metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(acetyl­acetonato-κ2O,O′)(2-amino-1-methyl-1H-benzimidazole-κN3)oxido­vanadium(IV)

aNational University of Uzbekistan, Tashkent 100123, Uzbekistan, and bInstitute of Biorganic Chemistry, Mirzo-Ulugbek St. 83, Tashkent 100125, Uzbekistan
*Correspondence e-mail: zuhra_kadirova@yahoo.com

(Received 5 May 2009; accepted 16 June 2009; online 24 June 2009)

The title mixed-ligand oxidovanadium(IV) compound, [VO(C5H7O2)2(C8H9N3)], contains a VIV atom in a distorted octahedral coordination, which is typical for such complexes. The vanadyl group and the N-heterocyclic ligand are cis to each other. The coordination bond is located at the endocyclic N atom of the benzimidazole ligand. Intra­molecular hydrogen bonds between the exo-NH2 group H atoms and acetyl­acetonate O atoms stabilize the crystal structure.

Related literature

For the activity of vanadium complexes, see: Rehder (1999[Rehder, D. (1999). Coord. Chem. Rev. 182, 297-322.]). For the crystal structures of acetylacetonate and benzimidazole oxidovanadium(IV) and (V) complexes, see: Maurya (2002[Maurya, M. R. (2002). Coord. Chem. Rev. 237, 163-181.]); Caira et al. (1972[Caira, M. R., Haigh, J. M. & Nassimbeni, L. R. (1972). Inorg. Nucl. Chem. Lett. 8, 109-112.]); Shao et al. (1984[Shao, M., Wang, L. & Tang, N. (1984). Kexue Tongbao (Chin. Sci. Bull.), 29, 759-764.]); Crans et al. (1997[Crans, D. C., Keramidas, A. D., Amin, S. S., Anderson, O. P. & Miller, S. M. (1997). J. Chem. Soc. Dalton Trans. 16, 2799-2812.]); Maurya et al. (2006[Maurya, M. R., Kumar, A., Ebel, M. & Rehder, D. (2006). Inorg. Chem. 45, 5924-5937.]); Akhmed et al. (2004[Akhmed, M. A. K., Fjellvåg, H., Kjekshus, H. & Klewe, B. (2004). Z. Anorg. Allg. Chem. 630, 2311-2318.]). For 1-methyl- 2-aminobenzimidazole compounds, see: Borodkina et al. (2003[Borodkina, I. G., Antsnshkina, A. S., Sadikov, G. G., Mistrnukov, A. E., Garnovskii, D. A., Uraev, A. I., Borodkin, G. S., Garnovskana, E. D., Sergienko, V. S. & Garnovskii, A. D. (2003). Russ. J. Coord. Chem. 29, 519-523.]); Chekhlov (2004[Chekhlov, A. N. (2004). Russ. J. Inorg. Chem. 49, 1373-1377.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C5H7O2)2O(C8H9N3)]

  • Mr = 412.33

  • Monoclinic, P 21 /n

  • a = 8.27120 (10) Å

  • b = 15.0472 (2) Å

  • c = 16.1078 (2) Å

  • β = 104.2646 (14)°

  • V = 1942.94 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.57 mm−1

  • T = 293 K

  • 0.25 × 0.12 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.544, Tmax = 0.694

  • 8892 measured reflections

  • 3720 independent reflections

  • 2983 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.106

  • S = 1.00

  • 3720 reflections

  • 249 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H3AA⋯O2B 0.86 2.38 2.972 (3) 127
N3A—H3AA⋯O2C 0.86 2.47 3.034 (2) 124

Data collection: CrysAlisPro (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Vanadium complexes have attracted interest in recent nears due to their insulin-mimetic action, and to their activity in nitrogen fixation and haloperoxidation (Rehder, 1999). The vanadium atom can have different coordination numbers and forms coordination compounds with a variety of coordination geometries and oxidation states (Maurya, 2002). Limited information is available on the crystal structure of the vanadium complexes of substituted benzimidazoles (Crans et al., 1997; Maurya et al., 2006). Bis(acetylacetonato)oxovanadium, [VO(acac)2], is a common precursor for the synthesis of the mixed ligand vanadium(IV) and vanadium(V) complexes with the N-containing monodentate ligands (L), [VO(acac)2L]. Usually these bis-chelated complexes can be cis- or trans- with distorted octahedral configurations (Caira et al., 1972; Shao et al., 1984). In this study, we prepared the mixed-ligand complex of oxovanadium(IV) with bidentate acetylacetonate and the monodentate benzimidazole, 2-amino-1-methylbenzimidazole, and report herein on its crystal structure.

The molecular structure of the title compound is shown in Fig. 1, and geometrical parameters are available from the archived CIF. In this cis-complex, [VO(acac)2L], the metal center has a slightly distorted octahedral N1O5 coordination sphere, assembled by the O—O-donor acetylacetonate, the oxo-group and the pyridine N-atom of the benzimidazole. The angles around the vanadium atom deviate from 90°, being in the range of 80.85 (6) - 99.91 (7) °, and from 180°, being in the range of 164.96 (7) - 179.18 (7)°, due to coordination of the sterically large ligand to the five-coordinate square-pyramidal [VO(acac)2] complex (Akhmed et al., 2004).

The coordination bond is localized at the endo-cyclic N-atom of the benzimidazole ligand and the bond lengths and angles are similar to those reported for 2-amino-1-methylbenzimidazolium chloride hydrate (Borodkina et al., 2003), and bis(2-amino-1-methylbenzimidazole-N) dichlorocobalt(II) (Chekhlov et al., 2004). The amino-group is coplanar with the methyl-group [torsion angle C8A—N2A—C7A—N3A is 4.3 (4)°] and participates in intramolecular hydrogen bonds with the carbonyl O-atoms (Fig.2 and Table 1).

The V—O bond (V1—O2B) trans to the oxo-group is significally longer (2.1523 (17) Å) than the V—O bonds which are cis to the oxo-group (1.9927 (14) - 2.0139 (14) Å). In contrast the carbonyl bond involving atom O2B (C4B?O2B) is shorter, (1.252 (3) Å), than the other acetylacetonate C?O bonds [1.264 (3) - 1.273 (3) Å]. The V—N bond length, the cis- and trans- V—O bond lengths are comparable to those reported for oxovanadium(IV) species containing acac- as ligand in a similar orientation (Crans et al., 1997).

Related literature top

For the activity of vanadium complexes, see: Rehder (1999). For the crystal structure of bis(acetylacetonato)-2-amino-1-methylbenzimidazole oxovanadium(IV) [VO(C5H7O2)2(C8H9N3)], see: Maurya (2002). For vanadium(IV) and (V) compounds, see: Caira et al. (1972; Shao et al. (1984); Crans et al. (1997; Maurya et al. (2006); Akhmed et al. (2004); Borodkina et al. (2003); Chekhlov et al. (2004).

Experimental top

Equimolar quantities of [VO(acac)2] (acac = acetnlacetonate) and 2-amine-1-methylbenzimidazole (0.53 g, 1.9 mmol) were refluxed in ethanol for 3 h. The resulting green solution yielded green crystals which were filtered off and washed twice with acetone. Elem. Analysis found: C 52.4, H 6.0, N 10.3, V 12.4%; C18H23N3O5V requires: C 52.4, H 5.6, N 10.2,V 12.4%. IR (BRUKER spectrometer, KBr, cm-1): 3415 s, 3326 s, 1641 s, 1591 s, 1556 s, 1462m, 1373 s, 1273m, 1018m, 1252w, 1198w, 1132w,1052m, 983m, 939m, 787w, 746m, 669w, 590w, 557w, 455w). Crystals of the title compound, suitable X-ray diffraction analysis, were selected directly from the sample as prepared.

Refinement top

All the H-atoms were included in calculated positions [N—H = 0.88 Å, C—H = 0.93 - 0.96 Å] and treated as riding atoms [Uiso(H) = k × Ueq(parent atom], where k = 1.2 for NH2 and CH H atoms and 1.5 for methyl H atoms].

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecuar structure of the title compound, showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound, with the intramolecuéar N—H···O hydrogen bonds shown as pale blue dashed lines (see Table 1 for details).
Bis(acetylacetonato-κ2O,O')(2-amino-1-methyl-1H- benzimidazole-κN3)oxidovanadium(IV) top
Crystal data top
[V(C5H7O2)2O(C8H9N3)]F(000) = 860
Mr = 412.33Dx = 1.410 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 3720 reflections
a = 8.2712 (1) Åθ = 4.1–76.0°
b = 15.0472 (2) ŵ = 4.57 mm1
c = 16.1078 (2) ÅT = 293 K
β = 104.2646 (14)°Monoclinic, green
V = 1942.94 (4) Å30.25 × 0.12 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2983 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 76.0°, θmin = 4.1°
heavy atom scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1817
Tmin = 0.544, Tmax = 0.694l = 2020
8892 measured reflections3 standard reflections every 120 reflections
3720 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0695P)2]
where P = (Fo2 + 2Fc2)/3
3720 reflections(Δ/σ)max = 0.001
249 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[V(C5H7O2)2O(C8H9N3)]V = 1942.94 (4) Å3
Mr = 412.33Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.2712 (1) ŵ = 4.57 mm1
b = 15.0472 (2) ÅT = 293 K
c = 16.1078 (2) Å0.25 × 0.12 × 0.08 mm
β = 104.2646 (14)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2983 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Rint = 0.028
Tmin = 0.544, Tmax = 0.6943 standard reflections every 120 reflections
8892 measured reflections intensity decay: none
3720 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
3720 reflectionsΔρmin = 0.23 e Å3
249 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.72939 (4)0.84139 (2)0.15879 (2)0.0439 (1)
O1B0.85987 (19)0.94296 (8)0.22441 (9)0.0495 (5)
O1C0.7792 (2)0.89026 (9)0.05202 (9)0.0572 (5)
O1V0.5517 (2)0.88731 (10)0.14793 (10)0.0590 (5)
O2B0.9707 (2)0.78057 (10)0.17502 (10)0.0556 (5)
O2C0.6598 (2)0.72797 (9)0.09633 (9)0.0559 (5)
N1A0.7312 (2)0.77605 (10)0.27641 (10)0.0450 (5)
N2A0.7430 (3)0.67520 (11)0.37942 (11)0.0579 (7)
N3A0.8363 (3)0.63142 (12)0.25875 (13)0.0667 (8)
C1A0.6736 (3)0.81453 (13)0.34241 (12)0.0475 (6)
C1B1.0649 (4)1.03962 (17)0.3018 (2)0.0777 (10)
C1C0.7707 (5)0.9161 (2)0.09262 (17)0.0869 (13)
C2A0.6149 (3)0.89931 (15)0.35119 (14)0.0577 (8)
C2B1.0157 (3)0.95299 (13)0.25591 (12)0.0497 (7)
C2C0.7364 (3)0.85815 (15)0.02274 (15)0.0574 (8)
C3A0.5629 (4)0.91763 (18)0.42447 (17)0.0732 (10)
C3B1.1380 (3)0.89314 (15)0.25154 (17)0.0630 (8)
C3C0.6646 (4)0.77473 (16)0.04198 (15)0.0637 (8)
C4A0.5667 (5)0.8537 (2)0.48746 (18)0.0844 (13)
C4B1.1117 (3)0.80980 (14)0.21204 (13)0.0505 (7)
C4C0.6354 (3)0.71403 (14)0.01637 (14)0.0523 (7)
C5A0.6251 (4)0.76985 (18)0.47967 (16)0.0768 (12)
C5B1.2601 (3)0.75171 (16)0.21416 (18)0.0698 (9)
C5C0.5724 (4)0.62284 (17)0.01264 (17)0.0725 (9)
C6A0.6788 (3)0.75212 (14)0.40690 (13)0.0562 (7)
C7A0.7706 (3)0.69247 (13)0.30215 (13)0.0504 (7)
C8A0.7863 (4)0.59453 (16)0.43059 (17)0.0768 (9)
H3AA0.856100.645000.210400.0800*
H3AB0.858300.578900.279400.0800*
H2AA0.610600.942300.309200.0690*
H3AC0.524200.974400.432000.0880*
H4A0.528800.868300.535500.1020*
H5AA0.628500.726800.521500.0920*
H8AA0.867400.561200.410000.1150*
H8AB0.688100.559000.426000.1150*
H8AC0.831900.610300.489500.1150*
H1BA1.041801.087600.261400.1170*
H1BB1.181901.038700.329300.1170*
H1BC1.002301.047800.344200.1170*
H3BA1.247600.909200.276900.0750*
H5BA1.222900.694200.191600.1050*
H5BB1.324700.745700.272200.1050*
H5BC1.327500.778100.180100.1050*
H1CA0.878200.943500.073000.1300*
H1CB0.686500.961300.107200.1300*
H1CC0.769400.880500.142200.1300*
H3CA0.633500.758600.099500.0760*
H5CA0.651700.579200.015600.1090*
H5CB0.557600.618100.073500.1090*
H5CC0.467500.612900.001400.1090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0518 (2)0.0385 (2)0.0396 (2)0.0028 (1)0.0080 (1)0.0025 (1)
O1B0.0574 (9)0.0391 (7)0.0499 (8)0.0030 (6)0.0091 (6)0.0053 (6)
O1C0.0787 (11)0.0472 (8)0.0483 (8)0.0081 (7)0.0207 (7)0.0005 (6)
O1V0.0571 (10)0.0618 (9)0.0548 (9)0.0055 (7)0.0073 (7)0.0089 (7)
O2B0.0558 (10)0.0477 (8)0.0632 (9)0.0019 (6)0.0144 (7)0.0092 (6)
O2C0.0729 (11)0.0472 (8)0.0433 (7)0.0124 (7)0.0063 (7)0.0051 (6)
N1A0.0543 (10)0.0383 (8)0.0401 (8)0.0030 (7)0.0071 (7)0.0021 (6)
N2A0.0848 (15)0.0398 (9)0.0435 (9)0.0063 (9)0.0054 (9)0.0015 (7)
N3A0.0966 (17)0.0426 (9)0.0608 (12)0.0106 (10)0.0193 (11)0.0009 (8)
C1A0.0541 (13)0.0442 (10)0.0409 (10)0.0077 (9)0.0053 (8)0.0041 (8)
C1B0.084 (2)0.0505 (13)0.0874 (19)0.0150 (12)0.0000 (15)0.0131 (12)
C1C0.130 (3)0.0822 (18)0.0595 (15)0.0136 (18)0.0444 (16)0.0004 (13)
C2A0.0689 (15)0.0514 (12)0.0503 (12)0.0024 (10)0.0097 (10)0.0021 (9)
C2B0.0621 (14)0.0430 (10)0.0415 (10)0.0093 (9)0.0083 (9)0.0022 (8)
C2C0.0703 (16)0.0576 (13)0.0494 (11)0.0073 (11)0.0246 (10)0.0027 (9)
C3A0.097 (2)0.0639 (15)0.0623 (14)0.0086 (14)0.0263 (14)0.0116 (12)
C3B0.0499 (14)0.0591 (13)0.0736 (15)0.0065 (10)0.0033 (11)0.0042 (11)
C3C0.0863 (18)0.0616 (14)0.0451 (11)0.0049 (12)0.0199 (11)0.0113 (10)
C4A0.121 (3)0.087 (2)0.0534 (14)0.0039 (17)0.0369 (16)0.0130 (13)
C4B0.0537 (13)0.0511 (11)0.0477 (10)0.0020 (9)0.0146 (9)0.0085 (8)
C4C0.0554 (13)0.0492 (11)0.0489 (11)0.0013 (9)0.0064 (9)0.0105 (9)
C5A0.118 (3)0.0664 (16)0.0471 (12)0.0123 (15)0.0222 (14)0.0000 (11)
C5B0.0621 (17)0.0719 (16)0.0744 (16)0.0144 (12)0.0150 (13)0.0031 (12)
C5C0.095 (2)0.0597 (14)0.0575 (14)0.0135 (13)0.0088 (13)0.0165 (11)
C6A0.0747 (16)0.0492 (11)0.0415 (10)0.0104 (10)0.0083 (10)0.0029 (8)
C7A0.0606 (14)0.0395 (10)0.0462 (10)0.0023 (9)0.0038 (9)0.0032 (8)
C8A0.115 (2)0.0467 (12)0.0609 (14)0.0096 (13)0.0069 (15)0.0115 (10)
Geometric parameters (Å, º) top
V1—O1B2.0139 (14)C3C—C4C1.374 (3)
V1—O1C2.0044 (15)C4A—C5A1.368 (4)
V1—O1V1.5942 (17)C4B—C5B1.500 (3)
V1—O2B2.1523 (17)C4C—C5C1.501 (3)
V1—O2C1.9927 (14)C5A—C6A1.378 (4)
V1—N1A2.1313 (16)C1B—H1BA0.9600
O1B—C2B1.273 (3)C1B—H1BB0.9600
O1C—C2C1.264 (3)C1B—H1BC0.9600
O2B—C4B1.252 (3)C1C—H1CA0.9600
O2C—C4C1.271 (3)C1C—H1CB0.9600
N1A—C1A1.394 (3)C1C—H1CC0.9600
N1A—C7A1.339 (2)C2A—H2AA0.9300
N2A—C6A1.391 (3)C3A—H3AC0.9300
N2A—C7A1.345 (3)C3B—H3BA0.9300
N2A—C8A1.461 (3)C3C—H3CA0.9300
N3A—C7A1.347 (3)C4A—H4A0.9300
N3A—H3AB0.8600C5A—H5AA0.9300
N3A—H3AA0.8600C5B—H5BA0.9600
C1A—C2A1.385 (3)C5B—H5BB0.9600
C1A—C6A1.393 (3)C5B—H5BC0.9600
C1B—C2B1.504 (3)C5C—H5CA0.9600
C1C—C2C1.505 (4)C5C—H5CB0.9600
C2A—C3A1.380 (4)C5C—H5CC0.9600
C2B—C3B1.369 (3)C8A—H8AA0.9600
C2C—C3C1.391 (3)C8A—H8AB0.9600
C3A—C4A1.393 (4)C8A—H8AC0.9600
C3B—C4B1.399 (3)
O1B—V1—O1C88.57 (6)C1A—C6A—C5A123.1 (2)
O1B—V1—O1V95.11 (7)N2A—C6A—C1A105.53 (18)
O1B—V1—O2B84.14 (6)N2A—C6A—C5A131.3 (2)
O1B—V1—O2C164.96 (7)N1A—C7A—N2A112.59 (18)
O1B—V1—N1A89.89 (6)N1A—C7A—N3A125.33 (19)
O1C—V1—O1V97.22 (7)N2A—C7A—N3A122.05 (19)
O1C—V1—O2B83.09 (6)C2B—C1B—H1BA110.00
O1C—V1—O2C88.62 (6)C2B—C1B—H1BB110.00
O1C—V1—N1A166.93 (7)C2B—C1B—H1BC109.00
O1V—V1—O2B179.18 (7)H1BA—C1B—H1BB109.00
O1V—V1—O2C99.91 (7)H1BA—C1B—H1BC109.00
O1V—V1—N1A95.85 (7)H1BB—C1B—H1BC109.00
O2B—V1—O2C80.85 (6)C2C—C1C—H1CA109.00
O2B—V1—N1A83.84 (6)C2C—C1C—H1CB110.00
O2C—V1—N1A89.52 (6)C2C—C1C—H1CC109.00
V1—O1B—C2B131.18 (13)H1CA—C1C—H1CB109.00
V1—O1C—C2C127.48 (15)H1CA—C1C—H1CC109.00
V1—O2B—C4B129.48 (14)H1CB—C1C—H1CC109.00
V1—O2C—C4C127.37 (13)C1A—C2A—H2AA121.00
V1—N1A—C1A123.89 (12)C3A—C2A—H2AA121.00
V1—N1A—C7A131.02 (14)C2A—C3A—H3AC119.00
C1A—N1A—C7A104.89 (16)C4A—C3A—H3AC119.00
C6A—N2A—C7A107.40 (17)C2B—C3B—H3BA117.00
C6A—N2A—C8A124.86 (19)C4B—C3B—H3BA117.00
C7A—N2A—C8A127.5 (2)C2C—C3C—H3CA117.00
H3AA—N3A—H3AB120.00C4C—C3C—H3CA117.00
C7A—N3A—H3AA120.00C3A—C4A—H4A119.00
C7A—N3A—H3AB120.00C5A—C4A—H4A120.00
N1A—C1A—C6A109.59 (17)C4A—C5A—H5AA122.00
N1A—C1A—C2A130.93 (18)C6A—C5A—H5AA122.00
C2A—C1A—C6A119.5 (2)C4B—C5B—H5BA109.00
C1A—C2A—C3A117.6 (2)C4B—C5B—H5BB109.00
O1B—C2B—C1B115.1 (2)C4B—C5B—H5BC109.00
O1B—C2B—C3B126.17 (19)H5BA—C5B—H5BB109.00
C1B—C2B—C3B118.8 (2)H5BA—C5B—H5BC110.00
O1C—C2C—C3C124.1 (2)H5BB—C5B—H5BC109.00
O1C—C2C—C1C115.5 (2)C4C—C5C—H5CA109.00
C1C—C2C—C3C120.3 (2)C4C—C5C—H5CB109.00
C2A—C3A—C4A122.0 (3)C4C—C5C—H5CC109.00
C2B—C3B—C4B125.4 (2)H5CA—C5C—H5CB109.00
C2C—C3C—C4C125.8 (2)H5CA—C5C—H5CC109.00
C3A—C4A—C5A121.0 (3)H5CB—C5C—H5CC109.00
C3B—C4B—C5B118.5 (2)N2A—C8A—H8AA110.00
O2B—C4B—C5B117.85 (19)N2A—C8A—H8AB110.00
O2B—C4B—C3B123.6 (2)N2A—C8A—H8AC110.00
O2C—C4C—C3C124.9 (2)H8AA—C8A—H8AB109.00
O2C—C4C—C5C115.0 (2)H8AA—C8A—H8AC109.00
C3C—C4C—C5C120.1 (2)H8AB—C8A—H8AC109.00
C4A—C5A—C6A116.9 (2)
O1C—V1—O1B—C2B83.35 (17)V1—N1A—C1A—C2A4.2 (3)
O1V—V1—O1B—C2B179.53 (17)C1A—N1A—C7A—N3A178.0 (2)
O2B—V1—O1B—C2B0.15 (17)V1—N1A—C7A—N3A7.1 (4)
N1A—V1—O1B—C2B83.67 (17)C7A—N1A—C1A—C6A0.4 (3)
O1B—V1—O1C—C2C178.64 (19)C1A—N1A—C7A—N2A0.2 (3)
O1V—V1—O1C—C2C86.4 (2)C7A—N1A—C1A—C2A179.6 (3)
O2B—V1—O1C—C2C94.37 (19)C8A—N2A—C6A—C5A7.5 (5)
O2C—V1—O1C—C2C13.42 (19)C8A—N2A—C7A—N1A173.6 (2)
O1B—V1—O2B—C4B0.1 (2)C7A—N2A—C6A—C5A177.9 (3)
O1C—V1—O2B—C4B89.40 (18)C8A—N2A—C7A—N3A4.3 (4)
O2C—V1—O2B—C4B179.11 (19)C6A—N2A—C7A—N1A0.8 (3)
N1A—V1—O2B—C4B90.39 (18)C6A—N2A—C7A—N3A178.6 (2)
O1C—V1—O2C—C4C11.2 (2)C7A—N2A—C6A—C1A1.0 (3)
O1V—V1—O2C—C4C85.9 (2)C8A—N2A—C6A—C1A173.6 (2)
O2B—V1—O2C—C4C94.4 (2)N1A—C1A—C2A—C3A178.8 (3)
N1A—V1—O2C—C4C178.3 (2)N1A—C1A—C6A—C5A178.1 (2)
O1B—V1—N1A—C1A55.10 (17)N1A—C1A—C6A—N2A0.8 (3)
O1B—V1—N1A—C7A130.9 (2)C2A—C1A—C6A—N2A179.9 (2)
O1V—V1—N1A—C1A40.02 (17)C2A—C1A—C6A—C5A1.2 (4)
O1V—V1—N1A—C7A134.0 (2)C6A—C1A—C2A—C3A0.4 (4)
O2B—V1—N1A—C1A139.22 (17)C1A—C2A—C3A—C4A0.7 (4)
O2B—V1—N1A—C7A46.7 (2)C1B—C2B—C3B—C4B179.3 (2)
O2C—V1—N1A—C1A139.93 (17)O1B—C2B—C3B—C4B0.7 (4)
O2C—V1—N1A—C7A34.1 (2)O1C—C2C—C3C—C4C2.6 (5)
V1—O1B—C2B—C1B179.51 (16)C1C—C2C—C3C—C4C176.4 (3)
V1—O1B—C2B—C3B0.4 (3)C2A—C3A—C4A—C5A1.0 (5)
V1—O1C—C2C—C3C9.3 (4)C2B—C3B—C4B—O2B0.6 (4)
V1—O1C—C2C—C1C171.7 (2)C2B—C3B—C4B—C5B179.2 (2)
V1—O2B—C4B—C5B179.41 (15)C2C—C3C—C4C—C5C174.0 (3)
V1—O2B—C4B—C3B0.4 (3)C2C—C3C—C4C—O2C5.0 (5)
V1—O2C—C4C—C5C176.10 (18)C3A—C4A—C5A—C6A0.2 (5)
V1—O2C—C4C—C3C4.9 (4)C4A—C5A—C6A—N2A179.6 (3)
V1—N1A—C7A—N2A175.13 (16)C4A—C5A—C6A—C1A0.9 (4)
V1—N1A—C1A—C6A174.97 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H3AA···O2B0.862.382.972 (3)127
N3A—H3AA···O2C0.862.473.034 (2)124
C8A—H8AA···N3A0.962.612.950 (3)101
C8A—H8AB···O1Ci0.962.573.146 (3)119
Symmetry code: (i) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[V(C5H7O2)2O(C8H9N3)]
Mr412.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.2712 (1), 15.0472 (2), 16.1078 (2)
β (°) 104.2646 (14)
V3)1942.94 (4)
Z4
Radiation typeCu Kα
µ (mm1)4.57
Crystal size (mm)0.25 × 0.12 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.544, 0.694
No. of measured, independent and
observed [I > 2σ(I)] reflections
8892, 3720, 2983
Rint0.028
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.00
No. of reflections3720
No. of parameters249
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3A—H3AA···O2B0.862.382.972 (3)127
N3A—H3AA···O2C0.862.473.034 (2)124
 

Acknowledgements

This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbekistan (No. F 3–142).

References

First citationAkhmed, M. A. K., Fjellvåg, H., Kjekshus, H. & Klewe, B. (2004). Z. Anorg. Allg. Chem. 630, 2311–2318.  Google Scholar
First citationBorodkina, I. G., Antsnshkina, A. S., Sadikov, G. G., Mistrnukov, A. E., Garnovskii, D. A., Uraev, A. I., Borodkin, G. S., Garnovskana, E. D., Sergienko, V. S. & Garnovskii, A. D. (2003). Russ. J. Coord. Chem. 29, 519–523.  Web of Science CrossRef CAS Google Scholar
First citationCaira, M. R., Haigh, J. M. & Nassimbeni, L. R. (1972). Inorg. Nucl. Chem. Lett. 8, 109–112.  CSD CrossRef CAS Web of Science Google Scholar
First citationChekhlov, A. N. (2004). Russ. J. Inorg. Chem. 49, 1373–1377.  Google Scholar
First citationCrans, D. C., Keramidas, A. D., Amin, S. S., Anderson, O. P. & Miller, S. M. (1997). J. Chem. Soc. Dalton Trans. 16, 2799–2812.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMaurya, M. R. (2002). Coord. Chem. Rev. 237, 163–181.  Web of Science CrossRef Google Scholar
First citationMaurya, M. R., Kumar, A., Ebel, M. & Rehder, D. (2006). Inorg. Chem. 45, 5924–5937.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlisPro. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationRehder, D. (1999). Coord. Chem. Rev. 182, 297–322.  Web of Science CrossRef CAS Google Scholar
First citationShao, M., Wang, L. & Tang, N. (1984). Kexue Tongbao (Chin. Sci. Bull.), 29, 759–764.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds