organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[4-(4-Meth­oxy­phen­yl)-5-(2-pyrid­yl)-4H-1,2,4-triazol-3-yl]phenol

aDepartment of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China
*Correspondence e-mail: shaosic@fync.edu.cn

(Received 31 May 2009; accepted 11 June 2009; online 27 June 2009)

In the title compound, C20H16N4O2, the benzene rings of the 2-hydroxy­phenyl and 4-methoxy­lphenyl groups form dihedral angles of 64.02 (8) and 77.39 (7)°, respectively, with the mean plane of the triazole ring. The dihedral angle between the triazole ring mean plane and the pyridyl ring is 9.61 (8)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into zigzag chains propagating in [010].

Related literature

For the potential anti­fungal and anti­bacterial properties of 1,2,4-triazoles, see: Collin, et al. (2003[Collin, X., Sauleau, A. & Coulon, J. (2003). Bioorg. Med. Chem. Lett. 13, 2601-2605.]); Papakonstanti­nou-Garoufalias, et al. (2002[Papakonstantinou-Garoufalias, S., Pouli, N., Marakos, P. & Chytyroglou-Ladas, A. (2002). Farmaco, 57, 973-977.]). For the synthesis of the title compound, see: Zhang et al. (2004[Zhang, S.-P., Liu, H.-J., Shao, S.-C., Zhang, Y., Shun, D.-G., Yang, S. & Zhu, H.-L. (2004). Acta Cryst. E60, o1113-o1114.]). For related structures, see: Zhang et al. (2004[Zhang, S.-P., Liu, H.-J., Shao, S.-C., Zhang, Y., Shun, D.-G., Yang, S. & Zhu, H.-L. (2004). Acta Cryst. E60, o1113-o1114.]); Zhang, Liu, Ma et al. (2005[Zhang, S.-P., Liu, Z.-D., Ma, J.-L., Yang, S. & Shao, S.-C. (2005). Acta Cryst. E61, m423-m424.]); Zhang, Liu, Yang et al. (2005[Zhang, S.-P., Liu, Z.-D., Yang, S., Qiu, X.-Y. & Shao, S.-C. (2005). Acta Cryst. E61, o3108-o3109.]); Zhu et al. (2000[Zhu, D., Zhu, X., Xu, L., Shao, S., Raj, S. S. S., Fun, H.-K. & You, X. (2000). J. Chem. Crystallogr. 30, 429-430.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16N4O2

  • Mr = 344.37

  • Monoclinic, P 21 /n

  • a = 10.0842 (9) Å

  • b = 10.4903 (9) Å

  • c = 16.7214 (14) Å

  • β = 94.658 (2)°

  • V = 1763.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.10 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.991, Tmax = 0.993

  • 8997 measured reflections

  • 3278 independent reflections

  • 2734 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.110

  • S = 1.04

  • 3278 reflections

  • 238 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1i 0.938 (18) 1.759 (19) 2.6937 (16) 174.2 (16)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Molecules containing a 1,2,4-triazole moiety have elicited considerable interest among medicinal chemists because they display a wide range of antifungal (Collin et al., 2003) and antibacterial (Papakonstantinou-Garoufalias et al., 2002) activities. We have synthesed and reported the crystal structures of various 1,2,4-triazole ligands and their metal complexes (Zhang et al., 2004; Zhang, Liu, Ma et al., 2005; Zhang, Liu, Yang et al., 2005; Zhu et al., 2000). As an extension of our work on the structural characterization of triazole derivatives, we report herein on the crystal structure of the title compound.

In the title compound the pyridyl ring and the benzene rings lie in a propeller arrangement around the central 1,2,4-triazole ring (Fig. 1), thereby minimizing the steric effects among these rings. The benzene rings of the 2-hydroxyphenyl and 4-methoxylphenyl groups are inclined to the mean plane of the triazole ring by 64.02 (8) and 77.39 (7)°, respectively. In contrast the pyridyl ring is inclined to the triazole ring by 9.61 (8)°.

In the crystal structure intermolecular O–H···N hydrogen bonds, involving hydroxyl O1-H1O and a triazole N-atom, N1, link the molecules into zigzag chains propagating in the [010] direction (Fig. 2 and Table 1).

Related literature top

For the potential antifungal and antibacterial properties of 1,2,4-triazoles, see: Collin, et al. (2003); Papakonstantinou-Garoufalias, et al. (2002). For the synthesis of the title compound, see: Zhang et al. (2004). For related structures, see: Zhang et al. (2004); Zhang, Liu, Ma et al. (2005); Zhang, Liu, Yang et al. (2005); Zhu et al. (2000).

Experimental top

The title compound was synthesized according to a literature method (Zhang et al., 2004). Equivalent amounts of p-methoxylphenylphosphazoanilide and N-(2-pyridoyl)-N'-(2-Hydroxyphenyl)hydrazine were reacted in N,N'-dimethylaniline for 3 h at 463 K, with stirring. Colourless block-shaped crystals were obtained by slow evaporation of an acetone solution. The crystals were collected and dried in a vacuum desiccator using anhydrous CaCl2 (yield 52%).

Refinement top

The hydroxyl H-atom was located in a difference Fourier map and freely refined, O-H = 0.938 (18)Å, with Uiso(H) = 1.2 Ueq(O). The C-bound H atoms were placed in geometrically idealized positions and treated as riding atoms: C—H = 0.93–0.96 Å, with Uiso(H) = 1.2 or 1.5 (methyl) Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A view along the a axis of the crystal apckinh i nthe title compound. The intermolecular N-H···O hydrogen bonds are shown dashed lines (details are given in Table 1).
2-[4-(4-Methoxyphenyl)-5-(2-pyridyl)-4H-1,2,4-triazol-3-yl]phenol top
Crystal data top
C20H16N4O2F(000) = 720
Mr = 344.37Dx = 1.297 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2.3 reflections
a = 10.0842 (9) Åθ = 15–532°
b = 10.4903 (9) ŵ = 0.09 mm1
c = 16.7214 (14) ÅT = 293 K
β = 94.658 (2)°Block, colourless
V = 1763.1 (3) Å30.10 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3278 independent reflections
Radiation source: fine-focus sealed tube2734 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 129
Tmin = 0.991, Tmax = 0.993k = 1212
8997 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.2618P]
where P = (Fo2 + 2Fc2)/3
3278 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C20H16N4O2V = 1763.1 (3) Å3
Mr = 344.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0842 (9) ŵ = 0.09 mm1
b = 10.4903 (9) ÅT = 293 K
c = 16.7214 (14) Å0.10 × 0.10 × 0.08 mm
β = 94.658 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3278 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2734 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 0.993Rint = 0.018
8997 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.27 e Å3
3278 reflectionsΔρmin = 0.13 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25887 (10)0.88801 (10)0.27051 (6)0.0540 (3)
H1O0.2548 (16)0.8171 (17)0.3044 (10)0.065*
O20.57961 (12)0.52684 (10)0.08768 (7)0.0657 (3)
N30.30394 (11)0.98466 (10)0.09726 (6)0.0413 (3)
N10.26339 (12)1.17680 (11)0.13995 (7)0.0495 (3)
N20.20046 (12)1.16372 (11)0.06409 (7)0.0502 (3)
C100.07912 (15)1.07145 (17)0.08501 (9)0.0592 (4)
H100.05051.14950.06640.071*
C10.32455 (13)1.06948 (12)0.15894 (8)0.0430 (3)
C20.22553 (13)1.04857 (13)0.03920 (8)0.0430 (3)
C30.40733 (14)1.04578 (12)0.23412 (8)0.0459 (3)
C40.37258 (14)0.95349 (12)0.28844 (8)0.0448 (3)
C50.45291 (16)0.93499 (15)0.35907 (10)0.0595 (4)
H50.43000.87410.39590.071*
C60.5664 (2)1.00676 (19)0.37443 (12)0.0780 (6)
H60.62020.99340.42150.094*
C70.6009 (2)1.0981 (2)0.32077 (13)0.0868 (6)
H70.67781.14620.33150.104*
C80.52135 (18)1.11758 (16)0.25158 (11)0.0686 (5)
H80.54421.18000.21570.082*
C90.17333 (13)1.00019 (14)0.03971 (8)0.0450 (3)
C110.02873 (17)1.0247 (2)0.15797 (10)0.0722 (5)
H110.03471.07070.18950.087*
C120.07285 (19)0.9101 (2)0.18364 (10)0.0733 (5)
H120.03960.87600.23260.088*
C130.1670 (2)0.84634 (19)0.13575 (11)0.0738 (5)
H130.19720.76860.15390.089*
N40.21866 (15)0.88858 (13)0.06456 (8)0.0636 (4)
C140.37019 (13)0.86290 (12)0.09457 (8)0.0405 (3)
C150.50296 (14)0.86186 (13)0.08103 (9)0.0490 (3)
H150.54720.93800.07300.059*
C160.57011 (15)0.74766 (14)0.07936 (9)0.0537 (4)
H160.65970.74660.06970.064*
C170.50458 (15)0.63460 (13)0.09194 (8)0.0473 (3)
C180.37133 (16)0.63626 (13)0.10599 (9)0.0517 (4)
H180.32690.56040.11450.062*
C190.30437 (14)0.75134 (13)0.10732 (9)0.0487 (3)
H190.21480.75300.11690.058*
C200.5210 (2)0.40928 (15)0.10653 (11)0.0757 (5)
H20A0.58370.34160.10110.114*
H20B0.44330.39470.07060.114*
H20C0.49620.41170.16070.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0524 (6)0.0530 (6)0.0546 (6)0.0087 (5)0.0074 (5)0.0118 (5)
O20.0727 (7)0.0476 (6)0.0768 (8)0.0185 (5)0.0054 (6)0.0077 (5)
N30.0447 (6)0.0357 (6)0.0428 (6)0.0005 (5)0.0015 (5)0.0027 (5)
N10.0594 (7)0.0384 (6)0.0495 (7)0.0038 (5)0.0027 (5)0.0024 (5)
N20.0566 (7)0.0435 (7)0.0494 (7)0.0054 (5)0.0018 (5)0.0059 (5)
C100.0550 (9)0.0737 (11)0.0482 (9)0.0099 (8)0.0007 (7)0.0109 (7)
C10.0468 (7)0.0357 (7)0.0459 (7)0.0020 (6)0.0001 (6)0.0013 (6)
C20.0428 (7)0.0424 (7)0.0434 (7)0.0009 (6)0.0010 (6)0.0079 (6)
C30.0521 (8)0.0375 (7)0.0467 (8)0.0003 (6)0.0047 (6)0.0016 (6)
C40.0483 (7)0.0374 (7)0.0475 (8)0.0017 (6)0.0040 (6)0.0023 (6)
C50.0697 (10)0.0540 (9)0.0518 (9)0.0031 (8)0.0131 (7)0.0063 (7)
C60.0815 (12)0.0758 (12)0.0699 (12)0.0116 (10)0.0351 (10)0.0067 (9)
C70.0815 (13)0.0816 (13)0.0905 (14)0.0333 (11)0.0346 (11)0.0112 (11)
C80.0723 (11)0.0572 (10)0.0732 (11)0.0205 (8)0.0137 (9)0.0104 (8)
C90.0423 (7)0.0515 (8)0.0412 (7)0.0030 (6)0.0028 (6)0.0075 (6)
C110.0587 (10)0.1077 (15)0.0486 (9)0.0108 (10)0.0058 (7)0.0141 (9)
C120.0701 (11)0.1032 (15)0.0449 (9)0.0093 (11)0.0068 (8)0.0029 (9)
C130.0857 (12)0.0764 (12)0.0565 (10)0.0041 (10)0.0109 (9)0.0122 (9)
N40.0733 (9)0.0618 (8)0.0530 (8)0.0076 (7)0.0120 (6)0.0052 (6)
C140.0457 (7)0.0363 (7)0.0383 (7)0.0027 (5)0.0030 (5)0.0008 (5)
C150.0461 (8)0.0426 (7)0.0572 (9)0.0031 (6)0.0017 (6)0.0079 (6)
C160.0435 (8)0.0528 (9)0.0644 (10)0.0047 (6)0.0018 (7)0.0079 (7)
C170.0565 (8)0.0433 (8)0.0413 (7)0.0106 (6)0.0003 (6)0.0035 (6)
C180.0645 (9)0.0361 (7)0.0550 (9)0.0045 (6)0.0089 (7)0.0023 (6)
C190.0475 (8)0.0430 (8)0.0561 (9)0.0011 (6)0.0077 (6)0.0005 (6)
C200.1210 (16)0.0431 (9)0.0652 (11)0.0185 (9)0.0206 (10)0.0094 (8)
Geometric parameters (Å, º) top
O1—C41.3494 (17)C7—H70.9300
O1—H1O0.938 (18)C8—H80.9300
O2—C171.3654 (16)C9—N41.3354 (19)
O2—C201.414 (2)C11—C121.364 (3)
N3—C11.3653 (17)C11—H110.9300
N3—C21.3757 (16)C12—C131.366 (3)
N3—C141.4439 (16)C12—H120.9300
N1—C11.3103 (17)C13—N41.335 (2)
N1—N21.3783 (16)C13—H130.9300
N2—C21.3089 (18)C14—C191.3706 (18)
C10—C111.373 (2)C14—C151.3759 (19)
C10—C91.385 (2)C15—C161.378 (2)
C10—H100.9300C15—H150.9300
C1—C31.4725 (19)C16—C171.382 (2)
C2—C91.4708 (19)C16—H160.9300
C3—C81.386 (2)C17—C181.383 (2)
C3—C41.3918 (19)C18—C191.3843 (19)
C4—C51.390 (2)C18—H180.9300
C5—C61.376 (2)C19—H190.9300
C5—H50.9300C20—H20A0.9600
C6—C71.377 (3)C20—H20B0.9600
C6—H60.9300C20—H20C0.9600
C7—C81.369 (2)
C4—O1—H1O110.4 (10)C10—C9—C2118.95 (14)
C17—O2—C20117.84 (13)C12—C11—C10119.19 (16)
C1—N3—C2105.01 (11)C12—C11—H11120.4
C1—N3—C14123.90 (11)C10—C11—H11120.4
C2—N3—C14130.54 (11)C11—C12—C13118.43 (17)
C1—N1—N2108.06 (11)C11—C12—H12120.8
C2—N2—N1107.35 (11)C13—C12—H12120.8
C11—C10—C9118.76 (17)N4—C13—C12124.21 (18)
C11—C10—H10120.6N4—C13—H13117.9
C9—C10—H10120.6C12—C13—H13117.9
N1—C1—N3109.70 (12)C9—N4—C13116.73 (14)
N1—C1—C3125.10 (12)C19—C14—C15120.59 (12)
N3—C1—C3125.16 (12)C19—C14—N3121.29 (12)
N2—C2—N3109.89 (12)C15—C14—N3118.10 (11)
N2—C2—C9122.65 (12)C14—C15—C16119.78 (13)
N3—C2—C9127.46 (12)C14—C15—H15120.1
C8—C3—C4119.28 (13)C16—C15—H15120.1
C8—C3—C1119.43 (13)C15—C16—C17120.08 (13)
C4—C3—C1121.29 (12)C15—C16—H16120.0
O1—C4—C5122.93 (13)C17—C16—H16120.0
O1—C4—C3117.61 (12)O2—C17—C16115.38 (13)
C5—C4—C3119.43 (13)O2—C17—C18124.72 (13)
C6—C5—C4120.02 (15)C16—C17—C18119.89 (12)
C6—C5—H5120.0C17—C18—C19119.72 (13)
C4—C5—H5120.0C17—C18—H18120.1
C5—C6—C7120.64 (16)C19—C18—H18120.1
C5—C6—H6119.7C14—C19—C18119.94 (13)
C7—C6—H6119.7C14—C19—H19120.0
C8—C7—C6119.54 (16)C18—C19—H19120.0
C8—C7—H7120.2O2—C20—H20A109.5
C6—C7—H7120.2O2—C20—H20B109.5
C7—C8—C3121.08 (16)H20A—C20—H20B109.5
C7—C8—H8119.5O2—C20—H20C109.5
C3—C8—H8119.5H20A—C20—H20C109.5
N4—C9—C10122.68 (14)H20B—C20—H20C109.5
N4—C9—C2118.37 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N1i0.938 (18)1.759 (19)2.6937 (16)174.2 (16)
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H16N4O2
Mr344.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.0842 (9), 10.4903 (9), 16.7214 (14)
β (°) 94.658 (2)
V3)1763.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.10 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.991, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
8997, 3278, 2734
Rint0.018
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.110, 1.04
No. of reflections3278
No. of parameters238
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.13

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N1i0.938 (18)1.759 (19)2.6937 (16)174.2 (16)
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Education Office of Anhui Province, People's Republic of China, for research grant No. KJ2009A047Z.

References

First citationCollin, X., Sauleau, A. & Coulon, J. (2003). Bioorg. Med. Chem. Lett. 13, 2601–2605.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPapakonstantinou-Garoufalias, S., Pouli, N., Marakos, P. & Chytyroglou-Ladas, A. (2002). Farmaco, 57, 973–977.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhang, S.-P., Liu, Z.-D., Ma, J.-L., Yang, S. & Shao, S.-C. (2005). Acta Cryst. E61, m423–m424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-P., Liu, H.-J., Shao, S.-C., Zhang, Y., Shun, D.-G., Yang, S. & Zhu, H.-L. (2004). Acta Cryst. E60, o1113–o1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-P., Liu, Z.-D., Yang, S., Qiu, X.-Y. & Shao, S.-C. (2005). Acta Cryst. E61, o3108–o3109.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, D., Zhu, X., Xu, L., Shao, S., Raj, S. S. S., Fun, H.-K. & You, X. (2000). J. Chem. Crystallogr. 30, 429–430.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds