organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1511-o1512

2,3-Di­amino­pyridinium 4-nitro­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 22 May 2009; accepted 3 June 2009; online 6 June 2009)

In the title salt, C5H8N3+·C7H4NO4, the pyridine N atom of the 2,3-diamino­pyridine mol­ecule is protonated. The protonated N atom and one of the two 2-amino groups are hydrogen bonded to the 4-nitro­benzoate anion through a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. The carboxyl­ate mean plane of the 4-nitro­benzoate anion is twisted by 3.77 (5)° from the attached ring and the nitro group is similarly twisted by 2.28 (10)°. In the crystal, the mol­ecules are linked by N—H⋯O and C—H⋯O inter­actions into sheets parallel to (100).

Related literature

For substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]); Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). In Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). In Hydrogen Bonding, A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8N3+·C7H4NO4

  • Mr = 276.26

  • Monoclinic, P 21

  • a = 8.0827 (2) Å

  • b = 6.7365 (1) Å

  • c = 11.4489 (3) Å

  • β = 101.967 (1)°

  • V = 609.83 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.25 × 0.17 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.988

  • 11659 measured reflections

  • 2808 independent reflections

  • 2155 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.116

  • S = 1.04

  • 2808 reflections

  • 229 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O4 0.99 (3) 1.70 (3) 2.671 (2) 167 (3)
N2—H1N2⋯O3 0.89 (3) 2.01 (3) 2.901 (2) 178 (5)
N2—H2N2⋯O3i 0.86 (2) 2.06 (2) 2.903 (2) 171 (2)
N3—H1N3⋯O3i 0.85 (3) 2.14 (3) 2.951 (3) 159 (2)
N3—H2N3⋯O2ii 0.82 (3) 2.34 (3) 3.140 (2) 165 (3)
C10—H10A⋯O1ii 0.98 (3) 2.53 (3) 3.507 (2) 177 (2)
C11—H11A⋯O4iii 0.99 (2) 2.56 (2) 3.216 (3) 124 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x+1, y+2, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTLsoftware used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). Pyridine and its substituted derivatives are often involved in hydrogen bonding interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). In order to study some interesting hydrogen bonding interactions, the synthesis and structure of the title salt (I) is presented here.

The asymmetric unit of (I), Fig. 1, contains a protonated 2,3-diaminopyridinium cation and a 4-nitrobenzoate anion. In the 2,3-diaminopyridinium cation, a wide angle (123.62 (17)°) is subtended at the protonated N1 atom. The 2,3-diaminopyridinium cation is planar, with a maximum deviation of 0.005 (2)Å for atom C1. The carboxylate group is twisted slightly from the ring; the dihedral angle between C1—C6 and O3/O4/C7/C6 planes is 5.41 (10)°. The nitro group is also slightly twisted away from its attached benzene ring by 2.28 (10)°.

In the crystal packing, Fig. 2, the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O3 and O4) via a pair of N—H···O hydrogen bonds forming a ring motif, R22(8) (Bernstein et al., 1995). The 2-amino groups (N2 and N3) are involved in N—H···O3 hydrogen bonding interactions to form a R12(7) ring motif. One of the amino group hydrogen atoms, H2N3, and the ring hydrogen atom, H10A, are connected to the 4-nitro group oxygen atoms (O1 and O2) to form an R22(8) ring motif (Table 1 and Fig. 2). These molecules are linked by these interactions into sheets parallel to (100). The crystal structure is further stabilized by a π-π stacking interactions between the aminopyridine- and carboxylate-rings with centroid-to-centroid distances of 3.8343 (10) Å.

Related literature top

For substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996); Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solutions (20 ml) of 2,3-diaminopyridine (27 mg, Aldrich) and 4-nitrobenzoic acid (42 mg, Merck) were mixed and warmed over a heating magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Crystals of (I) appeared from the mother liquor after a few days.

Refinement top

All the H atoms were located from the difference Fourier map [N–H = 0.82 (3)–0.99 (3)Å and C–H = 0.91 (2)–0.99 (2) Å] and allowed to refine freely. In the absence of significant anomalous scattering effects, 2144 Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structures of the ions in (I), illustrating the primary mode of association between them, showing 50% probability displacement ellipsoids and the atom numbering scheme. Dashed lines indicate the hydrogen bonding.
[Figure 2] Fig. 2. The crystal packing of (I). Dashed lines indicate the hydrogen bondings.
2,3-Diaminopyridinium 4-nitrobenzoate top
Crystal data top
C5H8N3+·C7H4NO4F(000) = 288
Mr = 276.26Dx = 1.504 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2526 reflections
a = 8.0827 (2) Åθ = 2.8–31.7°
b = 6.7365 (1) ŵ = 0.12 mm1
c = 11.4489 (3) ÅT = 100 K
β = 101.967 (1)°Block, brown
V = 609.83 (2) Å30.25 × 0.17 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2808 independent reflections
Radiation source: fine-focus sealed tube2155 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 34.9°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.972, Tmax = 0.988k = 1010
11659 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.026P]
where P = (Fo2 + 2Fc2)/3
2808 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.43 e Å3
1 restraintΔρmin = 0.30 e Å3
Crystal data top
C5H8N3+·C7H4NO4V = 609.83 (2) Å3
Mr = 276.26Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.0827 (2) ŵ = 0.12 mm1
b = 6.7365 (1) ÅT = 100 K
c = 11.4489 (3) Å0.25 × 0.17 × 0.10 mm
β = 101.967 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2808 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2155 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.988Rint = 0.045
11659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.43 e Å3
2808 reflectionsΔρmin = 0.30 e Å3
229 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0506 (2)0.7085 (2)0.85306 (17)0.0306 (4)
O20.04637 (19)0.7831 (2)0.66897 (16)0.0269 (4)
O30.35100 (19)0.1109 (2)0.60686 (14)0.0223 (3)
O40.35695 (19)0.1713 (2)0.79972 (14)0.0210 (3)
N40.0141 (2)0.6717 (3)0.75606 (18)0.0213 (4)
C10.1816 (2)0.1740 (3)0.82546 (19)0.0178 (4)
C20.1021 (2)0.3532 (3)0.8391 (2)0.0183 (4)
C30.0723 (2)0.4824 (3)0.7432 (2)0.0178 (4)
C40.1172 (2)0.4421 (3)0.6355 (2)0.0196 (4)
C50.1973 (2)0.2624 (3)0.6234 (2)0.0180 (4)
C60.2309 (2)0.1287 (3)0.71862 (19)0.0162 (4)
C70.3201 (2)0.0666 (3)0.70675 (18)0.0169 (4)
N10.5459 (2)0.4983 (2)0.80784 (16)0.0179 (3)
N20.5600 (2)0.4619 (3)0.60992 (18)0.0213 (4)
N30.7324 (2)0.8308 (3)0.62077 (18)0.0212 (4)
C80.5959 (2)0.5681 (3)0.71027 (19)0.0166 (4)
C90.6873 (2)0.7522 (3)0.72040 (19)0.0168 (4)
C100.7217 (2)0.8451 (3)0.8301 (2)0.0197 (4)
C110.6717 (2)0.7629 (3)0.9295 (2)0.0213 (4)
C120.5820 (2)0.5895 (3)0.91644 (19)0.0199 (4)
H1A0.201 (3)0.084 (4)0.887 (2)0.020 (6)*
H2A0.068 (3)0.384 (4)0.914 (2)0.020 (6)*
H4A0.089 (3)0.535 (5)0.569 (2)0.033 (7)*
H5A0.232 (3)0.233 (4)0.547 (2)0.021 (6)*
H10A0.782 (3)0.972 (5)0.834 (2)0.029 (7)*
H11A0.711 (3)0.821 (4)1.010 (2)0.027 (7)*
H12A0.540 (3)0.527 (4)0.978 (2)0.021 (6)*
H1N10.478 (3)0.375 (5)0.793 (3)0.038 (8)*
H1N20.497 (4)0.353 (5)0.608 (3)0.038 (8)*
H2N20.579 (3)0.496 (4)0.542 (2)0.017 (6)*
H1N30.735 (3)0.759 (5)0.560 (2)0.025 (7)*
H2N30.806 (4)0.917 (5)0.635 (3)0.037 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0374 (9)0.0213 (8)0.0368 (10)0.0086 (6)0.0162 (8)0.0038 (7)
O20.0274 (7)0.0170 (7)0.0348 (10)0.0058 (6)0.0027 (7)0.0027 (7)
O30.0293 (7)0.0175 (6)0.0226 (8)0.0035 (5)0.0109 (6)0.0002 (6)
O40.0281 (7)0.0164 (6)0.0199 (8)0.0056 (5)0.0083 (6)0.0023 (6)
N40.0165 (7)0.0146 (7)0.0320 (10)0.0015 (6)0.0030 (7)0.0026 (8)
C10.0213 (8)0.0139 (8)0.0187 (10)0.0012 (7)0.0053 (7)0.0008 (8)
C20.0185 (8)0.0155 (8)0.0215 (10)0.0007 (6)0.0054 (7)0.0030 (8)
C30.0166 (8)0.0116 (7)0.0255 (11)0.0015 (6)0.0053 (7)0.0010 (7)
C40.0216 (8)0.0132 (8)0.0249 (11)0.0008 (6)0.0067 (8)0.0015 (8)
C50.0205 (8)0.0146 (8)0.0196 (10)0.0010 (7)0.0056 (7)0.0018 (8)
C60.0176 (8)0.0111 (8)0.0201 (10)0.0012 (6)0.0043 (7)0.0032 (7)
C70.0180 (8)0.0128 (8)0.0208 (10)0.0003 (6)0.0058 (7)0.0008 (8)
N10.0188 (7)0.0161 (7)0.0191 (9)0.0021 (6)0.0048 (6)0.0004 (7)
N20.0300 (9)0.0176 (8)0.0182 (9)0.0056 (6)0.0094 (7)0.0014 (7)
N30.0273 (8)0.0178 (7)0.0201 (9)0.0061 (7)0.0089 (7)0.0003 (8)
C80.0158 (7)0.0136 (8)0.0208 (10)0.0012 (6)0.0046 (7)0.0007 (8)
C90.0157 (7)0.0161 (8)0.0189 (9)0.0003 (6)0.0042 (6)0.0023 (8)
C100.0199 (8)0.0168 (8)0.0228 (11)0.0021 (7)0.0055 (7)0.0018 (8)
C110.0210 (8)0.0225 (9)0.0206 (11)0.0001 (7)0.0051 (7)0.0028 (8)
C120.0201 (8)0.0223 (9)0.0176 (10)0.0010 (7)0.0045 (7)0.0004 (8)
Geometric parameters (Å, º) top
O1—N41.232 (2)N1—C81.349 (3)
O2—N41.232 (2)N1—C121.363 (3)
O3—C71.256 (2)N1—H1N10.99 (3)
O4—C71.260 (2)N2—C81.333 (3)
N4—C31.476 (2)N2—H1N20.89 (3)
C1—C21.391 (3)N2—H2N20.85 (3)
C1—C61.397 (3)N3—C91.373 (3)
C1—H1A0.92 (3)N3—H1N30.85 (3)
C2—C31.383 (3)N3—H2N30.82 (3)
C2—H2A0.98 (3)C8—C91.435 (3)
C3—C41.382 (3)C9—C101.379 (3)
C4—C51.394 (3)C10—C111.399 (3)
C4—H4A0.98 (3)C10—H10A0.98 (3)
C5—C61.396 (3)C11—C121.367 (3)
C5—H5A0.99 (3)C11—H11A0.99 (3)
C6—C71.520 (3)C12—H12A0.94 (3)
O2—N4—O1123.84 (17)C8—N1—C12123.62 (17)
O2—N4—C3118.06 (18)C8—N1—H1N1113.8 (17)
O1—N4—C3118.10 (18)C12—N1—H1N1122.6 (17)
C2—C1—C6120.69 (19)C8—N2—H1N2119.0 (19)
C2—C1—H1A119.4 (17)C8—N2—H2N2126.1 (17)
C6—C1—H1A119.9 (17)H1N2—N2—H2N2114 (2)
C3—C2—C1117.7 (2)C9—N3—H1N3121 (2)
C3—C2—H2A122.2 (16)C9—N3—H2N3114 (2)
C1—C2—H2A120.1 (16)H1N3—N3—H2N3115 (3)
C4—C3—C2123.38 (18)N2—C8—N1118.49 (17)
C4—C3—N4118.44 (18)N2—C8—C9123.34 (19)
C2—C3—N4118.18 (18)N1—C8—C9118.16 (18)
C3—C4—C5118.21 (19)N3—C9—C10122.90 (18)
C3—C4—H4A120.7 (17)N3—C9—C8119.10 (19)
C5—C4—H4A121.1 (17)C10—C9—C8117.97 (18)
C4—C5—C6120.13 (19)C9—C10—C11121.58 (18)
C4—C5—H5A118.6 (16)C9—C10—H10A116.5 (16)
C6—C5—H5A121.2 (16)C11—C10—H10A121.9 (16)
C5—C6—C1119.87 (17)C12—C11—C10119.1 (2)
C5—C6—C7120.51 (17)C12—C11—H11A120.1 (16)
C1—C6—C7119.62 (17)C10—C11—H11A120.5 (16)
O3—C7—O4125.37 (18)N1—C12—C11119.6 (2)
O3—C7—C6118.35 (18)N1—C12—H12A115.8 (16)
O4—C7—C6116.28 (17)C11—C12—H12A124.6 (16)
C6—C1—C2—C30.8 (3)C1—C6—C7—O3174.40 (17)
C1—C2—C3—C40.1 (3)C5—C6—C7—O4174.72 (17)
C1—C2—C3—N4179.16 (16)C1—C6—C7—O45.6 (2)
O2—N4—C3—C41.9 (3)C12—N1—C8—N2177.00 (18)
O1—N4—C3—C4178.55 (18)C12—N1—C8—C92.2 (3)
O2—N4—C3—C2177.21 (18)N2—C8—C9—N33.9 (3)
O1—N4—C3—C22.3 (3)N1—C8—C9—N3176.90 (17)
C2—C3—C4—C50.4 (3)N2—C8—C9—C10177.88 (18)
N4—C3—C4—C5179.44 (17)N1—C8—C9—C101.3 (2)
C3—C4—C5—C60.2 (3)N3—C9—C10—C11178.94 (19)
C4—C5—C6—C11.0 (3)C8—C9—C10—C110.8 (3)
C4—C5—C6—C7179.32 (16)C9—C10—C11—C122.1 (3)
C2—C1—C6—C51.3 (3)C8—N1—C12—C110.9 (3)
C2—C1—C6—C7179.02 (17)C10—C11—C12—N11.3 (3)
C5—C6—C7—O35.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O40.99 (3)1.70 (3)2.671 (2)167 (3)
N2—H1N2···O30.89 (3)2.01 (3)2.901 (2)178 (5)
N2—H2N2···O3i0.86 (2)2.06 (2)2.903 (2)171 (2)
N3—H1N3···O3i0.85 (3)2.14 (3)2.951 (3)159 (2)
N3—H2N3···O2ii0.82 (3)2.34 (3)3.140 (2)165 (3)
C10—H10A···O1ii0.98 (3)2.53 (3)3.507 (2)176.9 (16)
C11—H11A···O4iii0.99 (2)2.56 (2)3.216 (3)123.5 (19)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y+2, z; (iii) x+1, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC5H8N3+·C7H4NO4
Mr276.26
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)8.0827 (2), 6.7365 (1), 11.4489 (3)
β (°) 101.967 (1)
V3)609.83 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.25 × 0.17 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.972, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
11659, 2808, 2155
Rint0.045
(sin θ/λ)max1)0.805
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.116, 1.04
No. of reflections2808
No. of parameters229
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.30

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O40.99 (3)1.70 (3)2.671 (2)167 (3)
N2—H1N2···O30.89 (3)2.01 (3)2.901 (2)178 (5)
N2—H2N2···O3i0.86 (2)2.06 (2)2.903 (2)171 (2)
N3—H1N3···O3i0.85 (3)2.14 (3)2.951 (3)159 (2)
N3—H2N3···O2ii0.82 (3)2.34 (3)3.140 (2)165 (3)
C10—H10A···O1ii0.98 (3)2.53 (3)3.507 (2)176.9 (16)
C11—H11A···O4iii0.99 (2)2.56 (2)3.216 (3)123.5 (19)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y+2, z; (iii) x+1, y+1/2, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and KBS thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. KBS thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). In Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationScheiner, S. (1997). In Hydrogen Bonding, A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1511-o1512
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds