metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m712-m713

Bis(acetato-κO)bis­­(μ3-quinolin-8-olato-κ4N,O:O:O)tetra­kis(μ2-quinolin-8-olato-κ3N,O:O)tetra­zinc(II) dihydrate

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 May 2009; accepted 27 May 2009; online 6 June 2009)

In the centrosymmetric title compound, [Zn4(C9H6NO)6(C2H3O2)2]·2H2O, the ZnII atom that is bonded to one O atom of the acetate group is chelated by a quinolin-8-olate anion. This Zn atom is also bonded to the oxide O atoms of two other quinolin-8-olate anions, which themselves engage in chelation to the other ZnII atoms. The ZnII atom is five-coordinate in a square-pyramidal coordination geometry. The second ZnII atom is six-coordinate as it is linked to two oxide O atoms of the anions that chelate to the acetate-bound metal atom, and is chelated by two quinolin-8-olate ligands. The uncoordinated water mol­ecule is disordered over two positions in a 4:1 ratio. O—H⋯O hydrogen bonds between the water molecules and the free O atoms of the carboxylate groups consolidate the crystal packing.

Related literature

For previous studies of the zinc derivatives of 8-hydroxy­quinoline, see: Sattarzadeh et al. (2009a[Sattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009a). Acta Cryst. E65, m553.],b[Sattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009b). Acta Cryst. E65, m554.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn4(C9H6NO)6(C2H3O2)2]·2H2O

  • Mr = 1280.49

  • Triclinic, [P \overline 1]

  • a = 11.3313 (3) Å

  • b = 11.8367 (3) Å

  • c = 13.5379 (3) Å

  • α = 111.070 (2)°

  • β = 107.740 (2)°

  • γ = 112.579 (2)°

  • V = 1342.16 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.84 mm−1

  • T = 100 K

  • 0.15 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.657, Tmax = 0.746 (expected range = 0.803–0.912)

  • 12632 measured reflections

  • 6146 independent reflections

  • 4418 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.102

  • S = 1.00

  • 6146 reflections

  • 372 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w1⋯O4 0.84 2.04 2.858 (6) 166
O1w'—H1w3⋯O4 0.84 2.04 2.83 (2) 157

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For previous studies of the zinc derivatives of 8-hydroxyquinoline, see: Sattarzadeh et al. (2009a,b).

Experimental top

Zinc acetate dihydrate (0.22 g, 0.1 mmol) and 2-methyl-8-hydroxyquinoline (0.14 g, 1 mmol) were loaded into a convection tube. The tube was filled with dry methanol and kept at 333 K. Crystals were collected from the side-arm after a week. The crystals are stable up to 573 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation with U(H) set to 1.2 to 1.5U(C).

The water O atom is disordered over two positions in a 4:1 ratio. The two pairs of H atoms were placed in chemically sensible positions on the basis that one of each set forms a hydrogen bond to an acceptor. The O–H distances were fixed at 0.84 Å, and their isotropic temperature factors were tied to those of the O atoms. The anisotropic displacement parameters of the disordered O atoms were restrained to be nearly isotropic.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [Zn2(C2H3O2)(C9H6NO)3]2.2H2O; ellipsoids are drawn at the 70% probability level and H atoms with an arbitrary radius. The disordered lattice water molecule is not shown.
Bis(acetato-κO)bis(µ3-quinolin-8-olato- κ4N,O:O:O)tetrakis(µ2-quinolin-8-olato- κ3N,O:O)tetrazinc(II) dihydrate top
Crystal data top
[Zn4(C9H6NO)6(C2H3O2)2]·2H2OZ = 1
Mr = 1280.49F(000) = 652
Triclinic, P1Dx = 1.584 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.3313 (3) ÅCell parameters from 2730 reflections
b = 11.8367 (3) Åθ = 2.3–26.7°
c = 13.5379 (3) ŵ = 1.84 mm1
α = 111.070 (2)°T = 100 K
β = 107.740 (2)°Prism, yellow
γ = 112.579 (2)°0.15 × 0.10 × 0.05 mm
V = 1342.16 (6) Å3
Data collection top
Bruker SMART APEX
diffractometer
6146 independent reflections
Radiation source: fine-focus sealed tube4418 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.657, Tmax = 0.746k = 1515
12632 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0512P)2]
where P = (Fo2 + 2Fc2)/3
6146 reflections(Δ/σ)max = 0.001
372 parametersΔρmax = 0.63 e Å3
12 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Zn4(C9H6NO)6(C2H3O2)2]·2H2Oγ = 112.579 (2)°
Mr = 1280.49V = 1342.16 (6) Å3
Triclinic, P1Z = 1
a = 11.3313 (3) ÅMo Kα radiation
b = 11.8367 (3) ŵ = 1.84 mm1
c = 13.5379 (3) ÅT = 100 K
α = 111.070 (2)°0.15 × 0.10 × 0.05 mm
β = 107.740 (2)°
Data collection top
Bruker SMART APEX
diffractometer
6146 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4418 reflections with I > 2σ(I)
Tmin = 0.657, Tmax = 0.746Rint = 0.037
12632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03912 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.00Δρmax = 0.63 e Å3
6146 reflectionsΔρmin = 0.44 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.73984 (4)0.30627 (4)0.26111 (3)0.01608 (10)
Zn20.97306 (4)0.63077 (4)0.52018 (3)0.01623 (10)
O10.8598 (2)0.5204 (2)0.32955 (19)0.0198 (5)
O20.8541 (2)0.4092 (2)0.46797 (19)0.0163 (4)
O30.8952 (2)0.2597 (2)0.28947 (19)0.0186 (5)
O40.5060 (3)0.3123 (3)0.1537 (2)0.0303 (6)
O50.6110 (2)0.2083 (2)0.0791 (2)0.0209 (5)
O1W0.5348 (9)0.5762 (6)0.1876 (6)0.090 (3)0.80 (2)
H1W10.53920.50800.19010.135*0.80 (2)
H1W20.45130.56210.17370.135*0.80 (2)
O1W'0.463 (4)0.542 (3)0.223 (2)0.092 (12)0.20 (2)
H1W30.45450.46380.18260.139*0.20 (2)
H1W40.49810.59770.20030.139*0.20 (2)
N11.0559 (3)0.8045 (3)0.4946 (2)0.0182 (6)
N20.5909 (3)0.1627 (3)0.2853 (2)0.0178 (6)
N31.1687 (3)0.3302 (3)0.4247 (2)0.0174 (6)
C11.1537 (3)0.9450 (4)0.5797 (3)0.0232 (7)
H1A1.19900.97560.66410.028*
C21.1928 (4)1.0508 (4)0.5495 (3)0.0276 (8)
H2A1.26381.15090.61240.033*
C31.1272 (4)1.0069 (4)0.4285 (4)0.0284 (8)
H31.15201.07720.40690.034*
C41.0221 (4)0.8573 (4)0.3345 (3)0.0241 (7)
C50.9514 (4)0.8022 (4)0.2072 (3)0.0316 (8)
H50.96980.86700.17950.038*
C60.8564 (4)0.6556 (4)0.1240 (3)0.0329 (9)
H60.81100.61920.03830.040*
C70.8239 (4)0.5569 (4)0.1620 (3)0.0267 (8)
H70.75780.45540.10160.032*
C80.8863 (3)0.6050 (3)0.2849 (3)0.0202 (7)
C90.9897 (3)0.7585 (3)0.3730 (3)0.0177 (6)
C100.4661 (3)0.0363 (4)0.1931 (3)0.0229 (7)
H100.44670.00280.11120.028*
C110.3616 (4)0.0494 (4)0.2128 (3)0.0258 (8)
H110.27370.14020.14490.031*
C120.3862 (3)0.0027 (4)0.3285 (3)0.0234 (7)
H120.31390.05920.34160.028*
C130.5199 (3)0.1307 (3)0.4303 (3)0.0198 (7)
C140.5559 (4)0.1872 (4)0.5534 (3)0.0237 (7)
H140.48780.13700.57300.028*
C150.6902 (4)0.3157 (4)0.6457 (3)0.0233 (7)
H150.71420.35360.72900.028*
C160.7934 (3)0.3927 (3)0.6193 (3)0.0196 (7)
H160.88640.48000.68520.024*
C170.7617 (3)0.3435 (3)0.5006 (3)0.0164 (6)
C180.6216 (3)0.2095 (3)0.4029 (3)0.0168 (6)
C191.3027 (3)0.3629 (3)0.4935 (3)0.0228 (7)
H191.34240.40490.57970.027*
C201.3880 (4)0.3375 (3)0.4430 (3)0.0234 (7)
H201.48180.35800.49430.028*
C211.3372 (4)0.2840 (4)0.3216 (3)0.0265 (8)
H211.39650.27000.28810.032*
C221.1942 (4)0.2489 (4)0.2443 (3)0.0250 (7)
C231.1331 (4)0.1976 (5)0.1187 (3)0.0376 (10)
H231.18770.18430.07950.045*
C240.9941 (4)0.1666 (5)0.0524 (3)0.0389 (10)
H240.95310.13120.03300.047*
C250.9106 (4)0.1857 (4)0.1075 (3)0.0282 (8)
H250.81430.16250.05880.034*
C260.9662 (3)0.2371 (3)0.2302 (3)0.0197 (7)
C271.1122 (3)0.2711 (3)0.3013 (3)0.0181 (6)
C280.5110 (4)0.2375 (4)0.0656 (3)0.0255 (8)
C290.3962 (4)0.1727 (5)0.0659 (4)0.0422 (10)
H29A0.32840.20480.06570.063*
H29B0.33930.06620.11020.063*
H29C0.44660.20500.10700.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01469 (19)0.01421 (19)0.0145 (2)0.00664 (16)0.00615 (15)0.00615 (16)
Zn20.01675 (19)0.01366 (19)0.0148 (2)0.00730 (16)0.00658 (16)0.00720 (16)
O10.0218 (11)0.0119 (11)0.0143 (11)0.0041 (9)0.0047 (9)0.0067 (9)
O20.0158 (11)0.0131 (11)0.0192 (12)0.0064 (9)0.0102 (9)0.0090 (9)
O30.0176 (11)0.0180 (11)0.0161 (12)0.0093 (10)0.0085 (9)0.0065 (10)
O40.0328 (14)0.0316 (14)0.0345 (15)0.0214 (12)0.0194 (12)0.0191 (12)
O50.0185 (11)0.0206 (12)0.0161 (12)0.0101 (10)0.0059 (9)0.0071 (10)
O1W0.094 (5)0.061 (3)0.112 (5)0.056 (3)0.039 (3)0.041 (3)
O1W'0.099 (15)0.090 (13)0.093 (14)0.065 (11)0.030 (7)0.056 (9)
N10.0178 (13)0.0154 (13)0.0205 (14)0.0095 (12)0.0101 (12)0.0084 (12)
N20.0173 (13)0.0158 (13)0.0177 (14)0.0084 (11)0.0081 (11)0.0085 (12)
N30.0183 (13)0.0129 (13)0.0205 (14)0.0084 (11)0.0087 (12)0.0099 (12)
C10.0205 (17)0.0201 (17)0.0247 (18)0.0102 (15)0.0117 (15)0.0096 (15)
C20.0243 (18)0.0160 (17)0.039 (2)0.0092 (15)0.0188 (17)0.0115 (16)
C30.0301 (19)0.0231 (18)0.046 (2)0.0149 (16)0.0276 (18)0.0240 (18)
C40.0244 (17)0.0251 (18)0.034 (2)0.0146 (15)0.0196 (16)0.0211 (17)
C50.039 (2)0.037 (2)0.034 (2)0.0209 (19)0.0246 (18)0.0283 (19)
C60.039 (2)0.037 (2)0.023 (2)0.0191 (19)0.0151 (17)0.0194 (18)
C70.0272 (18)0.0253 (18)0.0187 (18)0.0090 (16)0.0091 (15)0.0124 (15)
C80.0214 (16)0.0189 (16)0.0221 (18)0.0107 (14)0.0125 (14)0.0123 (15)
C90.0174 (15)0.0175 (16)0.0203 (17)0.0107 (13)0.0107 (14)0.0100 (14)
C100.0193 (16)0.0185 (17)0.0210 (18)0.0088 (14)0.0048 (14)0.0084 (14)
C110.0168 (16)0.0160 (17)0.029 (2)0.0034 (14)0.0040 (15)0.0113 (15)
C120.0173 (16)0.0220 (17)0.035 (2)0.0096 (14)0.0136 (15)0.0198 (16)
C130.0175 (16)0.0202 (17)0.0267 (19)0.0114 (14)0.0122 (14)0.0155 (15)
C140.0224 (17)0.0262 (18)0.033 (2)0.0139 (15)0.0180 (16)0.0213 (17)
C150.0298 (18)0.0265 (18)0.0239 (18)0.0179 (16)0.0168 (16)0.0178 (16)
C160.0210 (16)0.0167 (16)0.0209 (17)0.0102 (14)0.0105 (14)0.0103 (14)
C170.0195 (16)0.0153 (15)0.0210 (17)0.0122 (14)0.0114 (14)0.0119 (14)
C180.0175 (15)0.0154 (15)0.0187 (17)0.0110 (13)0.0092 (13)0.0084 (13)
C190.0178 (16)0.0144 (16)0.0244 (18)0.0056 (14)0.0040 (14)0.0098 (14)
C200.0187 (16)0.0166 (16)0.034 (2)0.0112 (14)0.0107 (15)0.0143 (15)
C210.0226 (17)0.0216 (17)0.036 (2)0.0138 (15)0.0168 (16)0.0129 (16)
C220.0260 (18)0.0200 (17)0.029 (2)0.0143 (15)0.0157 (16)0.0109 (15)
C230.035 (2)0.053 (3)0.029 (2)0.029 (2)0.0220 (19)0.017 (2)
C240.033 (2)0.058 (3)0.019 (2)0.026 (2)0.0135 (17)0.0129 (19)
C250.0234 (18)0.036 (2)0.0217 (19)0.0177 (17)0.0110 (15)0.0113 (17)
C260.0194 (16)0.0146 (16)0.0211 (18)0.0089 (14)0.0096 (14)0.0076 (14)
C270.0197 (16)0.0125 (15)0.0198 (17)0.0086 (13)0.0092 (14)0.0079 (13)
C280.0226 (17)0.0231 (18)0.0262 (19)0.0104 (15)0.0105 (15)0.0137 (16)
C290.031 (2)0.050 (3)0.035 (2)0.023 (2)0.0066 (18)0.022 (2)
Geometric parameters (Å, º) top
Zn1—O52.000 (2)C5—C61.364 (5)
Zn1—O12.007 (2)C5—H50.9500
Zn1—O32.009 (2)C6—C71.407 (5)
Zn1—N22.093 (3)C6—H60.9500
Zn1—O22.265 (2)C7—C81.374 (4)
Zn2—O12.070 (2)C7—H70.9500
Zn2—O3i2.078 (2)C8—C91.433 (4)
Zn2—N3i2.098 (3)C10—C111.402 (5)
Zn2—N12.111 (3)C10—H100.9500
Zn2—O22.137 (2)C11—C121.353 (5)
Zn2—O2i2.158 (2)C11—H110.9500
O1—C81.331 (4)C12—C131.419 (4)
O2—C171.341 (3)C12—H120.9500
O2—Zn2i2.158 (2)C13—C141.403 (5)
O3—C261.329 (4)C13—C181.421 (4)
O3—Zn2i2.078 (2)C14—C151.374 (5)
O4—C281.236 (4)C14—H140.9500
O5—C281.288 (4)C15—C161.412 (4)
O1W—H1W10.8399C15—H150.9500
O1W—H1W20.8400C16—C171.367 (4)
O1W—H1W31.2538C16—H160.9500
O1W—H1W40.6012C17—C181.437 (4)
O1W'—H1W11.2197C19—C201.404 (5)
O1W'—H1W20.7744C19—H190.9500
O1W'—H1W30.8400C20—C211.352 (5)
O1W'—H1W40.8400C20—H200.9500
N1—C11.322 (4)C21—C221.425 (5)
N1—C91.364 (4)C21—H210.9500
N2—C101.324 (4)C22—C231.399 (5)
N2—C181.357 (4)C22—C271.416 (4)
N3—C191.323 (4)C23—C241.371 (5)
N3—C271.362 (4)C23—H230.9500
N3—Zn2i2.098 (3)C24—C251.406 (5)
C1—C21.408 (5)C24—H240.9500
C1—H1A0.9500C25—C261.367 (5)
C2—C31.363 (5)C25—H250.9500
C2—H2A0.9500C26—C271.438 (4)
C3—C41.418 (5)C28—C291.514 (5)
C3—H30.9500C29—H29A0.9800
C4—C51.409 (5)C29—H29B0.9800
C4—C91.414 (4)C29—H29C0.9800
O5—Zn1—O1106.13 (9)O1—C8—C7125.4 (3)
O5—Zn1—O3107.95 (9)O1—C8—C9116.9 (3)
O1—Zn1—O3102.85 (9)C7—C8—C9117.7 (3)
O5—Zn1—N297.79 (9)N1—C9—C4121.8 (3)
O1—Zn1—N2138.81 (10)N1—C9—C8117.3 (3)
O3—Zn1—N2100.90 (9)C4—C9—C8121.0 (3)
O5—Zn1—O2171.45 (8)N2—C10—C11121.9 (3)
O1—Zn1—O276.48 (8)N2—C10—H10119.1
O3—Zn1—O279.00 (8)C11—C10—H10119.1
N2—Zn1—O275.65 (9)C12—C11—C10120.0 (3)
O1—Zn2—O3i174.06 (8)C12—C11—H11120.0
O1—Zn2—N3i106.56 (9)C10—C11—H11120.0
O3i—Zn2—N3i79.38 (9)C11—C12—C13120.0 (3)
O1—Zn2—N179.00 (9)C11—C12—H12120.0
O3i—Zn2—N1100.41 (9)C13—C12—H12120.0
N3i—Zn2—N197.67 (10)C14—C13—C12124.1 (3)
O1—Zn2—O278.13 (8)C14—C13—C18119.3 (3)
O3i—Zn2—O2101.96 (8)C12—C13—C18116.6 (3)
N3i—Zn2—O292.21 (9)C15—C14—C13119.5 (3)
N1—Zn2—O2156.85 (9)C15—C14—H14120.2
O1—Zn2—O2i94.12 (8)C13—C14—H14120.2
O3i—Zn2—O2i80.07 (8)C14—C15—C16121.4 (3)
N3i—Zn2—O2i156.41 (9)C14—C15—H15119.3
N1—Zn2—O2i97.33 (8)C16—C15—H15119.3
O2—Zn2—O2i80.84 (8)C17—C16—C15121.1 (3)
C8—O1—Zn1137.0 (2)C17—C16—H16119.5
C8—O1—Zn2114.79 (19)C15—C16—H16119.5
Zn1—O1—Zn2108.21 (9)O2—C17—C16124.7 (3)
C17—O2—Zn2130.34 (18)O2—C17—C18117.0 (3)
C17—O2—Zn2i116.92 (17)C16—C17—C18118.3 (3)
Zn2—O2—Zn2i99.16 (8)N2—C18—C13122.0 (3)
C17—O2—Zn1111.59 (18)N2—C18—C17117.6 (3)
Zn2—O2—Zn197.19 (8)C13—C18—C17120.3 (3)
Zn2i—O2—Zn194.70 (8)N3—C19—C20122.0 (3)
C26—O3—Zn1132.98 (19)N3—C19—H19119.0
C26—O3—Zn2i113.58 (18)C20—C19—H19119.0
Zn1—O3—Zn2i105.54 (9)C21—C20—C19120.3 (3)
C28—O5—Zn1105.6 (2)C21—C20—H20119.9
H1W1—O1W—H1W2110.6C19—C20—H20119.9
H1W3—O1W'—H1W4108.9C20—C21—C22119.6 (3)
C1—N1—C9119.7 (3)C20—C21—H21120.2
C1—N1—Zn2128.3 (2)C22—C21—H21120.2
C9—N1—Zn2111.9 (2)C23—C22—C27119.2 (3)
C10—N2—C18119.5 (3)C23—C22—C21124.3 (3)
C10—N2—Zn1123.8 (2)C27—C22—C21116.6 (3)
C18—N2—Zn1116.6 (2)C24—C23—C22119.6 (3)
C19—N3—C27119.0 (3)C24—C23—H23120.2
C19—N3—Zn2i128.9 (2)C22—C23—H23120.2
C27—N3—Zn2i111.93 (19)C23—C24—C25121.7 (3)
N1—C1—C2122.3 (3)C23—C24—H24119.1
N1—C1—H1A118.8C25—C24—H24119.1
C2—C1—H1A118.8C26—C25—C24120.8 (3)
C3—C2—C1118.8 (3)C26—C25—H25119.6
C3—C2—H2A120.6C24—C25—H25119.6
C1—C2—H2A120.6O3—C26—C25124.5 (3)
C2—C3—C4120.6 (3)O3—C26—C27117.3 (3)
C2—C3—H3119.7C25—C26—C27118.2 (3)
C4—C3—H3119.7N3—C27—C22122.4 (3)
C5—C4—C9118.9 (3)N3—C27—C26117.1 (3)
C5—C4—C3124.3 (3)C22—C27—C26120.5 (3)
C9—C4—C3116.8 (3)O4—C28—O5122.9 (3)
C6—C5—C4119.7 (3)O4—C28—C29121.1 (3)
C6—C5—H5120.2O5—C28—C29116.0 (3)
C4—C5—H5120.2C28—C29—H29A109.5
C5—C6—C7121.6 (3)C28—C29—H29B109.5
C5—C6—H6119.2H29A—C29—H29B109.5
C7—C6—H6119.2C28—C29—H29C109.5
C8—C7—C6121.1 (3)H29A—C29—H29C109.5
C8—C7—H7119.4H29B—C29—H29C109.5
C6—C7—H7119.4
O5—Zn1—O1—C810.2 (3)Zn1—O1—C8—C72.4 (5)
O3—Zn1—O1—C8103.1 (3)Zn2—O1—C8—C7179.7 (3)
N2—Zn1—O1—C8133.2 (3)Zn1—O1—C8—C9177.0 (2)
O2—Zn1—O1—C8178.2 (3)Zn2—O1—C8—C90.9 (3)
O5—Zn1—O1—Zn2171.85 (9)C6—C7—C8—O1178.4 (3)
O3—Zn1—O1—Zn274.88 (11)C6—C7—C8—C92.2 (5)
N2—Zn1—O1—Zn248.84 (17)C1—N1—C9—C40.2 (4)
O2—Zn1—O1—Zn20.27 (9)Zn2—N1—C9—C4176.6 (2)
N3i—Zn2—O1—C892.5 (2)C1—N1—C9—C8179.1 (3)
N1—Zn2—O1—C82.3 (2)Zn2—N1—C9—C84.1 (3)
O2—Zn2—O1—C8178.7 (2)C5—C4—C9—N1179.0 (3)
O2i—Zn2—O1—C899.0 (2)C3—C4—C9—N10.0 (4)
N3i—Zn2—O1—Zn189.06 (11)C5—C4—C9—C80.3 (5)
N1—Zn2—O1—Zn1176.12 (12)C3—C4—C9—C8179.3 (3)
O2—Zn2—O1—Zn10.29 (9)O1—C8—C9—N12.3 (4)
O2i—Zn2—O1—Zn179.45 (10)C7—C8—C9—N1177.2 (3)
O1—Zn2—O2—C17126.2 (2)O1—C8—C9—C4178.4 (3)
O3i—Zn2—O2—C1759.9 (2)C7—C8—C9—C42.1 (5)
N3i—Zn2—O2—C1719.7 (2)C18—N2—C10—C111.9 (5)
N1—Zn2—O2—C17135.2 (3)Zn1—N2—C10—C11173.0 (2)
O2i—Zn2—O2—C17137.6 (3)N2—C10—C11—C120.9 (5)
O1—Zn2—O2—Zn2i96.21 (9)C10—C11—C12—C132.1 (5)
O3i—Zn2—O2—Zn2i77.72 (9)C11—C12—C13—C14179.3 (3)
N3i—Zn2—O2—Zn2i157.33 (10)C11—C12—C13—C180.7 (4)
N1—Zn2—O2—Zn2i87.2 (2)C12—C13—C14—C15178.4 (3)
O2i—Zn2—O2—Zn2i0.0C18—C13—C14—C151.7 (5)
O1—Zn2—O2—Zn10.24 (8)C13—C14—C15—C160.0 (5)
O3i—Zn2—O2—Zn1173.69 (7)C14—C15—C16—C171.5 (5)
N3i—Zn2—O2—Zn1106.71 (9)Zn2—O2—C17—C1650.7 (4)
N1—Zn2—O2—Zn18.7 (2)Zn2i—O2—C17—C1681.0 (3)
O2i—Zn2—O2—Zn195.97 (9)Zn1—O2—C17—C16171.5 (2)
O1—Zn1—O2—C17138.47 (19)Zn2—O2—C17—C18131.3 (2)
O3—Zn1—O2—C17115.28 (19)Zn2i—O2—C17—C1896.9 (3)
N2—Zn1—O2—C1710.89 (18)Zn1—O2—C17—C1810.5 (3)
O1—Zn1—O2—Zn20.25 (8)C15—C16—C17—O2179.2 (3)
O3—Zn1—O2—Zn2105.99 (9)C15—C16—C17—C181.2 (4)
N2—Zn1—O2—Zn2149.61 (10)C10—N2—C18—C133.4 (4)
O1—Zn1—O2—Zn2i100.12 (9)Zn1—N2—C18—C13171.9 (2)
O3—Zn1—O2—Zn2i6.13 (8)C10—N2—C18—C17176.8 (3)
N2—Zn1—O2—Zn2i110.52 (9)Zn1—N2—C18—C177.9 (3)
O5—Zn1—O3—C2632.8 (3)C14—C13—C18—N2177.9 (3)
O1—Zn1—O3—C2679.1 (3)C12—C13—C18—N22.1 (4)
N2—Zn1—O3—C26134.8 (3)C14—C13—C18—C171.9 (4)
O2—Zn1—O3—C26152.3 (3)C12—C13—C18—C17178.2 (3)
O5—Zn1—O3—Zn2i178.57 (9)O2—C17—C18—N22.5 (4)
O1—Zn1—O3—Zn2i66.64 (11)C16—C17—C18—N2179.4 (3)
N2—Zn1—O3—Zn2i79.45 (11)O2—C17—C18—C13177.7 (3)
O2—Zn1—O3—Zn2i6.58 (8)C16—C17—C18—C130.4 (4)
O1—Zn1—O5—C2872.3 (2)C27—N3—C19—C200.5 (5)
O3—Zn1—O5—C28178.01 (19)Zn2i—N3—C19—C20175.8 (2)
N2—Zn1—O5—C2873.8 (2)N3—C19—C20—C213.0 (5)
O1—Zn2—N1—C1179.9 (3)C19—C20—C21—C222.1 (5)
O3i—Zn2—N1—C16.2 (3)C20—C21—C22—C23177.8 (3)
N3i—Zn2—N1—C174.4 (3)C20—C21—C22—C270.9 (5)
O2—Zn2—N1—C1171.2 (2)C27—C22—C23—C241.5 (6)
O2i—Zn2—N1—C187.4 (3)C21—C22—C23—C24179.8 (4)
O1—Zn2—N1—C93.41 (19)C22—C23—C24—C250.3 (7)
O3i—Zn2—N1—C9177.39 (19)C23—C24—C25—C260.4 (6)
N3i—Zn2—N1—C9102.1 (2)Zn1—O3—C26—C2527.0 (5)
O2—Zn2—N1—C912.4 (3)Zn2i—O3—C26—C25170.7 (3)
O2i—Zn2—N1—C996.2 (2)Zn1—O3—C26—C27152.3 (2)
O5—Zn1—N2—C1010.5 (3)Zn2i—O3—C26—C278.6 (3)
O1—Zn1—N2—C10136.1 (2)C24—C25—C26—O3179.3 (3)
O3—Zn1—N2—C1099.5 (2)C24—C25—C26—C270.0 (5)
O2—Zn1—N2—C10175.1 (3)C19—N3—C27—C222.7 (4)
O5—Zn1—N2—C18164.5 (2)Zn2i—N3—C27—C22173.4 (2)
O1—Zn1—N2—C1838.9 (3)C19—N3—C27—C26179.9 (3)
O3—Zn1—N2—C1885.4 (2)Zn2i—N3—C27—C264.0 (3)
O2—Zn1—N2—C189.9 (2)C23—C22—C27—N3175.4 (3)
C9—N1—C1—C20.0 (5)C21—C22—C27—N33.4 (5)
Zn2—N1—C1—C2176.2 (2)C23—C22—C27—C261.9 (5)
N1—C1—C2—C30.3 (5)C21—C22—C27—C26179.3 (3)
C1—C2—C3—C40.5 (5)O3—C26—C27—N33.1 (4)
C2—C3—C4—C5178.6 (3)C25—C26—C27—N3176.3 (3)
C2—C3—C4—C90.3 (5)O3—C26—C27—C22179.5 (3)
C9—C4—C5—C61.5 (5)C25—C26—C27—C221.2 (5)
C3—C4—C5—C6177.4 (3)Zn1—O5—C28—O40.2 (4)
C4—C5—C6—C71.5 (6)Zn1—O5—C28—C29179.0 (2)
C5—C6—C7—C80.4 (6)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O40.842.042.858 (6)166
O1w'—H1w3···O40.842.042.83 (2)157

Experimental details

Crystal data
Chemical formula[Zn4(C9H6NO)6(C2H3O2)2]·2H2O
Mr1280.49
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)11.3313 (3), 11.8367 (3), 13.5379 (3)
α, β, γ (°)111.070 (2), 107.740 (2), 112.579 (2)
V3)1342.16 (6)
Z1
Radiation typeMo Kα
µ (mm1)1.84
Crystal size (mm)0.15 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.657, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12632, 6146, 4418
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.00
No. of reflections6146
No. of parameters372
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.44

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O40.842.042.858 (6)166
O1w'—H1w3···O40.842.042.83 (2)157
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009a). Acta Cryst. E65, m553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009b). Acta Cryst. E65, m554.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m712-m713
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds