metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-meth­­oxy-6-{[2-(methyl­ammonio)eth­yl]imino­meth­yl}phenolato)thio­cyanato­zinc(II) thio­cyanate hemihydrate

aDepartment of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410014, People's Republic of China, and bSchool of Foreign Language, Jiangsu University, Jiangsu 212013, People's Republic of China
*Correspondence e-mail: sanjunpeng@163.com

(Received 14 May 2009; accepted 11 June 2009; online 20 June 2009)

The title mononuclear zinc(II) complex, [Zn(C11H16N2O2)2(NCS)]NCS·0.5H2O, consists of a complex cation, a thio­cyanate anion, and half of a water mol­ecule. The ZnII atom in the cation is five-coordinated by two imine N and two phenolate O atoms from two bidentate Schiff base ligands, and by one N atom of a thio­cyanate ligand, forming a distorted trigonal-bipyramidal geometry. The ammonio H atoms are involved in hydrogen bonding with the ligand O atoms and the solvent water molecules (site occupation factor 0.5), which partially determines the conformation of the ligands.

Related literature

For background to the properties of zinc(II) complexes, see: Lipscomb & Sträter (1996[Lipscomb, W. N. & Sträter, N. (1996). Chem. Rev. 96, 2375-2434.]); Bertini et al. (1994[Bertini, I., Gray, H. B., Lippard, S. J. & Valentine, J. S. (1994). In Bioinorganic Chemistry. Mills Valley, CA, USA: University Science Books.]); Harrison et al. (2006[Harrison, W. T. A., Ramadevi, P. & Kumaresan, S. (2006). Acta Cryst. E62, m513-m515.]); Tirosh et al. (2005[Tirosh, E., Maman, R. & Goldberg, I. (2005). Acta Cryst. E61, m751-m754.]); Musie et al. (2004[Musie, G. T., Li, X. & Powell, D. R. (2004). Acta Cryst. E60, m471-m472.]); Vallee & Auld (1993[Vallee, B. L. & Auld, D. S. (1993). Acc. Chem. Res. 26, 543-551.]). For related structures, see: Li et al. (2008[Li, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1495.]); Eltayeb et al. (2008[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m738-m739.]); Zhang & Wang (2007[Zhang, Q.-W. & Wang, G.-X. (2007). Acta Cryst. E63, m652-m653.]); Cai (2009[Cai, B.-H. (2009). Acta Cryst. E65, m142.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C11H16N2O2)2(NCS)]NCS·0.5H2O

  • Mr = 607.06

  • Triclinic, [P \overline 1]

  • a = 9.997 (2) Å

  • b = 13.017 (3) Å

  • c = 13.379 (3) Å

  • α = 73.70 (3)°

  • β = 77.95 (3)°

  • γ = 72.25 (3)°

  • V = 1577.0 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 298 K

  • 0.30 × 0.28 × 0.27 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.764, Tmax = 0.784

  • 12467 measured reflections

  • 6300 independent reflections

  • 3199 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.190

  • S = 0.99

  • 6300 reflections

  • 346 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯O2 0.90 2.38 3.001 (8) 126
N4—H4B⋯O1 0.90 1.84 2.682 (7) 155
N4—H4A⋯O5 0.90 1.99 2.839 (14) 157
N2—H2B⋯N6 0.90 1.93 2.834 (11) 179
N2—H2A⋯O4 0.90 2.35 2.889 (8) 119
N2—H2A⋯O3 0.90 1.86 2.691 (7) 153

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Zinc is the second most abundant transition metal in biology, functions as the active site of hydrolytic enzymes, such as carboxypeptidase and carbonic anhydrase, where it is in a hard donor coordination of nitrogen and oxygen (Lipscomb & Sträter, 1996; Bertini et al., 1994). Zinc atom can readily adopt four-, five- or six-coordination (Harrison et al., 2006; Tirosh et al., 2005; Musie et al., 2004; Vallee & Auld, 1993). As a continuation of work on this area, we report herein the new title zinc(II) complex, with the Schiff base 2-methoxy-6-[(2-methylaminoethylimino)methyl]phenol.

The title compound consists of a complex cation, a thiocyanate anion, and a half water molecule of crystallization (Fig. 1). The ZnII atom in the cation is five-coordinated by two imine N and two phenolate O atoms, from two Schiff base ligands, and by one N atom of a thiocyanate ligand, so forming a trigonal-bipyramidal geometry. The amine N atom is protonated and does not coordinate to the metal ion. The NH2+ hydrogen atoms are involved in hydrogen bonding with the ligand O-atoms which partially determines the conformation of the ligands. The Zn—O and Zn—N bond lengths [1.977 (4) - 1.979 (4) Å and 2.001 (6) - 2.135 (5) Å, respectively] are comparable to the values in similar complexes (Li et al., 2008; Eltayeb et al., 2008; Zhang & Wang, 2007; Cai, 2009).

Related literature top

For background to the properties of zinc(II) complexes, see: Lipscomb & Sträter (1996); Bertini et al. (1994); Harrison et al. (2006); Tirosh et al. (2005); Musie et al. (2004); Vallee & Auld (1993). For related structures, see: Li et al. (2008); Eltayeb et al. (2008); Zhang & Wang (2007); Cai (2009).

Experimental top

3-Methoxysalicylaldehyde (0.1 mmol, 15.2 mg) and N-methylethane-1,2-diamine (0.1 mmol, 7.4 mg) were stirred into 30 ml of methanol. After 1 h, ammonium thiocyanate (0.1 mmol, 7.6 mg) in water (1 ml) and zinc acetate (0.1 mmol, 22.0 mg) in methanol (10 ml) was added, and the stirring continued for a further 1 h. The filtrate was kept at rt for about a week, depositing colorless block-like crystals of the title compound.

Refinement top

All H atoms were positioned geometrically and refined as riding atoms: C—H = 0.93–0.97 Å, N—H = 0.90 Å, O—H = 0.85 Å, with Uiso(H) set to 1.2Ueq(C/O) and 1.5Ueq(methyl C). The structure contains solvent accessible voids of 138.00 A3, which might accommodate a disordered water molecule. The phenyl rings were refined as regular hexagons, with their ADP's made equal to one another.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
Bis(2-methoxy-6-{[2- (methylammonio)ethyl]iminomethyl}phenolato)thiocyanatozinc(II) thiocyanate hemihydrate top
Crystal data top
[Zn(C11H16N2O2)2(NCS)]NCS·0.5H2OZ = 2
Mr = 607.06F(000) = 634
Triclinic, P1Dx = 1.278 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.997 (2) ÅCell parameters from 1416 reflections
b = 13.017 (3) Åθ = 2.4–24.1°
c = 13.379 (3) ŵ = 0.95 mm1
α = 73.70 (3)°T = 298 K
β = 77.95 (3)°Block, colorless
γ = 72.25 (3)°0.30 × 0.28 × 0.27 mm
V = 1577.0 (5) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6300 independent reflections
Radiation source: fine-focus sealed tube3199 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 26.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1212
Tmin = 0.764, Tmax = 0.784k = 1616
12467 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0763P)2]
where P = (Fo2 + 2Fc2)/3
6300 reflections(Δ/σ)max < 0.001
346 parametersΔρmax = 0.51 e Å3
18 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Zn(C11H16N2O2)2(NCS)]NCS·0.5H2Oγ = 72.25 (3)°
Mr = 607.06V = 1577.0 (5) Å3
Triclinic, P1Z = 2
a = 9.997 (2) ÅMo Kα radiation
b = 13.017 (3) ŵ = 0.95 mm1
c = 13.379 (3) ÅT = 298 K
α = 73.70 (3)°0.30 × 0.28 × 0.27 mm
β = 77.95 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6300 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3199 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 0.784Rint = 0.057
12467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08118 restraints
wR(F2) = 0.190H-atom parameters constrained
S = 0.99Δρmax = 0.51 e Å3
6300 reflectionsΔρmin = 0.37 e Å3
346 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.76677 (7)0.52215 (5)0.74443 (5)0.0565 (3)
S10.9762 (3)0.7599 (2)0.8261 (2)0.1405 (10)
S20.7074 (3)0.9701 (2)0.18236 (19)0.1322 (9)
O10.6935 (4)0.3968 (3)0.8352 (3)0.0743 (12)
O20.6337 (7)0.2068 (5)0.8807 (4)0.113 (2)
O30.7078 (5)0.5764 (3)0.6026 (3)0.0751 (12)
O40.5434 (6)0.6530 (5)0.4556 (3)0.0952 (15)
O50.9890 (14)0.0589 (13)0.7592 (16)0.201 (8)0.50
H5A0.93330.01690.78150.241*0.50
H5B1.05450.04780.70840.241*0.50
N10.5803 (6)0.6341 (5)0.8016 (4)0.0714 (14)
N20.5448 (7)0.7845 (4)0.5970 (4)0.0893 (18)
H2A0.57260.71150.59850.107*
H2B0.57460.82050.53210.107*
N30.9438 (6)0.4057 (4)0.6861 (5)0.0735 (15)
N40.9269 (6)0.2291 (4)0.8690 (4)0.0778 (15)
H4A0.96460.18490.82360.093*
H4B0.84120.27070.85190.093*
N50.8880 (6)0.5913 (5)0.7923 (5)0.0799 (16)
N60.6414 (11)0.8946 (7)0.3922 (8)0.150 (3)
C10.4525 (8)0.4901 (9)0.8824 (5)0.085 (2)
C20.5598 (8)0.3956 (7)0.8705 (4)0.0709 (19)
C30.5227 (10)0.2965 (9)0.8983 (5)0.092 (2)
C40.3836 (12)0.2933 (12)0.9369 (6)0.125 (4)
H40.36240.22500.95530.150*
C50.2823 (13)0.3802 (15)0.9484 (8)0.144 (6)
H50.19030.37410.97360.172*
C60.3115 (9)0.4821 (11)0.9230 (6)0.116 (3)
H60.23970.54510.93230.139*
C70.6075 (13)0.1001 (8)0.9051 (9)0.162 (5)
H7A0.57480.07930.97870.242*
H7B0.69360.04660.88760.242*
H7C0.53670.10250.86520.242*
C80.4715 (8)0.6024 (8)0.8540 (5)0.088 (2)
H80.39580.65690.87650.105*
C90.5723 (8)0.7536 (6)0.7858 (6)0.091 (2)
H9A0.63260.76130.82990.109*
H9B0.47570.79320.80670.109*
C100.6180 (9)0.8039 (6)0.6729 (6)0.096 (2)
H10A0.60070.88320.66400.115*
H10B0.71930.77360.65650.115*
C110.3859 (10)0.8191 (7)0.6135 (7)0.114 (3)
H11A0.35220.79580.68670.171*
H11B0.35020.78540.57310.171*
H11C0.35350.89840.59140.171*
C120.8471 (10)0.4272 (7)0.5243 (6)0.085 (2)
C130.7338 (8)0.5214 (6)0.5289 (5)0.0712 (19)
C140.6466 (9)0.5591 (7)0.4474 (5)0.081 (2)
C150.6657 (11)0.5033 (9)0.3720 (6)0.104 (3)
H150.60360.52820.32210.125*
C160.7754 (14)0.4109 (11)0.3687 (8)0.118 (4)
H160.78900.37450.31520.142*
C170.8643 (11)0.3716 (7)0.4418 (8)0.105 (3)
H170.93770.30780.43890.126*
C180.4627 (10)0.7033 (8)0.3714 (6)0.122 (3)
H18A0.52490.71800.30700.183*
H18B0.39790.77160.38320.183*
H18C0.41050.65430.36660.183*
C190.9490 (8)0.3819 (5)0.5987 (7)0.085 (2)
H191.02910.32810.58030.103*
C201.0633 (7)0.3501 (6)0.7456 (7)0.097 (2)
H20A1.11590.40290.74180.117*
H20B1.12630.29130.71370.117*
C211.0177 (7)0.3020 (6)0.8579 (7)0.085 (2)
H21A1.10080.26030.89230.102*
H21B0.96670.36170.89260.102*
C220.9086 (9)0.1580 (7)0.9783 (6)0.105 (3)
H22A0.99930.12521.00280.158*
H22B0.86760.10050.97750.158*
H22C0.84730.20291.02430.158*
C230.9247 (7)0.6603 (6)0.8069 (5)0.0772 (18)
C240.6730 (10)0.9266 (7)0.3022 (8)0.112 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0650 (5)0.0525 (4)0.0489 (4)0.0206 (3)0.0020 (3)0.0083 (3)
S10.183 (2)0.131 (2)0.153 (2)0.0873 (19)0.0027 (18)0.0688 (17)
S20.178 (2)0.1057 (17)0.0884 (16)0.0077 (16)0.0165 (15)0.0174 (13)
O10.072 (3)0.074 (3)0.070 (3)0.034 (2)0.010 (2)0.010 (2)
O20.139 (5)0.099 (4)0.120 (4)0.080 (4)0.067 (4)0.036 (3)
O30.107 (3)0.068 (3)0.047 (2)0.025 (2)0.001 (2)0.014 (2)
O40.133 (4)0.111 (4)0.050 (3)0.053 (4)0.013 (3)0.007 (3)
O50.117 (10)0.167 (14)0.36 (3)0.047 (10)0.001 (12)0.148 (16)
N10.074 (4)0.090 (4)0.044 (3)0.008 (3)0.009 (3)0.022 (3)
N20.131 (6)0.059 (3)0.068 (4)0.018 (4)0.021 (4)0.001 (3)
N30.073 (4)0.063 (3)0.081 (4)0.028 (3)0.019 (3)0.021 (3)
N40.096 (4)0.053 (3)0.089 (4)0.024 (3)0.028 (3)0.007 (3)
N50.076 (4)0.084 (4)0.095 (4)0.036 (3)0.004 (3)0.038 (3)
N60.199 (7)0.121 (6)0.124 (6)0.057 (5)0.000 (5)0.018 (5)
C10.080 (6)0.151 (8)0.034 (3)0.047 (6)0.003 (3)0.021 (4)
C20.073 (5)0.111 (6)0.030 (3)0.046 (5)0.010 (3)0.007 (3)
C30.114 (7)0.130 (7)0.047 (4)0.075 (6)0.033 (4)0.021 (4)
C40.120 (8)0.226 (13)0.056 (5)0.121 (9)0.014 (6)0.007 (6)
C50.105 (8)0.31 (2)0.069 (6)0.127 (11)0.016 (6)0.059 (9)
C60.074 (5)0.236 (12)0.060 (5)0.057 (7)0.012 (4)0.067 (6)
C70.233 (12)0.125 (8)0.174 (10)0.131 (8)0.104 (9)0.040 (7)
C80.063 (4)0.146 (8)0.041 (4)0.000 (5)0.004 (3)0.032 (4)
C90.113 (6)0.079 (5)0.076 (5)0.007 (4)0.023 (4)0.039 (4)
C100.134 (7)0.066 (4)0.093 (6)0.021 (4)0.032 (5)0.021 (4)
C110.120 (7)0.102 (6)0.115 (7)0.005 (5)0.038 (5)0.029 (5)
C120.111 (6)0.084 (5)0.064 (4)0.053 (5)0.032 (4)0.024 (4)
C130.095 (5)0.070 (4)0.052 (4)0.049 (4)0.032 (4)0.019 (3)
C140.119 (6)0.092 (5)0.044 (4)0.062 (5)0.012 (4)0.015 (4)
C150.143 (8)0.137 (8)0.058 (5)0.086 (7)0.022 (5)0.037 (5)
C160.162 (10)0.148 (9)0.082 (6)0.103 (8)0.051 (6)0.064 (7)
C170.134 (7)0.093 (6)0.088 (6)0.054 (5)0.047 (6)0.043 (5)
C180.151 (7)0.166 (9)0.066 (5)0.080 (7)0.028 (5)0.003 (5)
C190.087 (5)0.051 (4)0.103 (6)0.031 (4)0.042 (5)0.020 (4)
C200.056 (4)0.068 (5)0.156 (8)0.017 (4)0.000 (5)0.018 (5)
C210.072 (4)0.062 (4)0.131 (7)0.022 (4)0.026 (4)0.022 (4)
C220.139 (7)0.089 (5)0.085 (5)0.028 (5)0.047 (5)0.004 (4)
C230.077 (5)0.085 (5)0.072 (4)0.022 (4)0.002 (3)0.029 (4)
C240.166 (8)0.074 (5)0.092 (6)0.041 (5)0.002 (6)0.015 (5)
Geometric parameters (Å, º) top
Zn1—O31.977 (4)C5—H50.9300
Zn1—O11.979 (4)C6—H60.9300
Zn1—N52.001 (6)C7—H7A0.9600
Zn1—N32.119 (5)C7—H7B0.9600
Zn1—N12.135 (5)C7—H7C0.9600
S1—C231.632 (8)C8—H80.9300
S2—C241.545 (10)C9—C101.503 (10)
O1—C21.325 (7)C9—H9A0.9700
O2—C31.381 (10)C9—H9B0.9700
O2—C71.426 (9)C10—H10A0.9700
O3—C131.314 (7)C10—H10B0.9700
O4—C141.353 (9)C11—H11A0.9600
O4—C181.412 (9)C11—H11B0.9600
O5—H5A0.8500C11—H11C0.9600
O5—H5B0.8500C12—C131.399 (10)
N1—C81.280 (9)C12—C171.437 (11)
N1—C91.489 (9)C12—C191.450 (11)
N2—C101.483 (9)C13—C141.423 (10)
N2—C111.499 (10)C14—C151.351 (10)
N2—H2A0.9000C15—C161.363 (13)
N2—H2B0.9000C15—H150.9300
N3—C191.278 (9)C16—C171.347 (13)
N3—C201.460 (9)C16—H160.9300
N4—C211.462 (8)C17—H170.9300
N4—C221.503 (9)C18—H18A0.9600
N4—H4A0.9000C18—H18B0.9600
N4—H4B0.9000C18—H18C0.9600
N5—C231.144 (8)C19—H190.9300
N6—C241.168 (10)C20—C211.489 (10)
C1—C21.387 (10)C20—H20A0.9700
C1—C61.425 (11)C20—H20B0.9700
C1—C81.465 (11)C21—H21A0.9700
C2—C31.380 (10)C21—H21B0.9700
C3—C41.388 (12)C22—H22A0.9600
C4—C51.290 (16)C22—H22B0.9600
C4—H40.9300C22—H22C0.9600
C5—C61.380 (15)
O3—Zn1—O1114.77 (18)C10—C9—H9A109.4
O3—Zn1—N5122.2 (2)N1—C9—H9B109.4
O1—Zn1—N5123.0 (2)C10—C9—H9B109.4
O3—Zn1—N389.1 (2)H9A—C9—H9B108.0
O1—Zn1—N388.67 (19)N2—C10—C9114.0 (7)
N5—Zn1—N393.1 (2)N2—C10—H10A108.8
O3—Zn1—N189.57 (18)C9—C10—H10A108.8
O1—Zn1—N189.0 (2)N2—C10—H10B108.8
N5—Zn1—N190.4 (2)C9—C10—H10B108.8
N3—Zn1—N1176.5 (2)H10A—C10—H10B107.7
C2—O1—Zn1128.0 (4)N2—C11—H11A109.5
C3—O2—C7118.9 (8)N2—C11—H11B109.5
C13—O3—Zn1128.1 (4)H11A—C11—H11B109.5
C14—O4—C18116.7 (7)N2—C11—H11C109.5
H5A—O5—H5B120.0H11A—C11—H11C109.5
C8—N1—C9116.2 (6)H11B—C11—H11C109.5
C8—N1—Zn1122.4 (5)C13—C12—C17118.7 (9)
C9—N1—Zn1121.3 (5)C13—C12—C19123.6 (7)
C10—N2—C11116.9 (6)C17—C12—C19117.7 (9)
C10—N2—H2A108.1O3—C13—C12123.0 (7)
C11—N2—H2A108.1O3—C13—C14119.9 (7)
C10—N2—H2B108.1C12—C13—C14117.1 (7)
C11—N2—H2B108.1C15—C14—O4124.8 (8)
H2A—N2—H2B107.3C15—C14—C13122.1 (9)
C19—N3—C20118.3 (7)O4—C14—C13113.0 (6)
C19—N3—Zn1121.3 (5)C14—C15—C16120.4 (10)
C20—N3—Zn1120.4 (5)C14—C15—H15119.8
C21—N4—C22113.0 (6)C16—C15—H15119.8
C21—N4—H4A109.0C17—C16—C15120.8 (9)
C22—N4—H4A109.0C17—C16—H16119.6
C21—N4—H4B109.0C15—C16—H16119.6
C22—N4—H4B109.0C16—C17—C12120.8 (9)
H4A—N4—H4B107.8C16—C17—H17119.6
C23—N5—Zn1157.9 (6)C12—C17—H17119.6
C2—C1—C6120.1 (9)O4—C18—H18A109.5
C2—C1—C8124.6 (6)O4—C18—H18B109.5
C6—C1—C8115.3 (9)H18A—C18—H18B109.5
O1—C2—C3119.7 (8)O4—C18—H18C109.5
O1—C2—C1123.2 (7)H18A—C18—H18C109.5
C3—C2—C1117.1 (8)H18B—C18—H18C109.5
C2—C3—O2113.9 (7)N3—C19—C12128.9 (7)
C2—C3—C4120.6 (11)N3—C19—H19115.5
O2—C3—C4125.5 (9)C12—C19—H19115.5
C5—C4—C3123.3 (12)N3—C20—C21112.5 (6)
C5—C4—H4118.4N3—C20—H20A109.1
C3—C4—H4118.4C21—C20—H20A109.1
C4—C5—C6119.4 (11)N3—C20—H20B109.1
C4—C5—H5120.3C21—C20—H20B109.1
C6—C5—H5120.3H20A—C20—H20B107.8
C5—C6—C1119.5 (11)N4—C21—C20111.9 (6)
C5—C6—H6120.2N4—C21—H21A109.2
C1—C6—H6120.2C20—C21—H21A109.2
O2—C7—H7A109.5N4—C21—H21B109.2
O2—C7—H7B109.5C20—C21—H21B109.2
H7A—C7—H7B109.5H21A—C21—H21B107.9
O2—C7—H7C109.5N4—C22—H22A109.5
H7A—C7—H7C109.5N4—C22—H22B109.5
H7B—C7—H7C109.5H22A—C22—H22B109.5
N1—C8—C1127.5 (7)N4—C22—H22C109.5
N1—C8—H8116.3H22A—C22—H22C109.5
C1—C8—H8116.3H22B—C22—H22C109.5
N1—C9—C10111.2 (5)N5—C23—S1179.2 (7)
N1—C9—H9A109.4N6—C24—S2177.3 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O20.902.383.001 (8)126
N4—H4B···O10.901.842.682 (7)155
N4—H4A···O50.901.992.839 (14)157
N2—H2B···N60.901.932.834 (11)179
N2—H2A···O40.902.352.889 (8)119
N2—H2A···O30.901.862.691 (7)153

Experimental details

Crystal data
Chemical formula[Zn(C11H16N2O2)2(NCS)]NCS·0.5H2O
Mr607.06
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.997 (2), 13.017 (3), 13.379 (3)
α, β, γ (°)73.70 (3), 77.95 (3), 72.25 (3)
V3)1577.0 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.30 × 0.28 × 0.27
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.764, 0.784
No. of measured, independent and
observed [I > 2σ(I)] reflections
12467, 6300, 3199
Rint0.057
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.190, 0.99
No. of reflections6300
No. of parameters346
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.37

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O20.902.383.001 (8)126
N4—H4B···O10.901.842.682 (7)155
N4—H4A···O50.901.992.839 (14)157
N2—H2B···N60.901.932.834 (11)179
N2—H2A···O40.902.352.889 (8)119
N2—H2A···O30.901.862.691 (7)153
 

Acknowledgements

We acknowledge Changsha University of Science and Technology for the research grants.

References

First citationBertini, I., Gray, H. B., Lippard, S. J. & Valentine, J. S. (1994). In Bioinorganic Chemistry. Mills Valley, CA, USA: University Science Books.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, B.-H. (2009). Acta Cryst. E65, m142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Adnan, R. (2008). Acta Cryst. E64, m738–m739.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Ramadevi, P. & Kumaresan, S. (2006). Acta Cryst. E62, m513–m515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1495.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLipscomb, W. N. & Sträter, N. (1996). Chem. Rev. 96, 2375–2434.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMusie, G. T., Li, X. & Powell, D. R. (2004). Acta Cryst. E60, m471–m472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTirosh, E., Maman, R. & Goldberg, I. (2005). Acta Cryst. E61, m751–m754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVallee, B. L. & Auld, D. S. (1993). Acc. Chem. Res. 26, 543–551.  CrossRef CAS Web of Science Google Scholar
First citationZhang, Q.-W. & Wang, G.-X. (2007). Acta Cryst. E63, m652–m653.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds