0.0014 (5)0.0047 (5)
O10.171 (3)0.105 (2)0.100 (2)0.004 (2)0.022 (2)0.0166 (17)
O20.140 (2)0.0862 (18)0.1104 (19)0.0330 (17)0.0168 (17)0.0061 (15)
O30.0724 (15)0.181 (3)0.120 (2)0.0047 (18)0.0278 (15)0.032 (2)
O40.1168 (18)0.0868 (16)0.0945 (16)0.0164 (13)0.0023 (13)0.0425 (14)
Geometric parameters (Å, º) top
C1—C21.354 (5)C14—C151.436 (4)
C1—C61.406 (4)C14—H14A0.9300
C1—H1A0.9300C15—O41.217 (3)
C2—C31.396 (5)C15—C16B1.536 (6)
C2—H2A0.9300C15—C16A1.599 (7)
C3—C41.347 (4)C16A—C171.486 (7)
C3—O31.369 (4)C16A—H16A0.9800
C4—C51.413 (4)C16B—C171.571 (6)
C4—H4A0.9300C16B—H16B0.9800
C5—C101.408 (4)C17—O21.176 (4)
C5—C61.409 (4)C17—O11.277 (4)
C6—C71.403 (4)C18—O11.420 (7)
C7—C81.370 (5)C18—C191.437 (9)
C7—H7A0.9300C18—H18A0.9700
C8—C91.400 (5)C18—H18B0.9700
C8—C11A1.513 (7)C19—H19A0.9600
C8—C11B1.593 (6)C19—H19B0.9600
C9—C101.360 (4)C19—H19C0.9600
C9—H9A0.9300C20—C211.409 (4)
C10—H10A0.9300C20—S11.715 (3)
C11A—C16A1.520 (8)C21—C221.428 (4)
C11A—C121.586 (7)C21—H21A0.9300
C11A—H11A0.9800C22—C231.321 (5)
C11B—C121.455 (6)C22—H22A0.9300
C11B—C16B1.549 (7)C23—S11.683 (4)
C11B—H11B0.9800C23—H23A0.9300
C12—C131.505 (3)C24—O31.429 (7)
C12—H12A0.9700C24—H24A0.9600
C12—H12B0.9700C24—H24B0.9600
C13—C141.343 (4)C24—H24C0.9600
C13—C201.453 (4)
C2—C1—C6121.1 (3)C13—C14—H14A118.4
C2—C1—H1A119.5C15—C14—H14A118.4
C6—C1—H1A119.5O4—C15—C14123.0 (3)
C1—C2—C3121.1 (3)O4—C15—C16B122.3 (3)
C1—C2—H2A119.4C14—C15—C16B112.3 (3)
C3—C2—H2A119.4O4—C15—C16A116.1 (3)
C4—C3—O3126.1 (4)C14—C15—C16A118.6 (3)
C4—C3—C2119.5 (3)C16B—C15—C16A32.2 (2)
O3—C3—C2114.4 (3)C17—C16A—C11A107.4 (5)
C3—C4—C5121.0 (3)C17—C16A—C15108.1 (4)
C3—C4—H4A119.5C11A—C16A—C15105.3 (5)
C5—C4—H4A119.5C17—C16A—H16A111.9
C10—C5—C6117.9 (2)C11A—C16A—H16A111.9
C10—C5—C4122.6 (3)C15—C16A—H16A111.9
C6—C5—C4119.5 (3)C15—C16B—C11B105.6 (4)
C7—C6—C1122.8 (3)C15—C16B—C17107.0 (4)
C7—C6—C5119.4 (3)C11B—C16B—C17111.0 (4)
C1—C6—C5117.8 (3)C15—C16B—H16B111.0
C8—C7—C6121.8 (3)C11B—C16B—H16B111.0
C8—C7—H7A119.1C17—C16B—H16B111.0
C6—C7—H7A119.1O2—C17—O1124.7 (3)
C7—C8—C9118.3 (3)O2—C17—C16A141.4 (5)
C7—C8—C11A105.5 (5)O1—C17—C16A93.9 (5)
C9—C8—C11A136.0 (5)O2—C17—C16B108.7 (4)
C7—C8—C11B132.8 (4)O1—C17—C16B126.5 (4)
C9—C8—C11B108.8 (4)C16A—C17—C16B32.9 (3)
C11A—C8—C11B28.1 (2)O1—C18—C19109.2 (5)
C10—C9—C8121.3 (3)O1—C18—H18A109.8
C10—C9—H9A119.3C19—C18—H18A109.8
C8—C9—H9A119.3O1—C18—H18B109.8
C9—C10—C5121.2 (3)C19—C18—H18B109.8
C9—C10—H10A119.4H18A—C18—H18B108.3
C5—C10—H10A119.4C18—C19—H19A109.5
C8—C11A—C16A108.9 (5)C18—C19—H19B109.5
C8—C11A—C12108.2 (5)H19A—C19—H19B109.5
C16A—C11A—C12110.9 (5)C18—C19—H19C109.5
C8—C11A—H11A109.6H19A—C19—H19C109.5
C16A—C11A—H11A109.6H19B—C19—H19C109.5
C12—C11A—H11A109.6C21—C20—C13127.4 (2)
C12—C11B—C16B109.2 (4)C21—C20—S1110.4 (2)
C12—C11B—C8110.9 (4)C13—C20—S1122.1 (2)
C16B—C11B—C8105.4 (5)C20—C21—C22110.3 (3)
C12—C11B—H11B110.4C20—C21—H21A124.9
C16B—C11B—H11B110.4C22—C21—H21A124.9
C8—C11B—H11B110.4C23—C22—C21113.7 (3)
C11B—C12—C13114.0 (3)C23—C22—H22A123.2
C11B—C12—C11A28.5 (2)C21—C22—H22A123.2
C13—C12—C11A113.0 (3)C22—C23—S1113.3 (3)
C11B—C12—H12A82.6C22—C23—H23A123.4
C13—C12—H12A109.0S1—C23—H23A123.4
C11A—C12—H12A109.0O3—C24—H24A109.5
C11B—C12—H12B129.3O3—C24—H24B109.5
C13—C12—H12B109.0H24A—C24—H24B109.5
C11A—C12—H12B109.0O3—C24—H24C109.5
H12A—C12—H12B107.8H24A—C24—H24C109.5
C14—C13—C20122.8 (2)H24B—C24—H24C109.5
C14—C13—C12120.8 (2)C23—S1—C2092.28 (17)
C20—C13—C12116.4 (2)C17—O1—C18115.4 (4)
C13—C14—C15123.2 (3)C3—O3—C24116.9 (3)
C6—C1—C2—C30.1 (5)C13—C14—C15—C16B18.7 (5)
C1—C2—C3—C40.1 (5)C13—C14—C15—C16A16.4 (6)
C1—C2—C3—O3180.0 (3)C8—C11A—C16A—C1768.1 (6)
O3—C3—C4—C5179.3 (3)C12—C11A—C16A—C17172.9 (6)
C2—C3—C4—C50.5 (5)C8—C11A—C16A—C15176.9 (6)
C3—C4—C5—C10180.0 (3)C12—C11A—C16A—C1557.9 (6)
C3—C4—C5—C61.1 (4)O4—C15—C16A—C1739.2 (7)
C2—C1—C6—C7179.8 (3)C14—C15—C16A—C17157.4 (4)
C2—C1—C6—C50.5 (4)C16B—C15—C16A—C1770.5 (7)
C10—C5—C6—C70.3 (4)O4—C15—C16A—C11A153.7 (4)
C4—C5—C6—C7179.2 (2)C14—C15—C16A—C11A42.9 (6)
C10—C5—C6—C1179.9 (3)C16B—C15—C16A—C11A44.1 (5)
C4—C5—C6—C11.1 (4)O4—C15—C16B—C11B144.5 (4)
C1—C6—C7—C8179.9 (3)C14—C15—C16B—C11B52.6 (5)
C5—C6—C7—C80.4 (4)C16A—C15—C16B—C11B55.9 (5)
C6—C7—C8—C90.7 (4)O4—C15—C16B—C1726.2 (7)
C6—C7—C8—C11A175.6 (3)C14—C15—C16B—C17170.9 (3)
C6—C7—C8—C11B176.6 (3)C16A—C15—C16B—C1762.4 (6)
C7—C8—C9—C100.7 (4)C12—C11B—C16B—C1566.7 (5)
C11A—C8—C9—C10174.1 (4)C8—C11B—C16B—C15174.1 (5)
C11B—C8—C9—C10177.6 (3)C12—C11B—C16B—C17177.7 (5)
C8—C9—C10—C50.6 (5)C8—C11B—C16B—C1758.5 (5)
C6—C5—C10—C90.4 (4)C11A—C16A—C17—O258.3 (7)
C4—C5—C10—C9179.3 (3)C15—C16A—C17—O254.8 (8)
C7—C8—C11A—C16A132.9 (5)C11A—C16A—C17—O1123.3 (5)
C9—C8—C11A—C16A42.3 (8)C15—C16A—C17—O1123.5 (5)
C11B—C8—C11A—C16A59.2 (7)C11A—C16A—C17—C16B48.7 (5)
C7—C8—C11A—C12106.5 (5)C15—C16A—C17—C16B64.4 (6)
C9—C8—C11A—C1278.3 (6)C15—C16B—C17—O2104.7 (5)
C11B—C8—C11A—C1261.4 (7)C11B—C16B—C17—O2140.6 (4)
C7—C8—C11B—C1260.7 (7)C15—C16B—C17—O178.9 (5)
C9—C8—C11B—C12115.5 (5)C11B—C16B—C17—O135.9 (6)
C11A—C8—C11B—C1276.8 (8)C15—C16B—C17—C16A69.0 (6)
C7—C8—C11B—C16B57.3 (5)C11B—C16B—C17—C16A45.8 (5)
C9—C8—C11B—C16B126.5 (4)C14—C13—C20—C21166.3 (3)
C11A—C8—C11B—C16B41.2 (6)C12—C13—C20—C2115.2 (4)
C16B—C11B—C12—C1345.4 (6)C14—C13—C20—S117.2 (3)
C8—C11B—C12—C13161.1 (4)C12—C13—C20—S1161.28 (18)
C16B—C11B—C12—C11A49.0 (6)C13—C20—C21—C22179.4 (3)
C8—C11B—C12—C11A66.7 (8)S1—C20—C21—C222.6 (3)
C8—C11A—C12—C11B71.9 (8)C20—C21—C22—C232.8 (5)
C16A—C11A—C12—C11B47.5 (6)C21—C22—C23—S11.7 (5)
C8—C11A—C12—C13170.2 (4)C22—C23—S1—C200.1 (3)
C16A—C11A—C12—C1350.8 (6)C21—C20—S1—C231.5 (2)
C11B—C12—C13—C149.4 (5)C13—C20—S1—C23178.5 (2)
C11A—C12—C13—C1421.7 (5)O2—C17—O1—C180.9 (6)
C11B—C12—C13—C20172.1 (4)C16A—C17—O1—C18179.6 (4)
C11A—C12—C13—C20156.9 (4)C16B—C17—O1—C18175.0 (4)
C20—C13—C14—C15173.4 (3)C19—C18—O1—C17104.5 (7)
C12—C13—C14—C155.0 (4)C4—C3—O3—C242.5 (6)
C13—C14—C15—O4178.6 (3)C2—C3—O3—C24177.4 (4)

Experimental details

Crystal data
Chemical formulaC24H22O4S
Mr406.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)18.2501 (4), 11.7176 (2), 9.6846 (2)
β (°) 93.048 (1)
V3)2068.10 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.45 × 0.29 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.922, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
17446, 4035, 2880
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.202, 1.02
No. of reflections4035
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.38

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

ANM thanks the University of Mysore for research facilities.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFischer, A., Swamy, M. T., Narayana, B. & Yathirajan, H. S. (2008a). Acta Cryst. E64, o2152.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007a). Acta Cryst. E63, o254–o255.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007b). Acta Cryst. E63, o3616.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2008b). Acta Cryst. E64, o560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHiromichi, F., Naoyuki, K., Yoshinari, S., Yasushi, N. & Yasuyuki, K. (2002). Tetrahedron Lett. 43, 4825–4828.  Google Scholar
First citationHoye, T. R. & Tennakoon, M. A. (2000). Org. Lett. 2, 1481–1483.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPadmavathi, V., Sharmila, K., Padmaja, A. & Bhaskar Reddy, D. (1999). Heterocycl. Commun. 5, 451–456.  CrossRef CAS Google Scholar
First citationPadmavathi, V., Sharmila, K., Somashekara Reddy, A. & Bhaskar Reddy, D. (2001). Ind. J. Chem. Sect. B, 40, 11–14.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds