organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Chloro­anilino­methyl­ene)-2,2-di­methyl-1,3-dioxane-4,6-dione

aDepartment of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China, and bState Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: jincool.1129@163.com.cn

(Received 26 May 2009; accepted 22 June 2009; online 27 June 2009)

The title compound, C13H12ClNO4, is approximately planar, with a dihedral angle of 8.23 (4)° between the mean plane of the amino­methyl­ene unit and the planar part of the dioxane ring. The dioxane ring has a half-boat conformation, in which the C atom between the dioxane O atoms is −0.464 (8) Å out of the plane of the other five atoms. In the mol­ecule there is an intra­molecular N—H⋯O hydrogen bond, involving the NH H atom and the adjacent dioxane carbonyl O atom. In the crystal, weak intermolecular C—H⋯O hydrogen-bonding contacts, result in the formation of sheets parallel to the ab plane.

Related literature

For the synthesis of related compounds, see: Cassis et al. (1985[Cassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun. 15, 125-133.]). For the synthesis of related anti­tumor precursors, see: Ruchelman et al. (2003[Ruchelman, A. L., Singh, S. K., Ray, A., Wu, X. H., Yang, J. M., Li, T. K., Liu, A., Liu, L. F. & LaVoie, E. J. (2003). Bioorg. Med. Chem. 11, 2061-2073.]). For details of the formation of quinolin-4-ol derivatives by thermal cracking, see: De et al. (1998[De, D., Krogstad, F. M., Byers, L. D. & Krogstad, D. J. (1998). J. Med. Chem. 41, 4918-4926.]). For the structure of 5-(amino­methyl­ene)-2,2-dimethyl-1,3-dioxane-4,6-dione, see: da Silva et al. (2006[Silva, L. E. da, Joussef, A. C., Silva, L. L., Foro, S. & Schmidt, B. (2006). Acta Cryst. E62, o3866-o3867.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12ClNO4

  • Mr = 281.69

  • Monoclinic, P 21 /c

  • a = 13.439 (4) Å

  • b = 13.076 (3) Å

  • c = 7.723 (3) Å

  • β = 106.40 (2)°

  • V = 1302.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.46 × 0.44 × 0.22 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: spherical (WinGX; Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.])Tmin = 0.873, Tmax = 0.936

  • 2572 measured reflections

  • 2404 independent reflections

  • 1420 reflections with I > 2σ(I)

  • Rint = 0.007

  • 3 standard reflections every 180 reflections intensity decay: 1.2%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.150

  • S = 1.08

  • 2404 reflections

  • 178 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4 0.90 (4) 2.10 (4) 2.753 (3) 129 (3)
C13—H13⋯O3i 0.93 2.53 3.384 (4) 153
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinolin-4-ol is an important model compound in the field of medicinal chemistry, and the synthesis of related compounds has been described previously (Cassis et al., 1985). These compounds have been used as precursors for antitumor agents (Ruchelman et al., 2003). 2,2-dimethyl-5- ((phenylamino)methylene)-1,3-dioxane-4,6-diones are the key intermediates to synthesize the quinolin-4-ol derivatives by thermal cracking (De et al., 1998). The crystal structure of one such precursor, 5-(Aminomethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione, has been descibed previously (de Silva et al., 2006).

The title compound (Fig. 1) is approximately planar with a dihedral angle of 8.23 (4)° between the connecting aminomethylene unit and the planar part of the dioxane ring. Apart from that, the dioxane ring of the title compound exhibits a half-boat conformation, in which the C atom (C39) between the dioxane O-atoms is -0.464 (8) Å out-of-plane of the other five atoms. The molecule has an intramolecular N—H···O hydrogen bond which can stabilize the planar conformation (Table 1).

In the crystal the molecules stack in layers along the [001] direction (Fig. 2).

Related literature top

For the synthesis of related compounds, see: Cassis et al. (1985). For the synthesis of related antitumor precursors, see: Ruchelman et al. (2003). For details of the formation of quinolin-4-ol derivatives by thermal cracking, see: De et al. (1998). For the structure of 5-(aminomethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione, see: da Silva et al. (2006).

Experimental top

4-chlorobenzenamine(10 g,79.4 mmol), 2,2-dimethyl-1,3-dioxane-4,6-dione(13.6 g,94.1 mmol) and triethoxymethane(14 g,94.1 mmol) were suspended in ethanol at 363 K for 30 min. The white precipitate that formed was filtered off and recrystallized from acetone, giving colourless block-like crystals, suitable for X-ray diffraction analysis.

Refinement top

The NH H-atoms was located in a difference electron-density map and free refined: N-H = 0.90 (4) Å. The remainder of the H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model, with Uĩso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound, showing the layer-like aggregation of the molecules in the unit cell.
5-(4-Chloroanilinomethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione top
Crystal data top
C13H12ClNO4F(000) = 584
Mr = 281.69Dx = 1.437 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.439 (4) ÅCell parameters from 24 reflections
b = 13.076 (3) Åθ = 4.7–7.1°
c = 7.723 (3) ŵ = 0.30 mm1
β = 106.40 (2)°T = 293 K
V = 1302.0 (7) Å3Block, colourless
Z = 40.46 × 0.44 × 0.22 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1420 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.007
Graphite monochromatorθmax = 25.5°, θmin = 1.6°
ω/2θ scansh = 916
Absorption correction: for a sphere
(PROGRAM? REFERENCE?)
k = 150
Tmin = 0.873, Tmax = 0.936l = 98
2572 measured reflections3 standard reflections every 180 reflections
2404 independent reflections intensity decay: 1.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: mixed
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0786P)2 + 0.0858P]
where P = (Fo2 + 2Fc2)/3
2404 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C13H12ClNO4V = 1302.0 (7) Å3
Mr = 281.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.439 (4) ŵ = 0.30 mm1
b = 13.076 (3) ÅT = 293 K
c = 7.723 (3) Å0.46 × 0.44 × 0.22 mm
β = 106.40 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1420 reflections with I > 2σ(I)
Absorption correction: for a sphere
(PROGRAM? REFERENCE?)
Rint = 0.007
Tmin = 0.873, Tmax = 0.9363 standard reflections every 180 reflections
2572 measured reflections intensity decay: 1.2%
2404 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.21 e Å3
2404 reflectionsΔρmin = 0.28 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05313 (6)0.85662 (7)0.57925 (14)0.0831 (4)
O10.71758 (14)0.55344 (14)0.3484 (3)0.0558 (5)
O20.76628 (14)0.72663 (14)0.4111 (3)0.0583 (5)
O30.55736 (15)0.50190 (16)0.3128 (3)0.0713 (7)
O40.65479 (16)0.84296 (15)0.4491 (3)0.0697 (7)
N10.46550 (18)0.77642 (19)0.4765 (3)0.0515 (6)
H1N0.505 (3)0.833 (3)0.478 (5)0.082 (11)*
C10.8833 (2)0.6088 (3)0.3472 (5)0.0759 (10)
H1A0.90680.53910.35810.114*
H1B0.94020.65320.40300.114*
H1C0.85660.62620.22190.114*
C20.8321 (3)0.5976 (3)0.6385 (5)0.0845 (11)
H2A0.77400.60620.68650.127*
H2B0.88680.64330.69900.127*
H2C0.85630.52830.65680.127*
C30.7991 (2)0.6212 (2)0.4392 (4)0.0554 (8)
C40.6196 (2)0.5702 (2)0.3595 (4)0.0520 (7)
C50.5988 (2)0.6710 (2)0.4166 (4)0.0474 (7)
C60.6714 (2)0.7528 (2)0.4304 (4)0.0510 (7)
C70.5018 (2)0.6873 (2)0.4428 (4)0.0502 (7)
H70.45910.63060.43590.060*
C80.3672 (2)0.7933 (2)0.5068 (4)0.0458 (6)
C90.3339 (2)0.8928 (2)0.5081 (4)0.0552 (7)
H90.37630.94660.49430.066*
C100.2368 (2)0.9123 (2)0.5301 (4)0.0598 (8)
H100.21330.97920.53000.072*
C110.1759 (2)0.8326 (2)0.5519 (4)0.0539 (7)
C120.2097 (2)0.7335 (2)0.5563 (4)0.0579 (8)
H120.16790.68010.57410.069*
C130.3064 (2)0.7134 (2)0.5341 (4)0.0552 (8)
H130.33030.64650.53760.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0530 (5)0.0953 (7)0.1049 (8)0.0101 (4)0.0289 (5)0.0146 (5)
O10.0536 (11)0.0520 (11)0.0675 (13)0.0026 (9)0.0264 (10)0.0050 (10)
O20.0521 (11)0.0511 (12)0.0757 (14)0.0003 (9)0.0247 (10)0.0013 (10)
O30.0645 (13)0.0511 (12)0.1081 (19)0.0080 (11)0.0402 (13)0.0106 (12)
O40.0659 (13)0.0443 (12)0.1022 (19)0.0001 (10)0.0290 (13)0.0039 (11)
N10.0516 (13)0.0486 (14)0.0561 (16)0.0029 (12)0.0180 (12)0.0002 (11)
C10.0557 (18)0.077 (2)0.101 (3)0.0016 (16)0.0322 (18)0.008 (2)
C20.089 (2)0.093 (3)0.064 (2)0.025 (2)0.0100 (19)0.0038 (19)
C30.0518 (16)0.0520 (17)0.063 (2)0.0043 (14)0.0175 (14)0.0017 (15)
C40.0551 (16)0.0477 (16)0.0598 (19)0.0009 (14)0.0270 (14)0.0041 (14)
C50.0488 (14)0.0464 (15)0.0498 (17)0.0015 (12)0.0185 (13)0.0004 (13)
C60.0554 (17)0.0478 (17)0.0504 (18)0.0038 (13)0.0159 (13)0.0030 (13)
C70.0597 (17)0.0468 (16)0.0466 (17)0.0020 (13)0.0191 (14)0.0037 (13)
C80.0471 (14)0.0503 (16)0.0413 (16)0.0015 (12)0.0147 (12)0.0004 (13)
C90.0622 (17)0.0482 (17)0.0599 (19)0.0001 (14)0.0248 (15)0.0039 (14)
C100.0685 (19)0.0480 (17)0.065 (2)0.0133 (15)0.0227 (16)0.0032 (14)
C110.0458 (15)0.0615 (18)0.0534 (19)0.0071 (14)0.0122 (13)0.0020 (14)
C120.0530 (16)0.0529 (18)0.070 (2)0.0026 (14)0.0221 (15)0.0012 (15)
C130.0579 (17)0.0430 (15)0.067 (2)0.0071 (13)0.0223 (15)0.0016 (14)
Geometric parameters (Å, º) top
Cl1—C111.751 (3)C2—H2B0.9600
O1—C41.361 (3)C2—H2C0.9600
O1—C31.429 (3)C4—C51.442 (4)
O2—C61.369 (3)C5—C71.390 (4)
O2—C31.445 (3)C5—C61.431 (4)
O3—C41.207 (3)C7—H70.9300
O4—C61.216 (3)C8—C91.377 (4)
N1—C71.318 (3)C8—C131.378 (4)
N1—C81.422 (3)C9—C101.387 (4)
N1—H1N0.90 (4)C9—H90.9300
C1—C31.505 (4)C10—C111.364 (4)
C1—H1A0.9600C10—H100.9300
C1—H1B0.9600C11—C121.371 (4)
C1—H1C0.9600C12—C131.383 (4)
C2—C31.509 (5)C12—H120.9300
C2—H2A0.9600C13—H130.9300
C4—O1—C3119.4 (2)C7—C5—C4117.0 (2)
C6—O2—C3118.4 (2)C6—C5—C4121.3 (2)
C7—N1—C8125.7 (3)O4—C6—O2117.6 (3)
C7—N1—H1N118 (2)O4—C6—C5126.1 (3)
C8—N1—H1N116 (2)O2—C6—C5116.2 (2)
C3—C1—H1A109.5N1—C7—C5125.4 (3)
C3—C1—H1B109.5N1—C7—H7117.3
H1A—C1—H1B109.5C5—C7—H7117.3
C3—C1—H1C109.5C9—C8—C13120.5 (2)
H1A—C1—H1C109.5C9—C8—N1117.8 (2)
H1B—C1—H1C109.5C13—C8—N1121.7 (3)
C3—C2—H2A109.5C8—C9—C10119.6 (3)
C3—C2—H2B109.5C8—C9—H9120.2
H2A—C2—H2B109.5C10—C9—H9120.2
C3—C2—H2C109.5C11—C10—C9119.5 (3)
H2A—C2—H2C109.5C11—C10—H10120.2
H2B—C2—H2C109.5C9—C10—H10120.2
O1—C3—O2111.0 (2)C10—C11—C12121.3 (3)
O1—C3—C1106.0 (2)C10—C11—Cl1119.8 (2)
O2—C3—C1105.7 (2)C12—C11—Cl1118.9 (2)
O1—C3—C2109.7 (3)C11—C12—C13119.4 (3)
O2—C3—C2109.7 (2)C11—C12—H12120.3
C1—C3—C2114.6 (3)C13—C12—H12120.3
O3—C4—O1117.6 (2)C8—C13—C12119.6 (3)
O3—C4—C5126.2 (2)C8—C13—H13120.2
O1—C4—C5116.1 (2)C12—C13—H13120.2
C7—C5—C6121.4 (2)
C4—O1—C3—O244.6 (3)C4—C5—C6—O28.8 (4)
C4—O1—C3—C1158.9 (2)C8—N1—C7—C5178.7 (3)
C4—O1—C3—C276.9 (3)C6—C5—C7—N12.0 (5)
C6—O2—C3—O145.9 (3)C4—C5—C7—N1172.6 (3)
C6—O2—C3—C1160.4 (2)C7—N1—C8—C9168.6 (3)
C6—O2—C3—C275.6 (3)C7—N1—C8—C1311.4 (4)
C3—O1—C4—O3165.7 (3)C13—C8—C9—C102.5 (4)
C3—O1—C4—C517.8 (4)N1—C8—C9—C10177.5 (3)
O3—C4—C5—C78.9 (4)C8—C9—C10—C110.6 (4)
O1—C4—C5—C7175.0 (2)C9—C10—C11—C121.4 (5)
O3—C4—C5—C6165.8 (3)C9—C10—C11—Cl1179.9 (2)
O1—C4—C5—C610.3 (4)C10—C11—C12—C131.5 (5)
C3—O2—C6—O4162.9 (3)Cl1—C11—C12—C13179.7 (2)
C3—O2—C6—C520.3 (4)C9—C8—C13—C122.4 (4)
C7—C5—C6—O46.8 (5)N1—C8—C13—C12177.6 (3)
C4—C5—C6—O4167.6 (3)C11—C12—C13—C80.4 (5)
C7—C5—C6—O2176.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.90 (4)2.10 (4)2.753 (3)129 (3)
C13—H13···O3i0.932.533.384 (4)153
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H12ClNO4
Mr281.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.439 (4), 13.076 (3), 7.723 (3)
β (°) 106.40 (2)
V3)1302.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.46 × 0.44 × 0.22
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionFor a sphere
(PROGRAM? REFERENCE?)
Tmin, Tmax0.873, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
2572, 2404, 1420
Rint0.007
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.150, 1.08
No. of reflections2404
No. of parameters178
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.28

Computer programs: DIFRAC (Gabe & White, 1993), DIFRAC (Gabe & White, 1993, NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.90 (4)2.10 (4)2.753 (3)129 (3)
C13—H13···O3i0.932.533.384 (4)153
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

References

First citationCassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun. 15, 125–133.  CrossRef CAS Web of Science Google Scholar
First citationDe, D., Krogstad, F. M., Byers, L. D. & Krogstad, D. J. (1998). J. Med. Chem. 41, 4918–4926.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.  Google Scholar
First citationRuchelman, A. L., Singh, S. K., Ray, A., Wu, X. H., Yang, J. M., Li, T. K., Liu, A., Liu, L. F. & LaVoie, E. J. (2003). Bioorg. Med. Chem. 11, 2061–2073.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, L. E. da, Joussef, A. C., Silva, L. L., Foro, S. & Schmidt, B. (2006). Acta Cryst. E62, o3866–o3867.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148-155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds