metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis(2-methyl­quinolin-8-olato-κ2N,O)tin(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 27 May 2009; accepted 28 May 2009; online 6 June 2009)

The bis-chelated Sn atom in the title compound, [Sn(C10H8NO)2Cl2], exists in a distorted cis-Cl2,cis-N2,trans-O2 octa­hedral environment.

Related literature

For the crystal structure of dichloridobis(8-oxidoquinoline), see: Archer et al. (1987[Archer, S. J., Koch, K. R. & Schmidt, S. (1987). Inorg. Chim. Acta, 126, 209-218.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C10H8NO)2Cl2]

  • Mr = 505.94

  • Triclinic, [P \overline 1]

  • a = 7.9651 (1) Å

  • b = 9.6336 (1) Å

  • c = 12.8337 (2) Å

  • α = 94.599 (1)°

  • β = 90.262 (1)°

  • γ = 109.236 (1)°

  • V = 926.29 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.69 mm−1

  • T = 133 K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.729, Tmax = 0.920

  • 7670 measured reflections

  • 4189 independent reflections

  • 3905 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.060

  • S = 1.03

  • 4189 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structure of dichloridobis(8-oxidoquinoline), see: Archer et al. (1987).

Experimental top

Di(p-chlorobenzyl)tin dichloride (0.44 g, 1 mmol) and 8-hydroxyquinaldine (0.16 g, 1 mmol) were dissolved in chloroform (100 ml) and the solution was heated for 1 hour. Slow evaporation of the filtrate gave yellow crystals. The organic groups at tin were probabaly cleaved by the heterocycle in the reaction.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.95–0.98 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of SnCl2(C10H8NO)2 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Dichloridobis(2-methylquinolin-8-olato-κ2N,O)tin(IV) top
Crystal data top
[Sn(C10H8NO)2Cl2]Z = 2
Mr = 505.94F(000) = 500
Triclinic, P1Dx = 1.814 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9651 (1) ÅCell parameters from 9941 reflections
b = 9.6336 (1) Åθ = 2.4–28.2°
c = 12.8337 (2) ŵ = 1.69 mm1
α = 94.599 (1)°T = 133 K
β = 90.262 (1)°Prism, pale yellow
γ = 109.236 (1)°0.20 × 0.10 × 0.05 mm
V = 926.29 (2) Å3
Data collection top
Bruker SMART APEX
diffractometer
4189 independent reflections
Radiation source: fine-focus sealed tube3905 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.729, Tmax = 0.920k = 1212
7670 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.4719P]
where P = (Fo2 + 2Fc2)/3
4189 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Sn(C10H8NO)2Cl2]γ = 109.236 (1)°
Mr = 505.94V = 926.29 (2) Å3
Triclinic, P1Z = 2
a = 7.9651 (1) ÅMo Kα radiation
b = 9.6336 (1) ŵ = 1.69 mm1
c = 12.8337 (2) ÅT = 133 K
α = 94.599 (1)°0.20 × 0.10 × 0.05 mm
β = 90.262 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4189 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3905 reflections with I > 2σ(I)
Tmin = 0.729, Tmax = 0.920Rint = 0.015
7670 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.03Δρmax = 0.79 e Å3
4189 reflectionsΔρmin = 0.34 e Å3
246 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.276677 (18)0.727420 (15)0.279378 (11)0.01746 (6)
Cl10.03285 (7)0.77602 (6)0.20001 (4)0.02382 (12)
Cl20.24196 (8)0.82902 (6)0.44903 (4)0.02532 (12)
N10.4783 (2)0.6315 (2)0.34153 (14)0.0183 (4)
N20.3536 (2)0.6733 (2)0.11290 (15)0.0200 (4)
O10.1236 (2)0.51786 (17)0.29867 (13)0.0221 (3)
O20.4661 (2)0.91742 (17)0.25039 (13)0.0240 (3)
C10.7366 (3)0.8568 (3)0.37939 (19)0.0250 (5)
H1A0.65220.90470.40570.038*
H1B0.77460.88850.31010.038*
H1C0.84060.88470.42750.038*
C20.6490 (3)0.6930 (3)0.37157 (17)0.0200 (4)
C30.7488 (3)0.6025 (3)0.39744 (19)0.0247 (5)
H30.87090.64700.41770.030*
C40.6739 (3)0.4537 (3)0.39396 (19)0.0260 (5)
H40.74440.39480.40930.031*
C50.4912 (3)0.3865 (3)0.36755 (17)0.0225 (5)
C60.3986 (4)0.2331 (3)0.36603 (19)0.0283 (5)
H60.46030.16730.38070.034*
C70.2184 (4)0.1802 (3)0.3431 (2)0.0311 (6)
H70.15670.07720.34190.037*
C80.1239 (3)0.2753 (3)0.32133 (19)0.0272 (5)
H80.00090.23600.30730.033*
C90.2103 (3)0.4248 (2)0.32009 (17)0.0208 (4)
C100.3970 (3)0.4819 (2)0.34239 (17)0.0192 (4)
C110.1273 (3)0.4305 (3)0.0696 (2)0.0285 (5)
H11A0.04240.46580.10940.043*
H11B0.17060.36840.11200.043*
H11C0.06850.37290.00530.043*
C120.2808 (3)0.5597 (3)0.04230 (18)0.0228 (5)
C130.3471 (4)0.5605 (3)0.0607 (2)0.0302 (5)
H130.29150.48120.11170.036*
C140.4896 (4)0.6746 (3)0.0858 (2)0.0313 (6)
H140.53520.67290.15400.038*
C150.5713 (3)0.7955 (3)0.01254 (19)0.0269 (5)
C160.7162 (3)0.9198 (3)0.0338 (2)0.0348 (6)
H160.77120.92280.09950.042*
C170.7769 (4)1.0357 (3)0.0405 (2)0.0374 (7)
H170.87721.11770.02650.045*
C180.6947 (3)1.0370 (3)0.1376 (2)0.0311 (6)
H180.73781.12040.18710.037*
C190.5515 (3)0.9171 (3)0.16080 (19)0.0238 (5)
C200.4932 (3)0.7921 (3)0.08655 (18)0.0212 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01921 (8)0.01482 (8)0.01839 (9)0.00572 (6)0.00134 (6)0.00120 (6)
Cl10.0241 (3)0.0261 (3)0.0234 (3)0.0112 (2)0.0001 (2)0.0025 (2)
Cl20.0310 (3)0.0255 (3)0.0213 (3)0.0128 (2)0.0006 (2)0.0018 (2)
N10.0213 (9)0.0184 (9)0.0158 (9)0.0071 (7)0.0017 (7)0.0015 (7)
N20.0210 (9)0.0214 (9)0.0193 (9)0.0091 (8)0.0002 (7)0.0034 (8)
O10.0194 (7)0.0183 (8)0.0275 (9)0.0041 (6)0.0000 (6)0.0045 (7)
O20.0267 (8)0.0169 (8)0.0258 (9)0.0037 (6)0.0018 (7)0.0016 (7)
C10.0209 (10)0.0239 (12)0.0271 (12)0.0038 (9)0.0021 (9)0.0004 (10)
C20.0215 (10)0.0230 (11)0.0152 (10)0.0067 (9)0.0024 (8)0.0019 (9)
C30.0206 (10)0.0332 (13)0.0220 (12)0.0110 (10)0.0017 (9)0.0042 (10)
C40.0322 (12)0.0309 (13)0.0214 (12)0.0187 (11)0.0019 (9)0.0048 (10)
C50.0310 (12)0.0241 (11)0.0150 (11)0.0124 (10)0.0016 (9)0.0026 (9)
C60.0436 (14)0.0219 (12)0.0236 (12)0.0161 (11)0.0004 (10)0.0035 (10)
C70.0463 (15)0.0151 (11)0.0286 (13)0.0058 (10)0.0042 (11)0.0019 (10)
C80.0304 (12)0.0218 (12)0.0260 (13)0.0036 (10)0.0031 (10)0.0040 (10)
C90.0265 (11)0.0172 (10)0.0182 (11)0.0064 (9)0.0004 (9)0.0020 (9)
C100.0262 (11)0.0173 (10)0.0144 (10)0.0080 (9)0.0014 (8)0.0005 (8)
C110.0342 (13)0.0235 (12)0.0256 (13)0.0074 (10)0.0039 (10)0.0018 (10)
C120.0259 (11)0.0239 (11)0.0216 (12)0.0123 (9)0.0006 (9)0.0010 (9)
C130.0362 (13)0.0364 (14)0.0233 (12)0.0198 (12)0.0007 (10)0.0004 (11)
C140.0365 (13)0.0439 (15)0.0199 (12)0.0213 (12)0.0050 (10)0.0065 (11)
C150.0265 (12)0.0349 (14)0.0241 (12)0.0150 (10)0.0038 (10)0.0088 (11)
C160.0294 (13)0.0446 (16)0.0329 (15)0.0120 (12)0.0106 (11)0.0184 (13)
C170.0258 (12)0.0406 (16)0.0446 (17)0.0049 (11)0.0063 (11)0.0231 (14)
C180.0285 (12)0.0271 (13)0.0349 (14)0.0035 (10)0.0028 (11)0.0110 (11)
C190.0219 (10)0.0247 (12)0.0257 (12)0.0076 (9)0.0000 (9)0.0090 (10)
C200.0194 (10)0.0242 (11)0.0223 (12)0.0091 (9)0.0005 (8)0.0073 (9)
Geometric parameters (Å, º) top
Sn1—O22.0149 (16)C6—H60.9500
Sn1—O12.0211 (16)C7—C81.406 (3)
Sn1—N12.2703 (18)C7—H70.9500
Sn1—N22.2925 (19)C8—C91.379 (3)
Sn1—Cl22.3700 (6)C8—H80.9500
Sn1—Cl12.3846 (5)C9—C101.424 (3)
N1—C21.332 (3)C11—C121.495 (3)
N1—C101.373 (3)C11—H11A0.9800
N2—C121.332 (3)C11—H11B0.9800
N2—C201.374 (3)C11—H11C0.9800
O1—C91.342 (3)C12—C131.425 (3)
O2—C191.339 (3)C13—C141.356 (4)
C1—C21.496 (3)C13—H130.9500
C1—H1A0.9800C14—C151.408 (4)
C1—H1B0.9800C14—H140.9500
C1—H1C0.9800C15—C161.409 (4)
C2—C31.415 (3)C15—C201.416 (3)
C3—C41.356 (4)C16—C171.364 (4)
C3—H30.9500C16—H160.9500
C4—C51.411 (3)C17—C181.411 (4)
C4—H40.9500C17—H170.9500
C5—C61.416 (3)C18—C191.384 (3)
C5—C101.418 (3)C18—H180.9500
C6—C71.377 (4)C19—C201.420 (3)
O2—Sn1—O1168.37 (6)C6—C7—H7119.3
O2—Sn1—N192.76 (7)C8—C7—H7119.3
O1—Sn1—N178.04 (6)C9—C8—C7120.7 (2)
O2—Sn1—N277.90 (7)C9—C8—H8119.7
O1—Sn1—N294.63 (7)C7—C8—H8119.7
N1—Sn1—N288.77 (6)O1—C9—C8121.9 (2)
O2—Sn1—Cl290.74 (5)O1—C9—C10119.2 (2)
O1—Sn1—Cl296.53 (5)C8—C9—C10118.9 (2)
N1—Sn1—Cl291.39 (5)N1—C10—C5122.3 (2)
N2—Sn1—Cl2168.62 (5)N1—C10—C9117.31 (19)
O2—Sn1—Cl197.04 (5)C5—C10—C9120.4 (2)
O1—Sn1—Cl191.31 (5)C12—C11—H11A109.5
N1—Sn1—Cl1167.95 (5)C12—C11—H11B109.5
N2—Sn1—Cl186.47 (5)H11A—C11—H11B109.5
Cl2—Sn1—Cl195.46 (2)C12—C11—H11C109.5
C2—N1—C10119.95 (19)H11A—C11—H11C109.5
C2—N1—Sn1132.09 (15)H11B—C11—H11C109.5
C10—N1—Sn1107.93 (14)N2—C12—C13120.3 (2)
C12—N2—C20120.0 (2)N2—C12—C11120.5 (2)
C12—N2—Sn1132.03 (15)C13—C12—C11119.2 (2)
C20—N2—Sn1107.76 (15)C14—C13—C12120.0 (3)
C9—O1—Sn1116.18 (13)C14—C13—H13120.0
C19—O2—Sn1116.82 (15)C12—C13—H13120.0
C2—C1—H1A109.5C13—C14—C15121.2 (2)
C2—C1—H1B109.5C13—C14—H14119.4
H1A—C1—H1B109.5C15—C14—H14119.4
C2—C1—H1C109.5C16—C15—C20119.3 (2)
H1A—C1—H1C109.5C16—C15—C14124.4 (2)
H1B—C1—H1C109.5C20—C15—C14116.2 (2)
N1—C2—C3119.7 (2)C17—C16—C15119.5 (2)
N1—C2—C1120.9 (2)C17—C16—H16120.2
C3—C2—C1119.4 (2)C15—C16—H16120.2
C4—C3—C2121.4 (2)C16—C17—C18121.7 (2)
C4—C3—H3119.3C16—C17—H17119.1
C2—C3—H3119.3C18—C17—H17119.1
C3—C4—C5119.9 (2)C19—C18—C17120.2 (3)
C3—C4—H4120.0C19—C18—H18119.9
C5—C4—H4120.0C17—C18—H18119.9
C4—C5—C6124.3 (2)O2—C19—C18121.6 (2)
C4—C5—C10116.5 (2)O2—C19—C20119.7 (2)
C6—C5—C10119.2 (2)C18—C19—C20118.7 (2)
C7—C6—C5119.4 (2)N2—C20—C15122.2 (2)
C7—C6—H6120.3N2—C20—C19117.4 (2)
C5—C6—H6120.3C15—C20—C19120.3 (2)
C6—C7—C8121.4 (2)
O2—Sn1—N1—C214.7 (2)Sn1—O1—C9—C108.9 (3)
O1—Sn1—N1—C2172.5 (2)C7—C8—C9—O1179.4 (2)
N2—Sn1—N1—C292.5 (2)C7—C8—C9—C100.7 (4)
Cl2—Sn1—N1—C276.09 (19)C2—N1—C10—C54.4 (3)
Cl1—Sn1—N1—C2159.21 (17)Sn1—N1—C10—C5173.84 (17)
O2—Sn1—N1—C10163.29 (14)C2—N1—C10—C9173.6 (2)
O1—Sn1—N1—C109.52 (14)Sn1—N1—C10—C98.2 (2)
N2—Sn1—N1—C1085.47 (14)C4—C5—C10—N11.2 (3)
Cl2—Sn1—N1—C10105.91 (13)C6—C5—C10—N1179.5 (2)
Cl1—Sn1—N1—C1018.8 (3)C4—C5—C10—C9176.7 (2)
O2—Sn1—N2—C12170.0 (2)C6—C5—C10—C92.6 (3)
O1—Sn1—N2—C1219.05 (19)O1—C9—C10—N10.5 (3)
N1—Sn1—N2—C1296.95 (19)C8—C9—C10—N1179.3 (2)
Cl2—Sn1—N2—C12172.14 (17)O1—C9—C10—C5178.6 (2)
Cl1—Sn1—N2—C1271.98 (19)C8—C9—C10—C51.3 (3)
O2—Sn1—N2—C204.49 (13)C20—N2—C12—C130.0 (3)
O1—Sn1—N2—C20166.49 (13)Sn1—N2—C12—C13173.93 (16)
N1—Sn1—N2—C2088.60 (14)C20—N2—C12—C11179.3 (2)
Cl2—Sn1—N2—C202.3 (3)Sn1—N2—C12—C115.4 (3)
Cl1—Sn1—N2—C20102.47 (13)N2—C12—C13—C142.7 (3)
O2—Sn1—O1—C928.5 (4)C11—C12—C13—C14178.0 (2)
N1—Sn1—O1—C99.83 (15)C12—C13—C14—C151.8 (4)
N2—Sn1—O1—C977.92 (16)C13—C14—C15—C16178.1 (2)
Cl2—Sn1—O1—C999.87 (15)C13—C14—C15—C201.6 (3)
Cl1—Sn1—O1—C9164.49 (15)C20—C15—C16—C171.1 (4)
O1—Sn1—O2—C1944.7 (4)C14—C15—C16—C17175.2 (2)
N1—Sn1—O2—C1982.07 (16)C15—C16—C17—C182.1 (4)
N2—Sn1—O2—C196.07 (15)C16—C17—C18—C191.8 (4)
Cl2—Sn1—O2—C19173.50 (15)Sn1—O2—C19—C18173.95 (17)
Cl1—Sn1—O2—C1990.91 (15)Sn1—O2—C19—C207.0 (3)
C10—N1—C2—C34.3 (3)C17—C18—C19—O2177.2 (2)
Sn1—N1—C2—C3173.52 (15)C17—C18—C19—C201.9 (3)
C10—N1—C2—C1175.1 (2)C12—N2—C20—C153.7 (3)
Sn1—N1—C2—C17.1 (3)Sn1—N2—C20—C15178.95 (17)
N1—C2—C3—C41.0 (3)C12—N2—C20—C19172.74 (19)
C1—C2—C3—C4178.4 (2)Sn1—N2—C20—C192.5 (2)
C2—C3—C4—C52.2 (4)C16—C15—C20—N2178.9 (2)
C3—C4—C5—C6177.2 (2)C14—C15—C20—N24.4 (3)
C3—C4—C5—C102.1 (3)C16—C15—C20—C194.7 (3)
C4—C5—C6—C7177.4 (2)C14—C15—C20—C19171.9 (2)
C10—C5—C6—C71.8 (3)O2—C19—C20—N22.5 (3)
C5—C6—C7—C80.2 (4)C18—C19—C20—N2178.4 (2)
C6—C7—C8—C91.5 (4)O2—C19—C20—C15174.04 (19)
Sn1—O1—C9—C8171.26 (18)C18—C19—C20—C155.1 (3)

Experimental details

Crystal data
Chemical formula[Sn(C10H8NO)2Cl2]
Mr505.94
Crystal system, space groupTriclinic, P1
Temperature (K)133
a, b, c (Å)7.9651 (1), 9.6336 (1), 12.8337 (2)
α, β, γ (°)94.599 (1), 90.262 (1), 109.236 (1)
V3)926.29 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.69
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.729, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
7670, 4189, 3905
Rint0.015
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.060, 1.03
No. of reflections4189
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the University of Malaya (RG020/09AFR) for supporting this study.

References

First citationArcher, S. J., Koch, K. R. & Schmidt, S. (1987). Inorg. Chim. Acta, 126, 209–218.  CSD CrossRef CAS Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds