metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­methyl­phenyl­ammonium di­bromidotri­phenyl­stannate(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 May 2009; accepted 25 May 2009; online 6 June 2009)

The five-coordinate Sn atom in the title salt, [(CH3)3(C6H6)N][SnBr2(C6H5)3], exists in a distorted trans-C3SnBr2 trigonal-bipyramidal coordination geometry. In the crystal structure no obvious hydrogen bonding is observed.

Related literature

The are few examples of dihalogenotriaryl­stannate salts having a counter-ion that does not participate in hydrogen bonding, which appears to assist in stabilizing the salt, see: Beckmann et al. (2002[Beckmann, J., Dakternieks, D., Duthie, A. & Tiekink, E. R. T. (2002). J. Organomet. Chem. 648, 204-208.]); Harrison et al. (1978[Harrison, P. G., Molloy, K. & Phillips, R. C. (1978). J. Organomet. Chem. 160, 421-434.]); Kuhn et al. (2001[Kuhn, N., Steinmann, M. & Walker, M. (2001). Z. Naturforsch. Teil B, 56, 129-136.]); Ng (1995[Ng, S. W. (1995). Acta Cryst. C51, 1124-1125.]); Wharf & Simard (1991[Wharf, I. & Simard, M. G. (1991). Acta Cryst. C47, 1605-1609.]).

[Scheme 1]

Experimental

Crystal data
  • (C9H14N)[SnBr2(C6H5)3]

  • Mr = 646.02

  • Monoclinic, P 21

  • a = 9.0010 (1) Å

  • b = 16.7778 (2) Å

  • c = 9.2448 (1) Å

  • β = 111.003 (1)°

  • V = 1303.37 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.06 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.567, Tmax = 0.746 (expected range = 0.337–0.444)

  • 12525 measured reflections

  • 5966 independent reflections

  • 5889 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.042

  • S = 1.06

  • 5966 reflections

  • 280 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2872 Friedel pairs

  • Flack parameter: 0.011 (3)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

The are few examples of dihalogenotriarylstannate salts having a counter-ion that does not participate in hydrogen bonding, which appears to assist in stabilizing the salt, see: Beckmann et al. (2002); Harrison et al. (1978); Kuhn et al. (2001); Ng (1995); Wharf & Simard (1991).

Experimental top

Bis(4-dimethylaminopyridinium) dibromidotriphenylstannate (1.0 g, 1.6 mmol) and trimethylphenylammonium bromide (0.34 g, 1.6 mmol) were heated in ethanol for 1 hour. Colorless crystals separated after a few days.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.95–0.98 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: pubCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [PhMe3N][SnBr2Ph3] at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Trimethylphenylammonium dibromidotriphenylstannate(IV) top
Crystal data top
(C9H14N)[SnBr2(C6H5)3]F(000) = 636
Mr = 646.02Dx = 1.646 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9930 reflections
a = 9.0010 (1) Åθ = 2.4–28.3°
b = 16.7778 (2) ŵ = 4.06 mm1
c = 9.2448 (1) ÅT = 100 K
β = 111.003 (1)°Block, colorless
V = 1303.37 (3) Å30.30 × 0.25 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
5966 independent reflections
Radiation source: fine-focus sealed tube5889 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.567, Tmax = 0.746k = 2121
12525 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.211P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5966 reflectionsΔρmax = 0.38 e Å3
280 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 2872 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (3)
Crystal data top
(C9H14N)[SnBr2(C6H5)3]V = 1303.37 (3) Å3
Mr = 646.02Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.0010 (1) ŵ = 4.06 mm1
b = 16.7778 (2) ÅT = 100 K
c = 9.2448 (1) Å0.30 × 0.25 × 0.20 mm
β = 111.003 (1)°
Data collection top
Bruker SMART APEX
diffractometer
5966 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5889 reflections with I > 2σ(I)
Tmin = 0.567, Tmax = 0.746Rint = 0.012
12525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.042Δρmax = 0.38 e Å3
S = 1.06Δρmin = 0.22 e Å3
5966 reflectionsAbsolute structure: Flack (1983), 2872 Friedel pairs
280 parametersAbsolute structure parameter: 0.011 (3)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.800735 (16)0.499537 (6)0.968485 (15)0.01425 (4)
Br10.50474 (2)0.441885 (12)0.78666 (2)0.01891 (5)
Br21.10719 (2)0.544697 (12)1.14791 (2)0.01839 (5)
N10.4280 (2)0.36054 (11)1.3067 (2)0.0184 (3)
C10.8550 (2)0.52187 (12)0.7653 (2)0.0173 (4)
C20.7539 (3)0.56900 (13)0.6462 (3)0.0213 (4)
H20.65960.59030.65490.026*
C30.7901 (3)0.58504 (15)0.5146 (3)0.0254 (5)
H30.72090.61750.43460.030*
C40.9258 (3)0.55404 (16)0.4999 (3)0.0273 (5)
H40.94950.56490.40970.033*
C51.0273 (3)0.50715 (18)0.6166 (3)0.0292 (5)
H51.12050.48550.60600.035*
C60.9933 (3)0.49146 (15)0.7499 (3)0.0250 (5)
H61.06450.46000.83040.030*
C70.8524 (2)0.38465 (13)1.0804 (2)0.0157 (4)
C80.8729 (3)0.37779 (14)1.2360 (3)0.0220 (4)
H80.86380.42351.29310.026*
C90.9068 (3)0.30373 (16)1.3081 (3)0.0301 (5)
H90.91670.29851.41350.036*
C100.9261 (3)0.23781 (15)1.2269 (3)0.0315 (6)
H100.94940.18731.27640.038*
C110.9113 (3)0.24555 (14)1.0730 (3)0.0299 (5)
H110.92640.20051.01760.036*
C120.8743 (3)0.31912 (14)0.9998 (3)0.0249 (5)
H120.86410.32430.89440.030*
C130.6992 (2)0.59342 (13)1.0628 (2)0.0159 (4)
C140.7844 (3)0.66346 (13)1.1201 (2)0.0202 (4)
H140.89050.66861.12270.024*
C150.7154 (3)0.72562 (13)1.1732 (3)0.0229 (4)
H150.77470.77281.21200.027*
C160.5604 (3)0.71924 (14)1.1700 (3)0.0253 (5)
H160.51260.76221.20410.030*
C170.4761 (3)0.64944 (15)1.1163 (3)0.0250 (5)
H170.37100.64411.11610.030*
C180.5447 (2)0.58699 (13)1.0626 (2)0.0186 (4)
H180.48550.53961.02560.022*
C190.5292 (2)0.28835 (13)1.3666 (2)0.0175 (4)
C200.6100 (3)0.28234 (14)1.5255 (3)0.0238 (5)
H200.60510.32441.59240.029*
C210.6975 (3)0.21445 (15)1.5849 (3)0.0264 (5)
H210.75360.21001.69330.032*
C220.7040 (3)0.15287 (14)1.4874 (3)0.0242 (4)
H220.76280.10591.52900.029*
C230.6246 (3)0.15991 (13)1.3294 (3)0.0227 (4)
H230.63020.11791.26260.027*
C240.5367 (3)0.22799 (13)1.2673 (3)0.0206 (4)
H240.48260.23301.15860.025*
C250.2875 (3)0.35662 (15)1.3594 (3)0.0265 (5)
H25A0.32570.35341.47270.040*
H25B0.22340.30941.31470.040*
H25C0.22210.40461.32490.040*
C260.3650 (3)0.36554 (15)1.1328 (3)0.0317 (6)
H26A0.45420.36861.09580.048*
H26B0.29850.41321.09970.048*
H26C0.30120.31801.08940.048*
C270.5184 (3)0.43595 (14)1.3676 (3)0.0246 (4)
H27A0.60960.43941.33360.037*
H27B0.55630.43581.48100.037*
H27C0.44840.48191.32780.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01733 (6)0.01231 (6)0.01367 (6)0.00070 (5)0.00626 (4)0.00004 (5)
Br10.01852 (9)0.01789 (10)0.01856 (10)0.00257 (7)0.00452 (8)0.00274 (8)
Br20.01643 (9)0.01616 (10)0.01963 (10)0.00018 (7)0.00289 (7)0.00003 (8)
N10.0194 (8)0.0184 (9)0.0166 (8)0.0022 (7)0.0056 (7)0.0002 (7)
C10.0205 (9)0.0167 (10)0.0149 (9)0.0030 (7)0.0064 (7)0.0023 (7)
C20.0207 (10)0.0206 (10)0.0219 (10)0.0020 (8)0.0069 (8)0.0007 (8)
C30.0246 (11)0.0295 (12)0.0183 (10)0.0072 (9)0.0030 (8)0.0035 (9)
C40.0313 (12)0.0360 (13)0.0164 (10)0.0127 (10)0.0107 (9)0.0040 (9)
C50.0279 (11)0.0385 (13)0.0262 (11)0.0014 (11)0.0157 (9)0.0030 (11)
C60.0255 (10)0.0293 (13)0.0206 (10)0.0051 (9)0.0087 (8)0.0017 (9)
C70.0108 (8)0.0177 (9)0.0160 (9)0.0051 (7)0.0014 (7)0.0017 (8)
C80.0217 (10)0.0222 (11)0.0248 (11)0.0014 (8)0.0114 (9)0.0022 (9)
C90.0276 (12)0.0338 (13)0.0323 (13)0.0033 (10)0.0148 (10)0.0152 (11)
C100.0212 (10)0.0212 (11)0.0508 (16)0.0022 (9)0.0113 (11)0.0155 (11)
C110.0252 (11)0.0155 (10)0.0466 (15)0.0006 (9)0.0101 (11)0.0062 (11)
C120.0246 (11)0.0203 (11)0.0264 (11)0.0016 (8)0.0048 (9)0.0052 (9)
C130.0192 (9)0.0152 (9)0.0130 (8)0.0030 (7)0.0054 (7)0.0030 (8)
C140.0229 (10)0.0178 (10)0.0197 (10)0.0006 (8)0.0072 (8)0.0007 (8)
C150.0329 (12)0.0143 (10)0.0213 (10)0.0016 (8)0.0095 (9)0.0023 (8)
C160.0344 (12)0.0202 (11)0.0259 (11)0.0079 (9)0.0165 (10)0.0015 (9)
C170.0263 (11)0.0261 (11)0.0270 (11)0.0056 (9)0.0150 (9)0.0026 (9)
C180.0212 (9)0.0176 (10)0.0181 (9)0.0003 (8)0.0082 (8)0.0013 (8)
C190.0155 (9)0.0171 (10)0.0198 (10)0.0017 (7)0.0061 (8)0.0029 (8)
C200.0291 (11)0.0254 (11)0.0193 (11)0.0052 (9)0.0114 (9)0.0007 (9)
C210.0307 (12)0.0310 (13)0.0183 (10)0.0081 (10)0.0096 (9)0.0039 (9)
C220.0240 (10)0.0217 (11)0.0273 (11)0.0068 (8)0.0099 (9)0.0046 (9)
C230.0244 (10)0.0167 (10)0.0276 (11)0.0001 (8)0.0099 (9)0.0028 (9)
C240.0211 (10)0.0184 (10)0.0192 (10)0.0003 (8)0.0034 (8)0.0011 (8)
C250.0165 (10)0.0271 (12)0.0373 (13)0.0025 (9)0.0115 (9)0.0040 (10)
C260.0450 (14)0.0278 (13)0.0158 (10)0.0150 (10)0.0029 (10)0.0027 (9)
C270.0257 (10)0.0174 (10)0.0304 (11)0.0012 (8)0.0094 (9)0.0006 (9)
Geometric parameters (Å, º) top
Sn1—Br12.7657 (2)C13—C181.395 (3)
Sn1—Br22.7667 (2)C13—C141.399 (3)
Sn1—C12.137 (2)C14—C151.390 (3)
Sn1—C72.158 (2)C14—H140.9500
Sn1—C132.156 (2)C15—C161.389 (3)
N1—C271.500 (3)C15—H150.9500
N1—C261.503 (3)C16—C171.387 (4)
N1—C191.497 (3)C16—H160.9500
N1—C251.511 (3)C17—C181.394 (3)
C1—C21.396 (3)C17—H170.9500
C1—C61.399 (3)C18—H180.9500
C2—C31.394 (3)C19—C241.385 (3)
C2—H20.9500C19—C201.390 (3)
C3—C41.378 (4)C20—C211.382 (3)
C3—H30.9500C20—H200.9500
C4—C51.382 (4)C21—C221.386 (3)
C4—H40.9500C21—H210.9500
C5—C61.397 (3)C22—C231.382 (3)
C5—H50.9500C22—H220.9500
C6—H60.9500C23—C241.391 (3)
C7—C121.381 (3)C23—H230.9500
C7—C81.388 (3)C24—H240.9500
C8—C91.391 (3)C25—H25A0.9800
C8—H80.9500C25—H25B0.9800
C9—C101.382 (4)C25—H25C0.9800
C9—H90.9500C26—H26A0.9800
C10—C111.387 (4)C26—H26B0.9800
C10—H100.9500C26—H26C0.9800
C11—C121.389 (3)C27—H27A0.9800
C11—H110.9500C27—H27B0.9800
C12—H120.9500C27—H27C0.9800
C1—Sn1—C7120.02 (8)C18—C13—Sn1120.68 (16)
C1—Sn1—C13119.42 (8)C14—C13—Sn1120.82 (14)
C7—Sn1—C13120.54 (7)C15—C14—C13120.7 (2)
C1—Sn1—Br289.20 (5)C15—C14—H14119.7
C13—Sn1—Br291.91 (5)C13—C14—H14119.7
C7—Sn1—Br287.71 (5)C16—C15—C14120.5 (2)
C1—Sn1—Br190.06 (5)C16—C15—H15119.8
C13—Sn1—Br192.62 (5)C14—C15—H15119.8
C7—Sn1—Br188.51 (5)C15—C16—C17119.3 (2)
Br1—Sn1—Br2175.151 (7)C15—C16—H16120.4
C27—N1—C26107.47 (18)C17—C16—H16120.4
C27—N1—C19111.54 (16)C16—C17—C18120.5 (2)
C26—N1—C19112.77 (17)C16—C17—H17119.8
C27—N1—C25108.64 (17)C18—C17—H17119.8
C26—N1—C25107.97 (18)C17—C18—C13120.6 (2)
C19—N1—C25108.32 (17)C17—C18—H18119.7
C2—C1—C6118.6 (2)C13—C18—H18119.7
C2—C1—Sn1120.17 (15)C24—C19—C20121.1 (2)
C6—C1—Sn1121.19 (15)C24—C19—N1120.93 (18)
C3—C2—C1120.5 (2)C20—C19—N1117.91 (19)
C3—C2—H2119.8C19—C20—C21119.2 (2)
C1—C2—H2119.8C19—C20—H20120.4
C4—C3—C2120.4 (2)C21—C20—H20120.4
C4—C3—H3119.8C22—C21—C20120.4 (2)
C2—C3—H3119.8C22—C21—H21119.8
C5—C4—C3120.0 (2)C20—C21—H21119.8
C5—C4—H4120.0C21—C22—C23119.8 (2)
C3—C4—H4120.0C21—C22—H22120.1
C4—C5—C6120.2 (2)C23—C22—H22120.1
C4—C5—H5119.9C22—C23—C24120.6 (2)
C6—C5—H5119.9C22—C23—H23119.7
C5—C6—C1120.4 (2)C24—C23—H23119.7
C5—C6—H6119.8C19—C24—C23118.8 (2)
C1—C6—H6119.8C19—C24—H24120.6
C12—C7—C8120.1 (2)C23—C24—H24120.6
C12—C7—Sn1120.01 (15)N1—C25—H25A109.5
C8—C7—Sn1119.79 (15)N1—C25—H25B109.5
C9—C8—C7119.7 (2)H25A—C25—H25B109.5
C9—C8—H8120.2N1—C25—H25C109.5
C7—C8—H8120.2H25A—C25—H25C109.5
C10—C9—C8120.2 (2)H25B—C25—H25C109.5
C10—C9—H9119.9N1—C26—H26A109.5
C8—C9—H9119.9N1—C26—H26B109.5
C9—C10—C11119.8 (2)H26A—C26—H26B109.5
C9—C10—H10120.1N1—C26—H26C109.5
C11—C10—H10120.1H26A—C26—H26C109.5
C12—C11—C10120.1 (2)H26B—C26—H26C109.5
C12—C11—H11120.0N1—C27—H27A109.5
C10—C11—H11120.0N1—C27—H27B109.5
C7—C12—C11120.0 (2)H27A—C27—H27B109.5
C7—C12—H12120.0N1—C27—H27C109.5
C11—C12—H12120.0H27A—C27—H27C109.5
C18—C13—C14118.46 (19)H27B—C27—H27C109.5
C13—Sn1—C1—C238.04 (19)C10—C11—C12—C70.1 (3)
C7—Sn1—C1—C2143.32 (15)C1—Sn1—C13—C18113.96 (16)
Br2—Sn1—C1—C2129.79 (16)C7—Sn1—C13—C1867.41 (18)
Br1—Sn1—C1—C255.01 (16)Br2—Sn1—C13—C18155.88 (16)
C13—Sn1—C1—C6140.49 (17)Br1—Sn1—C13—C1822.41 (16)
C7—Sn1—C1—C638.1 (2)C1—Sn1—C13—C1463.53 (18)
Br2—Sn1—C1—C648.75 (17)C7—Sn1—C13—C14115.10 (17)
Br1—Sn1—C1—C6126.46 (17)Br2—Sn1—C13—C1426.62 (16)
C6—C1—C2—C30.2 (3)Br1—Sn1—C13—C14155.09 (16)
Sn1—C1—C2—C3178.79 (16)C18—C13—C14—C151.0 (3)
C1—C2—C3—C40.5 (3)Sn1—C13—C14—C15176.54 (16)
C2—C3—C4—C50.4 (4)C13—C14—C15—C160.2 (3)
C3—C4—C5—C60.4 (4)C14—C15—C16—C171.4 (3)
C4—C5—C6—C11.1 (4)C15—C16—C17—C181.5 (3)
C2—C1—C6—C51.0 (3)C16—C17—C18—C130.4 (3)
Sn1—C1—C6—C5179.56 (19)C14—C13—C18—C170.9 (3)
C1—Sn1—C7—C1219.52 (19)Sn1—C13—C18—C17176.66 (16)
C13—Sn1—C7—C12161.86 (15)C27—N1—C19—C24131.5 (2)
Br2—Sn1—C7—C12107.26 (16)C26—N1—C19—C2410.4 (3)
Br1—Sn1—C7—C1269.69 (16)C25—N1—C19—C24109.0 (2)
C1—Sn1—C7—C8156.62 (15)C27—N1—C19—C2051.2 (2)
C13—Sn1—C7—C822.00 (19)C26—N1—C19—C20172.2 (2)
Br2—Sn1—C7—C868.87 (15)C25—N1—C19—C2068.3 (2)
Br1—Sn1—C7—C8114.17 (15)C24—C19—C20—C210.8 (3)
C12—C7—C8—C93.6 (3)N1—C19—C20—C21176.6 (2)
Sn1—C7—C8—C9179.74 (16)C19—C20—C21—C220.4 (4)
C7—C8—C9—C102.5 (3)C20—C21—C22—C231.1 (4)
C8—C9—C10—C110.1 (3)C21—C22—C23—C240.7 (4)
C9—C10—C11—C121.2 (4)C20—C19—C24—C231.1 (3)
C8—C7—C12—C112.3 (3)N1—C19—C24—C23176.13 (19)
Sn1—C7—C12—C11178.46 (17)C22—C23—C24—C190.4 (3)

Experimental details

Crystal data
Chemical formula(C9H14N)[SnBr2(C6H5)3]
Mr646.02
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)9.0010 (1), 16.7778 (2), 9.2448 (1)
β (°) 111.003 (1)
V3)1303.37 (3)
Z2
Radiation typeMo Kα
µ (mm1)4.06
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.567, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12525, 5966, 5889
Rint0.012
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.042, 1.06
No. of reflections5966
No. of parameters280
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.22
Absolute structureFlack (1983), 2872 Friedel pairs
Absolute structure parameter0.011 (3)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), pubCIF (Westrip, 2009).

 

Acknowledgements

We thank the University of Malaya (RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBeckmann, J., Dakternieks, D., Duthie, A. & Tiekink, E. R. T. (2002). J. Organomet. Chem. 648, 204–208.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarrison, P. G., Molloy, K. & Phillips, R. C. (1978). J. Organomet. Chem. 160, 421–434.  CSD CrossRef CAS Web of Science Google Scholar
First citationKuhn, N., Steinmann, M. & Walker, M. (2001). Z. Naturforsch. Teil B, 56, 129–136.  CAS Google Scholar
First citationNg, S. W. (1995). Acta Cryst. C51, 1124–1125.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationWharf, I. & Simard, M. G. (1991). Acta Cryst. C47, 1605–1609.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds