organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phenyl)-1,8-naphthalimide

aCollege of Food Science and Light Industry, Nanjing University of Technology, Xinmofan Road No.5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: sunjie5516@126.com

(Received 18 May 2009; accepted 1 June 2009; online 13 June 2009)

In the title compound, C18H10ClNO2, the naphthalimide ring system is almost planar, the rings forming dihedral angles of 2.05 (3), 2.26 (3) and 0.80 (3)°. The attached benzene ring of the 4-chloro­phenyl substituent is inclined to the mean plane of the naphthalimide ring system by 75.77 (11)°. In the crystal structure, symmetry-related mol­ecules are linked by C—H⋯O inter­actions. There are also weak ππ contacts between the naphthalimide rings [centroid–centroid distance = 3.732 (3) Å].

Related literature

For related literature on N-substituted 1,8-naphthalimides, see: De Souza et al. (2002[De Souza, M. M., Correa, R., Cechinel Filho, V., Grabchev, I. & Bojinov, V. (2002). Pharmazie, 57, 430-431.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H10ClNO2

  • Mr = 307.72

  • Monoclinic, P 21 /n

  • a = 8.6800 (17) Å

  • b = 17.553 (4) Å

  • c = 9.4600 (19) Å

  • β = 103.53 (3)°

  • V = 1401.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.921, Tmax = 0.946

  • 2719 measured reflections

  • 2549 independent reflections

  • 1843 reflections with I > 2σ(I)

  • Rint = 0.048

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.157

  • S = 1.00

  • 2549 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O2i 0.93 2.45 3.138 (4) 131
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing studies on N-substituted 1,8-naphthalimides (De Souza et al., 2002), we report herein on the crystal structure of the title compound.

In the title compound, illustrated in Fig. 1, the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N/C4/C5/C7/C11/C13), B (C1—C6) and C (C5—C11) are oriented with respect to one another by dihedral angles of A/B = 2.05 (3), A/C = 2.26 (3) and B/C = 0.80 (3) °, hence almost coplanar. Rings A, B (C5—C10), C (C9—C14) and D (C12/C14—C18) are oriented at dihedral angles of A/D = 76.89 (3), B/D = 75.93 (3) and C/D = 75.19 (3) °.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into multimers (Fig. 2) (Bernstein et al., 1996), in which they may be effective in the stabilization of the structure. The ππ contacts between the naphthalimide rings, Cg1—Cg1i [symmetry codes: (i) –X,-Y,-Z, where Cg1 is centroid of ring C] with centroid-centroid distances of 3.732 (3) Å, may further stabilize the structure.

Related literature top

For related literature on N-substituted 1,8-naphthalimides, see: De Souza et al. (2002). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen bonding, see: Bernstein et al. (1996).

Experimental top

For the preparation of the title compound: 1,8-naphthalic anhydride (1.98 g, 0.01 mol) and 2-aminoethanol (1.275 g,0.01 mol) were mixed with acetic acid (50 ml). The reaction mixture was refluxed for 8 h, and then poured into cold water. The resulting solids were filtered off and boiled with an aqueous solution of sodium bicarbonate (10%, 50 ml) for 20 min, and the insoluble solid residues were dried in vacuo. Column chromatography on aluminium oxide with benzene as eluent gave a light-brown solution. Crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone solution (yield 94%; m.p. 489 K).

Refinement top

H-atoms were positioned geometrically and constrained to ride on their parent atoms: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(parent C-atom).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the C-H···O hydrogen bonded (dashed lines) molecules in the title compound.
N-(4-Chlorophenyl)-1,8-naphthalimide top
Crystal data top
C18H10ClNO2F(000) = 632
Mr = 307.72Dx = 1.459 Mg m3
Monoclinic, P21/nMelting point: 505 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.6800 (17) ÅCell parameters from 25 reflections
b = 17.553 (4) Åθ = 9–13°
c = 9.4600 (19) ŵ = 0.28 mm1
β = 103.53 (3)°T = 293 K
V = 1401.3 (5) Å3Block, green
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1843 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 25.3°, θmin = 2.3°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 021
Tmin = 0.921, Tmax = 0.946l = 1111
2719 measured reflections3 standard reflections every 200 reflections
2549 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.07P)2 + 1.5P]
where P = (Fo2 + 2Fc2)/3
2549 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C18H10ClNO2V = 1401.3 (5) Å3
Mr = 307.72Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6800 (17) ŵ = 0.28 mm1
b = 17.553 (4) ÅT = 293 K
c = 9.4600 (19) Å0.30 × 0.20 × 0.20 mm
β = 103.53 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1843 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.048
Tmin = 0.921, Tmax = 0.9463 standard reflections every 200 reflections
2719 measured reflections intensity decay: 1%
2549 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.00Δρmax = 0.30 e Å3
2549 reflectionsΔρmin = 0.23 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.48706 (11)0.18516 (6)0.29044 (9)0.0612 (3)
N0.6288 (3)0.39484 (14)0.1550 (2)0.0381 (6)
O10.7353 (3)0.48058 (14)0.0210 (2)0.0637 (7)
C10.8795 (5)0.5908 (2)0.4218 (4)0.0606 (10)
H1A0.91820.61950.48860.073*
O20.5248 (3)0.30743 (13)0.3284 (2)0.0555 (6)
C20.9122 (5)0.6132 (2)0.2792 (4)0.0705 (11)
H2A0.97100.65720.25070.085*
C30.8580 (4)0.57040 (19)0.1762 (4)0.0570 (9)
H3A0.88240.58560.07940.068*
C40.7693 (4)0.50637 (17)0.2166 (3)0.0413 (7)
C50.7317 (4)0.48249 (17)0.3649 (3)0.0385 (7)
C60.7888 (4)0.52546 (18)0.4695 (3)0.0459 (8)
C70.6412 (3)0.41605 (17)0.4090 (3)0.0373 (7)
C80.6044 (4)0.3947 (2)0.5531 (3)0.0498 (8)
H8A0.54350.35140.58180.060*
C90.6577 (4)0.4375 (2)0.6567 (3)0.0585 (10)
H9A0.63110.42270.75380.070*
C100.7487 (4)0.5009 (2)0.6164 (4)0.0541 (9)
H10A0.78490.52840.68630.065*
C110.7125 (4)0.46182 (17)0.1071 (3)0.0421 (7)
C120.5915 (4)0.34481 (17)0.0448 (3)0.0376 (7)
C130.5918 (4)0.36798 (18)0.2992 (3)0.0393 (7)
C140.7103 (4)0.30126 (18)0.0375 (3)0.0442 (8)
H14A0.81210.30400.02220.053*
C150.6788 (4)0.25313 (19)0.1435 (3)0.0464 (8)
H15A0.75920.22430.20140.056*
C160.5257 (4)0.24902 (17)0.1611 (3)0.0406 (7)
C170.4056 (4)0.29174 (19)0.0787 (3)0.0477 (8)
H17A0.30290.28750.09150.057*
C180.4389 (4)0.34117 (19)0.0239 (3)0.0445 (7)
H18A0.35950.37180.07850.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0701 (6)0.0711 (6)0.0452 (5)0.0106 (5)0.0189 (4)0.0156 (4)
N0.0516 (15)0.0418 (14)0.0203 (11)0.0043 (12)0.0073 (10)0.0008 (10)
O10.103 (2)0.0626 (16)0.0255 (11)0.0126 (14)0.0140 (12)0.0104 (11)
C10.074 (2)0.057 (2)0.055 (2)0.0123 (19)0.0224 (19)0.0097 (17)
O20.0732 (16)0.0572 (15)0.0352 (12)0.0234 (13)0.0107 (11)0.0085 (11)
C20.089 (3)0.055 (2)0.067 (3)0.022 (2)0.017 (2)0.001 (2)
C30.075 (2)0.047 (2)0.0460 (19)0.0097 (18)0.0081 (17)0.0038 (16)
C40.0537 (19)0.0380 (17)0.0310 (15)0.0019 (14)0.0074 (13)0.0002 (12)
C50.0443 (16)0.0425 (17)0.0282 (14)0.0057 (13)0.0073 (12)0.0060 (12)
C60.0541 (19)0.0453 (18)0.0392 (17)0.0081 (15)0.0128 (14)0.0128 (14)
C70.0448 (16)0.0425 (17)0.0244 (14)0.0038 (13)0.0079 (12)0.0004 (12)
C80.066 (2)0.057 (2)0.0255 (15)0.0026 (17)0.0088 (14)0.0026 (14)
C90.077 (3)0.078 (3)0.0226 (15)0.002 (2)0.0153 (15)0.0007 (16)
C100.066 (2)0.061 (2)0.0386 (17)0.0044 (18)0.0202 (16)0.0125 (16)
C110.0581 (19)0.0406 (17)0.0260 (14)0.0014 (14)0.0065 (13)0.0029 (12)
C120.0516 (18)0.0420 (16)0.0199 (13)0.0037 (14)0.0099 (12)0.0026 (11)
C130.0484 (17)0.0465 (18)0.0219 (13)0.0011 (15)0.0057 (12)0.0026 (12)
C140.0404 (16)0.059 (2)0.0346 (16)0.0050 (15)0.0117 (13)0.0071 (14)
C150.0506 (19)0.056 (2)0.0323 (15)0.0046 (15)0.0080 (14)0.0054 (14)
C160.0516 (18)0.0461 (17)0.0243 (14)0.0066 (14)0.0094 (13)0.0001 (12)
C170.0428 (17)0.064 (2)0.0399 (17)0.0018 (16)0.0164 (14)0.0010 (15)
C180.0435 (17)0.0544 (19)0.0346 (16)0.0051 (14)0.0070 (13)0.0025 (14)
Geometric parameters (Å, º) top
Cl—C161.749 (3)C7—C81.377 (4)
N—C111.401 (4)C7—C131.477 (4)
N—C131.408 (3)C8—C91.396 (5)
N—C121.457 (3)C8—H8A0.9300
O1—C111.226 (3)C9—C101.367 (5)
C1—C21.370 (5)C9—H9A0.9300
C1—C61.404 (5)C10—H10A0.9300
C1—H1A0.9300C12—C141.370 (4)
O2—C131.212 (3)C12—C181.386 (4)
C2—C31.396 (5)C14—C151.386 (4)
C2—H2A0.9300C14—H14A0.9300
C3—C41.365 (4)C15—C161.379 (4)
C3—H3A0.9300C15—H15A0.9300
C4—C51.427 (4)C16—C171.370 (4)
C4—C111.472 (4)C17—C181.382 (4)
C5—C71.414 (4)C17—H17A0.9300
C5—C61.423 (4)C18—H18A0.9300
C6—C101.418 (5)
C11—N—C13125.3 (2)C8—C9—H9A119.8
C11—N—C12117.4 (2)C9—C10—C6120.9 (3)
C13—N—C12117.0 (2)C9—C10—H10A119.5
C2—C1—C6121.5 (3)C6—C10—H10A119.5
C2—C1—H1A119.2O1—C11—N119.8 (3)
C6—C1—H1A119.2O1—C11—C4123.3 (3)
C1—C2—C3120.4 (4)N—C11—C4116.9 (2)
C1—C2—H2A119.8C14—C12—C18120.7 (3)
C3—C2—H2A119.8C14—C12—N118.6 (3)
C4—C3—C2120.5 (3)C18—C12—N120.7 (3)
C4—C3—H3A119.7O2—C13—N120.2 (3)
C2—C3—H3A119.7O2—C13—C7122.9 (3)
C3—C4—C5120.1 (3)N—C13—C7116.9 (3)
C3—C4—C11120.0 (3)C12—C14—C15120.1 (3)
C5—C4—C11119.9 (3)C12—C14—H14A120.0
C7—C5—C6119.5 (3)C15—C14—H14A120.0
C7—C5—C4121.1 (3)C16—C15—C14118.5 (3)
C6—C5—C4119.4 (3)C16—C15—H15A120.7
C1—C6—C10123.6 (3)C14—C15—H15A120.7
C1—C6—C5118.0 (3)C17—C16—C15121.9 (3)
C10—C6—C5118.4 (3)C17—C16—Cl120.3 (2)
C8—C7—C5120.0 (3)C15—C16—Cl117.8 (2)
C8—C7—C13120.2 (3)C16—C17—C18119.1 (3)
C5—C7—C13119.8 (2)C16—C17—H17A120.4
C7—C8—C9120.7 (3)C18—C17—H17A120.4
C7—C8—H8A119.7C17—C18—C12119.6 (3)
C9—C8—H8A119.7C17—C18—H18A120.2
C10—C9—C8120.5 (3)C12—C18—H18A120.2
C10—C9—H9A119.8
C6—C1—C2—C31.1 (6)C12—N—C11—C4171.5 (3)
C1—C2—C3—C41.1 (6)C3—C4—C11—O12.9 (5)
C2—C3—C4—C50.2 (5)C5—C4—C11—O1177.2 (3)
C2—C3—C4—C11179.9 (4)C3—C4—C11—N177.0 (3)
C3—C4—C5—C7179.5 (3)C5—C4—C11—N2.9 (4)
C11—C4—C5—C70.4 (4)C11—N—C12—C1475.1 (4)
C3—C4—C5—C60.7 (5)C13—N—C12—C1498.6 (3)
C11—C4—C5—C6179.3 (3)C11—N—C12—C18105.1 (3)
C2—C1—C6—C10178.5 (4)C13—N—C12—C1881.2 (4)
C2—C1—C6—C50.3 (5)C11—N—C13—O2176.7 (3)
C7—C5—C6—C1179.5 (3)C12—N—C13—O23.6 (4)
C4—C5—C6—C10.6 (5)C11—N—C13—C72.1 (4)
C7—C5—C6—C101.7 (4)C12—N—C13—C7175.3 (3)
C4—C5—C6—C10179.5 (3)C8—C7—C13—O23.4 (5)
C6—C5—C7—C82.1 (4)C5—C7—C13—O2174.2 (3)
C4—C5—C7—C8179.1 (3)C8—C7—C13—N177.8 (3)
C6—C5—C7—C13175.4 (3)C5—C7—C13—N4.6 (4)
C4—C5—C7—C133.4 (4)C18—C12—C14—C150.3 (5)
C5—C7—C8—C91.0 (5)N—C12—C14—C15179.9 (3)
C13—C7—C8—C9176.5 (3)C12—C14—C15—C161.5 (5)
C7—C8—C9—C100.6 (5)C14—C15—C16—C170.9 (5)
C8—C9—C10—C61.1 (5)C14—C15—C16—Cl177.5 (2)
C1—C6—C10—C9178.9 (3)C15—C16—C17—C180.9 (5)
C5—C6—C10—C90.1 (5)Cl—C16—C17—C18179.3 (2)
C13—N—C11—O1178.5 (3)C16—C17—C18—C122.1 (5)
C12—N—C11—O18.4 (4)C14—C12—C18—C171.5 (5)
C13—N—C11—C41.6 (4)N—C12—C18—C17178.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O2i0.932.453.138 (4)131
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H10ClNO2
Mr307.72
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.6800 (17), 17.553 (4), 9.4600 (19)
β (°) 103.53 (3)
V3)1401.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.921, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
2719, 2549, 1843
Rint0.048
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.157, 1.00
No. of reflections2549
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.23

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O2i0.93002.45003.138 (4)131.00
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University for support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDe Souza, M. M., Correa, R., Cechinel Filho, V., Grabchev, I. & Bojinov, V. (2002). Pharmazie, 57, 430-431.  Web of Science PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds