metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-hydroxido-bis­­[bromidodi-p-tolyl­tin(IV)]

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 20 May 2009; accepted 25 May 2009; online 6 June 2009)

The Sn atoms in the dinuclear title compound, [Sn2Br2(C7H7)4(OH)2], exist in distorted trigonal-bipyramidal BrSnC2O2 coordination geometries. Each of the two independent dinuclear mol­ecules comprising the asymmetric unit is disposed about a center of inversion. In the crystal, molecules are linked by an O—H⋯ hydrogen bond.

Related literature

For other dihalo-di-μ-hydoxotetra­organylditins, see: Anacona et al. (2003[Anacona, J. R., Rivas & de Delgado, G. D. (2003). J. Coord. Chem. 56, 245-252.]); Barba et al. (2007[Barba, V., Vega, E., Luna, R., Höpfl, H., Beltrán, H. I. & Zamudio-Rivera, L. S. (2007). J. Organomet. Chem. 692, 731-739.]); Puff et al. (1984[Puff, H., Hevendehl, H., Höfer, K., Reuter, H. & Schuh, W. (1984). J. Organomet. Chem. 287, 163-178.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn2Br2(C7H7)4(OH)2]

  • Mr = 795.72

  • Triclinic, [P \overline 1]

  • a = 10.9971 (3) Å

  • b = 11.5391 (3) Å

  • c = 12.1969 (3) Å

  • α = 77.092 (2)°

  • β = 86.552 (2)°

  • γ = 68.204 (2)°

  • V = 1400.34 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.66 mm−1

  • T = 100 K

  • 0.35 × 0.05 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.292, Tmax = 0.800

  • 9026 measured reflections

  • 4871 independent reflections

  • 3367 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.227

  • S = 1.05

  • 4871 reflections

  • 311 parameters

  • 180 restraints

  • H-atom parameters constrained

  • Δρmax = 2.96 e Å−3

  • Δρmin = −3.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯Br1i 0.84 2.49 3.329 (8) 173
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For other dihalo-di-µ-hydoxotetraorganylditins, see: Anacona et al. (2003); Barba et al. (2007); Puff et al. (1984).

Experimental top

Di(p-tolyl)dimethyltin was synthesized by a Grignard reaction. This compound (3.37 g, 10 mmol) and pyridinium tribromide (3.19 g, 10 mmol) were heated in an ethanol/chloroform mixture for 1 hour. The solution was set aside for the growth of crystals. The organic reactant probably cleaved the two tin-methyl bonds to form di(p-tolyl)tin dibromide, which then underwent hydrolysis to the title compound.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.95–0.98 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times Ueq(C). The hydroxyl H-atom was similarly treated; O—H 0.84 Å and U(H) set to 1.2 times Ueq(O).

The final difference Fourier map had a large peaks/deep holes at approximately 1 Å from Sn2 but was otherwise featureless.

The plate-like nature of the crystal, along with the presence of heavy atoms, adversedly affected the quality of the diffraction data. As some of the displacement ellipsoids were rather elongated, the refinement strategy was to restrain the anisotropic displacement parameters of all carbon and oxygen atoms to be nearly isotropic.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of one independent molecule of Sn2Br2(OH)2(C7H7)4 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Thermal ellipsoid plot (Barbour, 2001) of the second independent molecule of Sn2Br2(OH)2(C7H7)4at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Di-µ-hydroxido-bis[bromidodi-p-tolyltin(IV)] top
Crystal data top
[Sn2Br2(C7H7)4(OH)2]Z = 2
Mr = 795.72F(000) = 768
Triclinic, P1Dx = 1.887 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.9971 (3) ÅCell parameters from 3015 reflections
b = 11.5391 (3) Åθ = 2.2–28.0°
c = 12.1969 (3) ŵ = 4.66 mm1
α = 77.092 (2)°T = 100 K
β = 86.552 (2)°Plate, colorless
γ = 68.204 (2)°0.35 × 0.05 × 0.05 mm
V = 1400.34 (6) Å3
Data collection top
Bruker SMART APEX
diffractometer
4871 independent reflections
Radiation source: fine-focus sealed tube3367 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.292, Tmax = 0.800k = 1213
9026 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.227H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1452P)2]
where P = (Fo2 + 2Fc2)/3
4871 reflections(Δ/σ)max = 0.001
311 parametersΔρmax = 2.96 e Å3
180 restraintsΔρmin = 3.19 e Å3
Crystal data top
[Sn2Br2(C7H7)4(OH)2]γ = 68.204 (2)°
Mr = 795.72V = 1400.34 (6) Å3
Triclinic, P1Z = 2
a = 10.9971 (3) ÅMo Kα radiation
b = 11.5391 (3) ŵ = 4.66 mm1
c = 12.1969 (3) ÅT = 100 K
α = 77.092 (2)°0.35 × 0.05 × 0.05 mm
β = 86.552 (2)°
Data collection top
Bruker SMART APEX
diffractometer
4871 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3367 reflections with I > 2σ(I)
Tmin = 0.292, Tmax = 0.800Rint = 0.056
9026 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.076180 restraints
wR(F2) = 0.227H-atom parameters constrained
S = 1.05Δρmax = 2.96 e Å3
4871 reflectionsΔρmin = 3.19 e Å3
311 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.62921 (7)0.55224 (9)0.51125 (6)0.0230 (3)
Sn20.64941 (7)0.38277 (9)0.05546 (6)0.0247 (3)
Br10.68040 (11)0.63918 (14)0.67783 (9)0.0280 (4)
Br20.67660 (12)0.23425 (14)0.25580 (10)0.0302 (4)
O10.4708 (7)0.5278 (8)0.5909 (6)0.0248 (19)
H10.44580.54530.65380.030*
O20.4555 (7)0.4658 (8)0.0890 (6)0.0244 (19)
H20.42060.44510.14960.029*
C10.5776 (11)0.7262 (12)0.3905 (10)0.024 (3)
C20.6189 (12)0.7250 (13)0.2814 (10)0.029 (3)
H2a0.66890.64690.25990.035*
C30.5850 (12)0.8423 (14)0.2031 (11)0.031 (3)
H30.61530.84160.12850.038*
C40.5107 (11)0.9574 (13)0.2283 (10)0.029 (3)
C50.4709 (12)0.9557 (13)0.3400 (10)0.029 (3)
H50.41971.03400.36060.034*
C60.5041 (11)0.8434 (13)0.4206 (10)0.028 (3)
H60.47770.84490.49600.033*
C70.4664 (13)1.0812 (15)0.1414 (11)0.039 (3)
H7A0.53651.08170.08790.058*
H7B0.44581.15300.17860.058*
H7C0.38811.08950.10110.058*
C80.8096 (11)0.3956 (13)0.5251 (10)0.026 (3)
C90.8241 (12)0.2834 (13)0.4902 (10)0.031 (3)
H90.74960.27430.46310.037*
C100.9453 (13)0.1859 (15)0.4946 (11)0.036 (3)
H100.95350.11070.47020.043*
C111.0547 (12)0.1972 (14)0.5344 (10)0.031 (3)
C121.0404 (13)0.3050 (15)0.5719 (12)0.040 (4)
H121.11430.31200.60250.048*
C130.9190 (13)0.4043 (16)0.5658 (12)0.041 (4)
H130.91170.47920.59010.049*
C141.1892 (13)0.0913 (16)0.5399 (13)0.045 (4)
H14A1.24570.12050.48440.067*
H14B1.18020.01550.52340.067*
H14C1.22820.06980.61540.067*
C150.7678 (11)0.4819 (14)0.0875 (10)0.028 (3)
C160.8608 (11)0.4277 (12)0.1749 (9)0.023 (3)
H160.86760.34920.22450.027*
C170.9444 (12)0.4905 (13)0.1889 (10)0.030 (3)
H171.00810.45280.24860.035*
C180.9376 (12)0.6030 (14)0.1205 (11)0.032 (3)
C190.8446 (12)0.6556 (15)0.0312 (11)0.035 (3)
H190.83850.73380.01860.042*
C200.7623 (12)0.5951 (13)0.0151 (10)0.031 (3)
H200.70100.63140.04630.037*
C211.0280 (13)0.6689 (15)0.1349 (12)0.040 (4)
H21A1.05360.70540.06090.060*
H21B1.10630.60700.17830.060*
H21C0.98330.73730.17510.060*
C220.7048 (11)0.2359 (13)0.0370 (10)0.027 (3)
C230.6804 (12)0.2653 (14)0.1532 (10)0.030 (3)
H230.62830.34950.19090.036*
C240.7342 (13)0.1684 (14)0.2122 (10)0.033 (3)
H240.71310.18660.29010.039*
C250.8156 (13)0.0490 (15)0.1629 (11)0.035 (3)
C260.8421 (13)0.0196 (15)0.0484 (12)0.037 (3)
H260.89790.06390.01230.045*
C270.7869 (12)0.1125 (13)0.0126 (10)0.031 (3)
H270.80530.09180.09120.037*
C280.8804 (14)0.0516 (15)0.2323 (12)0.041 (4)
H28A0.91940.01470.29870.061*
H28B0.81460.07990.25630.061*
H28C0.94900.12480.18660.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0242 (4)0.0333 (6)0.0114 (4)0.0063 (4)0.0016 (3)0.0123 (4)
Sn20.0272 (5)0.0359 (6)0.0117 (4)0.0082 (4)0.0011 (3)0.0127 (4)
Br10.0312 (6)0.0416 (9)0.0135 (6)0.0108 (6)0.0014 (5)0.0155 (6)
Br20.0346 (7)0.0402 (9)0.0134 (6)0.0085 (6)0.0002 (5)0.0104 (6)
O10.027 (4)0.037 (5)0.012 (4)0.009 (4)0.005 (3)0.014 (4)
O20.024 (4)0.034 (5)0.014 (4)0.007 (3)0.003 (3)0.012 (3)
C10.025 (5)0.025 (6)0.017 (5)0.002 (5)0.005 (4)0.004 (5)
C20.031 (6)0.031 (7)0.022 (6)0.008 (5)0.002 (4)0.005 (5)
C30.033 (6)0.039 (7)0.023 (6)0.010 (5)0.003 (5)0.014 (5)
C40.029 (5)0.036 (7)0.022 (5)0.007 (5)0.005 (4)0.014 (5)
C50.029 (5)0.034 (7)0.024 (6)0.008 (5)0.001 (4)0.016 (5)
C60.029 (5)0.036 (7)0.016 (5)0.005 (5)0.001 (4)0.013 (5)
C70.038 (6)0.046 (7)0.030 (6)0.013 (5)0.000 (5)0.009 (6)
C80.024 (5)0.036 (7)0.015 (5)0.002 (5)0.004 (4)0.014 (5)
C90.033 (6)0.033 (7)0.024 (6)0.006 (5)0.004 (5)0.010 (5)
C100.043 (6)0.042 (7)0.026 (6)0.011 (5)0.002 (5)0.020 (5)
C110.031 (6)0.040 (7)0.018 (5)0.010 (5)0.002 (4)0.005 (5)
C120.034 (6)0.051 (8)0.035 (6)0.009 (5)0.002 (5)0.018 (6)
C130.038 (6)0.047 (8)0.042 (7)0.015 (6)0.003 (5)0.019 (6)
C140.042 (6)0.046 (8)0.040 (7)0.005 (6)0.001 (5)0.014 (6)
C150.023 (5)0.040 (7)0.024 (6)0.011 (5)0.005 (4)0.018 (5)
C160.028 (5)0.025 (6)0.014 (5)0.005 (5)0.001 (4)0.011 (5)
C170.030 (5)0.039 (7)0.021 (5)0.010 (5)0.004 (4)0.017 (5)
C180.033 (6)0.038 (7)0.027 (6)0.008 (5)0.009 (5)0.019 (5)
C190.037 (6)0.041 (7)0.027 (6)0.015 (5)0.003 (5)0.008 (5)
C200.032 (6)0.041 (7)0.016 (5)0.004 (5)0.009 (4)0.011 (5)
C210.040 (6)0.051 (8)0.036 (6)0.020 (6)0.003 (5)0.016 (6)
C220.030 (5)0.032 (7)0.022 (5)0.007 (5)0.002 (4)0.018 (5)
C230.038 (6)0.036 (7)0.014 (5)0.010 (5)0.003 (4)0.009 (5)
C240.043 (6)0.036 (7)0.020 (5)0.007 (5)0.003 (5)0.019 (5)
C250.041 (6)0.045 (7)0.025 (6)0.014 (5)0.000 (5)0.022 (5)
C260.034 (6)0.039 (7)0.037 (6)0.009 (5)0.000 (5)0.012 (6)
C270.043 (6)0.031 (7)0.016 (5)0.008 (5)0.007 (5)0.009 (5)
C280.048 (6)0.044 (7)0.031 (6)0.013 (6)0.005 (5)0.021 (6)
Geometric parameters (Å, º) top
Sn1—O12.024 (8)C11—C141.523 (18)
Sn1—C82.115 (12)C12—C131.39 (2)
Sn1—C12.111 (12)C12—H120.9500
Sn1—O1i2.248 (8)C13—H130.9500
Sn1—Br12.6304 (14)C14—H14A0.9800
Sn2—O22.046 (8)C14—H14B0.9800
Sn2—C222.126 (13)C14—H14C0.9800
Sn2—C152.127 (13)C15—C201.386 (19)
Sn2—O2ii2.205 (8)C15—C161.390 (16)
Sn2—Br22.6141 (15)C16—C171.402 (18)
O1—Sn1i2.248 (8)C16—H160.9500
O1—H10.8400C17—C181.357 (19)
O2—Sn2ii2.205 (8)C17—H170.9500
O2—H20.8400C18—C191.406 (18)
C1—C21.381 (17)C18—C211.496 (19)
C1—C61.411 (18)C19—C201.378 (19)
C2—C31.405 (18)C19—H190.9500
C2—H2a0.9500C20—H200.9500
C3—C41.368 (19)C21—H21A0.9800
C3—H30.9500C21—H21B0.9800
C4—C51.404 (17)C21—H21C0.9800
C4—C71.507 (19)C22—C271.391 (18)
C5—C61.380 (18)C22—C231.400 (16)
C5—H50.9500C23—C241.390 (19)
C6—H60.9500C23—H230.9500
C7—H7A0.9800C24—C251.357 (19)
C7—H7B0.9800C24—H240.9500
C7—H7C0.9800C25—C261.383 (19)
C8—C131.374 (18)C25—C281.525 (19)
C8—C91.403 (19)C26—C271.37 (2)
C9—C101.383 (18)C26—H260.9500
C9—H90.9500C27—H270.9500
C10—C111.384 (18)C28—H28A0.9800
C10—H100.9500C28—H28B0.9800
C11—C121.37 (2)C28—H28C0.9800
O1—Sn1—C8119.8 (4)C10—C11—C14121.3 (14)
O1—Sn1—C1112.0 (4)C11—C12—C13120.8 (13)
C8—Sn1—C1126.5 (5)C11—C12—H12119.6
O1—Sn1—O1i69.1 (3)C13—C12—H12119.6
C8—Sn1—O1i94.3 (4)C8—C13—C12121.1 (15)
C1—Sn1—O1i91.6 (4)C8—C13—H13119.5
O1—Sn1—Br190.9 (2)C12—C13—H13119.5
C8—Sn1—Br195.4 (3)C11—C14—H14A109.5
C1—Sn1—Br196.5 (3)C11—C14—H14B109.5
O1i—Sn1—Br1160.0 (2)H14A—C14—H14B109.5
O2—Sn2—C22118.3 (4)C11—C14—H14C109.5
O2—Sn2—C15114.3 (4)H14A—C14—H14C109.5
C22—Sn2—C15126.0 (5)H14B—C14—H14C109.5
O2—Sn2—O2ii69.2 (4)C20—C15—C16119.0 (12)
C22—Sn2—O2ii93.8 (4)C20—C15—Sn2120.5 (9)
C15—Sn2—O2ii93.7 (4)C16—C15—Sn2120.3 (10)
O2—Sn2—Br287.4 (2)C15—C16—C17119.1 (12)
C22—Sn2—Br296.9 (3)C15—C16—H16120.4
C15—Sn2—Br296.7 (3)C17—C16—H16120.4
O2ii—Sn2—Br2156.6 (2)C18—C17—C16122.4 (12)
Sn1—O1—Sn1i110.9 (3)C18—C17—H17118.8
Sn1—O1—H1124.6C16—C17—H17118.8
Sn1i—O1—H1124.6C17—C18—C19117.8 (13)
Sn2—O2—Sn2ii110.8 (4)C17—C18—C21122.2 (12)
Sn2—O2—H2124.6C19—C18—C21119.9 (13)
Sn2ii—O2—H2124.6C20—C19—C18120.8 (14)
C2—C1—C6119.9 (11)C20—C19—H19119.6
C2—C1—Sn1119.4 (10)C18—C19—H19119.6
C6—C1—Sn1120.7 (9)C19—C20—C15120.8 (11)
C1—C2—C3118.2 (13)C19—C20—H20119.6
C1—C2—H2a120.9C15—C20—H20119.6
C3—C2—H2a120.9C18—C21—H21A109.5
C4—C3—C2123.6 (12)C18—C21—H21B109.5
C4—C3—H3118.2H21A—C21—H21B109.5
C2—C3—H3118.2C18—C21—H21C109.5
C3—C4—C5116.9 (13)H21A—C21—H21C109.5
C3—C4—C7123.0 (12)H21B—C21—H21C109.5
C5—C4—C7120.0 (13)C27—C22—C23118.1 (12)
C6—C5—C4121.7 (13)C27—C22—Sn2120.1 (9)
C6—C5—H5119.2C23—C22—Sn2120.8 (10)
C4—C5—H5119.2C24—C23—C22118.5 (12)
C5—C6—C1119.7 (11)C24—C23—H23120.8
C5—C6—H6120.2C22—C23—H23120.8
C1—C6—H6120.2C25—C24—C23122.6 (12)
C4—C7—H7A109.5C25—C24—H24118.7
C4—C7—H7B109.5C23—C24—H24118.7
H7A—C7—H7B109.5C24—C25—C26119.2 (13)
C4—C7—H7C109.5C24—C25—C28120.9 (12)
H7A—C7—H7C109.5C26—C25—C28119.8 (13)
H7B—C7—H7C109.5C27—C26—C25119.3 (13)
C13—C8—C9117.9 (12)C27—C26—H26120.4
C13—C8—Sn1119.5 (11)C25—C26—H26120.4
C9—C8—Sn1122.6 (9)C26—C27—C22122.2 (12)
C10—C9—C8120.9 (12)C26—C27—H27118.9
C10—C9—H9119.5C22—C27—H27118.9
C8—C9—H9119.5C25—C28—H28A109.5
C11—C10—C9120.3 (14)C25—C28—H28B109.5
C11—C10—H10119.8H28A—C28—H28B109.5
C9—C10—H10119.8C25—C28—H28C109.5
C12—C11—C10119.0 (12)H28A—C28—H28C109.5
C12—C11—C14119.6 (12)H28B—C28—H28C109.5
C8—Sn1—O1—Sn1i82.8 (5)C14—C11—C12—C13178.7 (13)
C1—Sn1—O1—Sn1i83.0 (5)C9—C8—C13—C120 (2)
O1i—Sn1—O1—Sn1i0.0Sn1—C8—C13—C12177.5 (11)
Br1—Sn1—O1—Sn1i179.6 (3)C11—C12—C13—C82 (2)
C22—Sn2—O2—Sn2ii82.9 (6)O2—Sn2—C15—C2074.5 (10)
C15—Sn2—O2—Sn2ii84.5 (5)C22—Sn2—C15—C2091.8 (11)
O2ii—Sn2—O2—Sn2ii0.0O2ii—Sn2—C15—C205.6 (10)
Br2—Sn2—O2—Sn2ii179.4 (3)Br2—Sn2—C15—C20164.6 (10)
O1—Sn1—C1—C2127.0 (9)O2—Sn2—C15—C16111.9 (10)
C8—Sn1—C1—C237.7 (12)C22—Sn2—C15—C1681.8 (11)
O1i—Sn1—C1—C258.9 (10)O2ii—Sn2—C15—C16179.3 (9)
Br1—Sn1—C1—C2139.4 (9)Br2—Sn2—C15—C1621.8 (10)
O1—Sn1—C1—C654.4 (11)C20—C15—C16—C171.4 (18)
C8—Sn1—C1—C6140.9 (9)Sn2—C15—C16—C17175.2 (9)
O1i—Sn1—C1—C6122.5 (10)C15—C16—C17—C180.3 (19)
Br1—Sn1—C1—C639.3 (10)C16—C17—C18—C191.4 (19)
C6—C1—C2—C30.4 (18)C16—C17—C18—C21179.3 (12)
Sn1—C1—C2—C3179.0 (9)C17—C18—C19—C201 (2)
C1—C2—C3—C41.6 (19)C21—C18—C19—C20178.7 (13)
C2—C3—C4—C52.0 (19)C18—C19—C20—C151 (2)
C2—C3—C4—C7175.1 (12)C16—C15—C20—C192.0 (19)
C3—C4—C5—C60.4 (19)Sn2—C15—C20—C19175.8 (10)
C7—C4—C5—C6176.8 (11)O2—Sn2—C22—C27116.7 (10)
C4—C5—C6—C11.4 (18)C15—Sn2—C22—C2777.5 (12)
C2—C1—C6—C51.8 (18)O2ii—Sn2—C22—C27174.9 (10)
Sn1—C1—C6—C5179.6 (9)Br2—Sn2—C22—C2725.9 (10)
O1—Sn1—C8—C13123.0 (10)O2—Sn2—C22—C2375.3 (11)
C1—Sn1—C8—C1373.4 (12)C15—Sn2—C22—C2390.5 (11)
O1i—Sn1—C8—C13168.7 (10)O2ii—Sn2—C22—C236.9 (10)
Br1—Sn1—C8—C1328.8 (11)Br2—Sn2—C22—C23166.0 (10)
O1—Sn1—C8—C959.6 (11)C27—C22—C23—C243.0 (19)
C1—Sn1—C8—C9104.0 (11)Sn2—C22—C23—C24171.3 (10)
O1i—Sn1—C8—C98.8 (10)C22—C23—C24—C254 (2)
Br1—Sn1—C8—C9153.7 (10)C23—C24—C25—C263 (2)
C13—C8—C9—C101.3 (19)C23—C24—C25—C28175.5 (13)
Sn1—C8—C9—C10176.3 (10)C24—C25—C26—C271 (2)
C8—C9—C10—C110 (2)C28—C25—C26—C27177.6 (13)
C9—C10—C11—C122 (2)C25—C26—C27—C220 (2)
C9—C10—C11—C14179.9 (12)C23—C22—C27—C261 (2)
C10—C11—C12—C133 (2)Sn2—C22—C27—C26169.4 (11)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Br1i0.842.493.329 (8)173
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Sn2Br2(C7H7)4(OH)2]
Mr795.72
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.9971 (3), 11.5391 (3), 12.1969 (3)
α, β, γ (°)77.092 (2), 86.552 (2), 68.204 (2)
V3)1400.34 (6)
Z2
Radiation typeMo Kα
µ (mm1)4.66
Crystal size (mm)0.35 × 0.05 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.292, 0.800
No. of measured, independent and
observed [I > 2σ(I)] reflections
9026, 4871, 3367
Rint0.056
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.227, 1.05
No. of reflections4871
No. of parameters311
No. of restraints180
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.96, 3.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Br1i0.842.493.329 (8)173
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank the University of Malaya (RG020/09AFR) for supporting this study.

References

First citationAnacona, J. R., Rivas & de Delgado, G. D. (2003). J. Coord. Chem. 56, 245–252.  Google Scholar
First citationBarba, V., Vega, E., Luna, R., Höpfl, H., Beltrán, H. I. & Zamudio-Rivera, L. S. (2007). J. Organomet. Chem. 692, 731–739.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPuff, H., Hevendehl, H., Höfer, K., Reuter, H. & Schuh, W. (1984). J. Organomet. Chem. 287, 163–178.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds