metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(di­methyl­amino)pyridinium] hexa­kis[bromido/chlorido(0.78/0.22)]stannate(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 May 2009; accepted 25 May 2009; online 6 June 2009)

The Sn atom in the title salt, (C7H11N2)2[SnBr4.67Cl1.33], lies on a center of symmetry within an octa­hedron of disordered halogen atoms. The three independent halogen atoms are each a mixture of bromine and chlorine atoms [with site occupancies for bromine of 0.614 (1), 0.831 (1) and 0.888 (1)]. An N—H⋯ hydrogen bond is present.

Related literature

For the isostructural tribromidotrichloridostannate, see: Lo & Ng (2008[Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m834.]); for the isostructural penta­bromido­chlorido­stannate, see: Jang et al. (2009[Jang, Y., Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m645.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H11N2)2[SnBr4.67Cl1.33]

  • Mr = 785.15

  • Monoclinic, P 21 /c

  • a = 8.4530 (2) Å

  • b = 11.9036 (2) Å

  • c = 11.9093 (2) Å

  • β = 107.109 (1)°

  • V = 1145.30 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 9.42 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.504, Tmax = 0.746 (expected range = 0.103–0.152)

  • 10319 measured reflections

  • 2622 independent reflections

  • 2240 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.060

  • S = 0.99

  • 2622 reflections

  • 127 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br1 0.88 (1) 2.484 (18) 3.334 (3) 162 (4)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the isostructural tribromidotrichloridostannate, see: Lo & Ng (2008); for the isostructural pentabromidochloridostannate, see: Jang et al. (2009).

Experimental top

Dibenzyltin dichloride (0.37 g, 1 mmol) and 4-dimethylaminopyridine hydrobromide perbromide (0.73 g, 2 mmol) were heated in chloroform for 1 hour. Colorless crystals separated from the cool solution after a day. The benzyl groups on tin has been cleaved in the reaction. In the previous study, a heating time of 3 hours gave the pentabromidochloridostannate (Jang et al., 2009).

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.95–0.98, N–H 0.88 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times Ueq(C,N).

The three halogen atoms in the stannate are disordered. The sum of the occupancies of the three bromide atoms refined to nearly 2.33Br and 0.67Cl atoms; the total occupancy of the disordered bromide atoms was then fixed as exactly 2.333. The occupancy of the disordered chloride atoms was similarly set to be 0.667. The anisotropic displacement parameters of each pair of Br/Cl atoms were restrained to be identical.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: pubCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of 2[C7H11N2]+ [SnBr4.67Cl1.33]2- at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The bromine atoms are disordered with respect to the chlorine atoms.
Bis[4-(dimethylamino)pyridinium] hexakis[bromido/chlorido(0.78/0.22)]stannate(IV) top
Crystal data top
(C7H11N2)2[SnBr4.67Cl1.33]F(000) = 740
Mr = 785.15Dx = 2.277 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4263 reflections
a = 8.4530 (2) Åθ = 2.5–28.3°
b = 11.9036 (2) ŵ = 9.42 mm1
c = 11.9093 (2) ÅT = 100 K
β = 107.109 (1)°Irregular block, colorless
V = 1145.30 (4) Å30.30 × 0.25 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
2622 independent reflections
Radiation source: fine-focus sealed tube2240 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.504, Tmax = 0.746k = 1515
10319 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.6005P]
where P = (Fo2 + 2Fc2)/3
2622 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.80 e Å3
6 restraintsΔρmin = 0.87 e Å3
Crystal data top
(C7H11N2)2[SnBr4.67Cl1.33]V = 1145.30 (4) Å3
Mr = 785.15Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.4530 (2) ŵ = 9.42 mm1
b = 11.9036 (2) ÅT = 100 K
c = 11.9093 (2) Å0.30 × 0.25 × 0.20 mm
β = 107.109 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2622 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2240 reflections with I > 2σ(I)
Tmin = 0.504, Tmax = 0.746Rint = 0.033
10319 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0236 restraints
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.80 e Å3
2622 reflectionsΔρmin = 0.87 e Å3
127 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.50000.50000.50000.01384 (8)
Br10.50914 (5)0.63592 (3)0.66901 (3)0.02247 (12)0.6143 (14)
Br20.58481 (5)0.33875 (3)0.64866 (3)0.02405 (12)0.8309 (9)
Br30.80683 (4)0.53911 (3)0.52227 (3)0.02760 (12)0.8878 (10)
Cl10.50914 (5)0.63592 (3)0.66901 (3)0.02247 (12)0.3858 (14)
Cl20.58481 (5)0.33875 (3)0.64866 (3)0.02405 (12)0.1122 (10)
Cl30.80683 (4)0.53911 (3)0.52227 (3)0.02760 (12)0.1691 (9)
N10.6521 (4)0.8743 (2)0.5886 (3)0.0309 (7)
H10.598 (5)0.812 (2)0.593 (4)0.061 (14)*
N20.9135 (3)1.1561 (2)0.5550 (2)0.0231 (6)
C10.7281 (4)0.9350 (3)0.6844 (3)0.0304 (8)
H1A0.72120.91160.75900.036*
C20.8143 (4)1.0288 (3)0.6765 (3)0.0259 (7)
H20.86831.06960.74570.031*
C30.8251 (4)1.0670 (3)0.5661 (3)0.0190 (6)
C40.7363 (4)1.0019 (3)0.4663 (3)0.0228 (7)
H40.73451.02490.38960.027*
C50.6553 (4)0.9080 (3)0.4810 (3)0.0297 (8)
H50.59940.86450.41420.036*
C61.0103 (4)1.2201 (3)0.6573 (3)0.0349 (8)
H6A0.93561.26520.68830.052*
H6B1.08761.26970.63400.052*
H6C1.07251.16800.71820.052*
C70.9124 (4)1.1989 (3)0.4397 (3)0.0293 (7)
H7A0.95771.14180.39850.044*
H7B0.98021.26700.44960.044*
H7C0.79851.21660.39370.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01350 (14)0.01560 (14)0.01208 (14)0.00189 (10)0.00326 (11)0.00020 (11)
Br10.0329 (2)0.0187 (2)0.0178 (2)0.00322 (16)0.01055 (17)0.00423 (15)
Br20.0329 (2)0.01902 (19)0.01671 (19)0.00065 (14)0.00180 (15)0.00479 (13)
Br30.01394 (18)0.0409 (2)0.0279 (2)0.00705 (13)0.00609 (14)0.00114 (15)
Cl10.0329 (2)0.0187 (2)0.0178 (2)0.00322 (16)0.01055 (17)0.00423 (15)
Cl20.0329 (2)0.01902 (19)0.01671 (19)0.00065 (14)0.00180 (15)0.00479 (13)
Cl30.01394 (18)0.0409 (2)0.0279 (2)0.00705 (13)0.00609 (14)0.00114 (15)
N10.0277 (16)0.0246 (15)0.0427 (19)0.0002 (12)0.0141 (14)0.0088 (14)
N20.0235 (14)0.0244 (14)0.0195 (14)0.0029 (11)0.0032 (11)0.0017 (11)
C10.0298 (19)0.037 (2)0.0273 (18)0.0121 (15)0.0138 (15)0.0114 (16)
C20.0256 (17)0.0335 (18)0.0190 (17)0.0045 (14)0.0071 (14)0.0010 (13)
C30.0157 (14)0.0217 (15)0.0185 (15)0.0046 (11)0.0036 (12)0.0009 (12)
C40.0214 (15)0.0252 (16)0.0198 (16)0.0003 (13)0.0030 (13)0.0026 (13)
C50.0238 (17)0.0282 (18)0.033 (2)0.0001 (13)0.0021 (15)0.0037 (15)
C60.033 (2)0.035 (2)0.033 (2)0.0101 (15)0.0035 (16)0.0085 (16)
C70.0300 (18)0.0285 (18)0.0270 (18)0.0048 (14)0.0045 (14)0.0082 (14)
Geometric parameters (Å, º) top
Sn1—Br12.5658 (4)C1—C21.351 (5)
Sn1—Cl1i2.5658 (4)C1—H1A0.9500
Sn1—Br1i2.5658 (4)C2—C31.419 (4)
Sn1—Br22.5663 (3)C2—H20.9500
Sn1—Cl2i2.5663 (3)C3—C41.433 (4)
Sn1—Br2i2.5663 (3)C4—C51.349 (5)
Sn1—Cl3i2.5709 (3)C4—H40.9500
Sn1—Br3i2.5709 (3)C5—H50.9500
Sn1—Br32.5709 (3)C6—H6A0.9800
N1—C11.343 (5)C6—H6B0.9800
N1—C51.351 (5)C6—H6C0.9800
N1—H10.882 (10)C7—H7A0.9800
N2—C31.327 (4)C7—H7B0.9800
N2—C61.466 (4)C7—H7C0.9800
N2—C71.462 (4)
Br1—Sn1—Cl1i180.0Br3i—Sn1—Br3180.000 (17)
Br1—Sn1—Br1i180.0C1—N1—C5120.5 (3)
Cl1i—Sn1—Br1i0.000 (14)C1—N1—H1122 (3)
Br1—Sn1—Br289.576 (13)C5—N1—H1118 (3)
Cl1i—Sn1—Br290.424 (13)C3—N2—C6121.7 (3)
Br1i—Sn1—Br290.424 (13)C3—N2—C7121.6 (3)
Br1—Sn1—Cl2i90.424 (13)C6—N2—C7116.6 (3)
Cl1i—Sn1—Cl2i89.576 (12)N1—C1—C2121.2 (3)
Br1i—Sn1—Cl2i89.576 (12)N1—C1—H1A119.4
Br2—Sn1—Cl2i180.0C2—C1—H1A119.4
Br1—Sn1—Br2i90.424 (13)C1—C2—C3120.8 (3)
Cl1i—Sn1—Br2i89.576 (12)C1—C2—H2119.6
Br1i—Sn1—Br2i89.576 (12)C3—C2—H2119.6
Br2—Sn1—Br2i180.0N2—C3—C2122.7 (3)
Cl2i—Sn1—Br2i0.00 (2)N2—C3—C4121.5 (3)
Br1—Sn1—Cl3i89.529 (12)C2—C3—C4115.7 (3)
Cl1i—Sn1—Cl3i90.471 (12)C5—C4—C3120.2 (3)
Br1i—Sn1—Cl3i90.471 (12)C5—C4—H4119.9
Br2—Sn1—Cl3i90.248 (12)C3—C4—H4119.9
Cl2i—Sn1—Cl3i89.752 (12)C4—C5—N1121.4 (3)
Br2i—Sn1—Cl3i89.752 (12)C4—C5—H5119.3
Br1—Sn1—Br3i89.529 (12)N1—C5—H5119.3
Cl1i—Sn1—Br3i90.471 (12)N2—C6—H6A109.5
Br1i—Sn1—Br3i90.471 (12)N2—C6—H6B109.5
Br2—Sn1—Br3i90.248 (12)H6A—C6—H6B109.5
Cl2i—Sn1—Br3i89.752 (12)N2—C6—H6C109.5
Br2i—Sn1—Br3i89.752 (12)H6A—C6—H6C109.5
Cl3i—Sn1—Br3i0.00 (2)H6B—C6—H6C109.5
Br1—Sn1—Br390.471 (12)N2—C7—H7A109.5
Cl1i—Sn1—Br389.529 (12)N2—C7—H7B109.5
Br1i—Sn1—Br389.529 (12)H7A—C7—H7B109.5
Br2—Sn1—Br389.752 (12)N2—C7—H7C109.5
Cl2i—Sn1—Br390.248 (12)H7A—C7—H7C109.5
Br2i—Sn1—Br390.248 (12)H7B—C7—H7C109.5
Cl3i—Sn1—Br3180.000 (17)
C5—N1—C1—C22.3 (5)C1—C2—C3—N2177.4 (3)
N1—C1—C2—C30.9 (5)C1—C2—C3—C41.5 (5)
C6—N2—C3—C21.6 (5)N2—C3—C4—C5176.1 (3)
C7—N2—C3—C2175.2 (3)C2—C3—C4—C52.8 (5)
C6—N2—C3—C4177.3 (3)C3—C4—C5—N11.6 (5)
C7—N2—C3—C45.9 (5)C1—N1—C5—C41.0 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.88 (1)2.48 (2)3.334 (3)162 (4)

Experimental details

Crystal data
Chemical formula(C7H11N2)2[SnBr4.67Cl1.33]
Mr785.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.4530 (2), 11.9036 (2), 11.9093 (2)
β (°) 107.109 (1)
V3)1145.30 (4)
Z2
Radiation typeMo Kα
µ (mm1)9.42
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.504, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
10319, 2622, 2240
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.060, 0.99
No. of reflections2622
No. of parameters127
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.80, 0.87

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), pubCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.88 (1)2.484 (18)3.334 (3)162 (4)
 

Acknowledgements

We thank the University of Malaya (RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJang, Y., Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m834.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds