metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[lead(II)-[μ-2,4-di­amino-6-(piperidin-1-yl)pyrimidine N-oxide-κ2O:O]di-μ-iodido]

aInstitute of Chemical Industries, Iranian Research Organization for Science and Technology, PO Box 15815-358, Tehran, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 1 June 2009; accepted 3 June 2009; online 6 June 2009)

The N-oxide O atom of the minoxidil unit in the 1/1 adduct with lead(II) iodide, [PbI2(C9H15N5O)]n, bridges two PbII atoms, as do each of the I atoms. The bridging inter­actions give rise to a linear chain motif that propagates along the a axis of the ortho­rhom­bic unit cell. The coordination sphere around the six-coordinate PbII atom is a distorted ψ-monocapped octa­hedron in which the stereochemically active lone pair caps one of the faces defined by the O and I atoms forming the longer Pb—O or Pb—I bonds. The PbII atom lies on a mirror plane; the mirror plane is perpendicular to the pyrimidine ring and it bis­ects the piperidine ring. The aromatic ring is disordered about the mirror plane with respect to the 1-nitro­gen and 5-carbon atoms.

Related literature

For the crystal structure of minoxidil, see: Akama et al. (2004[Akama, H., Haramura, M., Tanaka, A., Akimoto, T. & Hirayama, N. (2004). Anal. Sci. 20, 29-30.]); Martín-Islán et al. (2008[Martín-Islán, A. P., Martín-Ramos, D. & Sainz-Díaz, C. I. (2008). J. Pharm. Sci. 97, 815-830.]).

[Scheme 1]

Experimental

Crystal data
  • [PbI2(C9H15N5O)]

  • Mr = 670.25

  • Orthorhombic, P n m a

  • a = 8.1010 (1) Å

  • b = 13.5126 (2) Å

  • c = 14.0140 (2) Å

  • V = 1534.05 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 15.02 mm−1

  • T = 140 K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.153, Tmax = 0.521 (expected range = 0.139–0.472)

  • 10101 measured reflections

  • 1837 independent reflections

  • 1752 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.043

  • S = 1.05

  • 1837 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.90 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structure of minoxidil, see: Akama et al. (2004); Martín-Islán et al. (2008).

Experimental top

Minoxidil [6-(1-piperidinyl)-2,4-pyrimidinediamide 3-oxide) (0.10 g, 0.5 mmol), lead(II) acetate (0.17 g, 0.5 mmol) and potassium iodide (0.16 g, 1 mmol) were placed one arm of a two-arm glass tube. Methanol was added to fill both arms. The tube was sealed and the arm containing the reactants immersed in an oil bath at 333 K while the other arm was kept at ambient temperature. After 10 days, light-brown crystals deposited in the cooler arm. These were collected, washed with acetone and ether, and finally air dried.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino H-atoms were similarly treated (N–H 0.88 Å).

The minoxidil molecule is disordered about a mirror plane that is perpendicular to the pyrimidinyl ring; the mirror plane also bisects piperidinyl ring. In the aromatic ring, the nitrogen atom at the 1-position shares the same site as the carbon atom at the 5-position; this site was refined as half a nitrogen atom and half a C-H group. The short H2···H4a distance of 1.74 Å is an artifact of the disorder about a mirror plane.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellisoid plot (Barbour, 2001) of the lead diiodide–minoxidil adduct extended to show the coordination geometries of two lead atoms of the linear chain formed in the crystal structure. Atoms comprising the asymmetric unit are labelled, probability levels are set at 70% and H-atoms are drawn as spheres of arbitrary radius. Only one component of the disorder is shown.
catena-Poly[lead(II)-[µ-2,4-diamino-6-(piperidin-1-yl)pyrimidine N-oxide-κ2O:O]di-µ-iodido] top
Crystal data top
[PbI2(C9H15N5O)]F(000) = 1200
Mr = 670.25Dx = 2.902 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 5726 reflections
a = 8.1010 (1) Åθ = 2.9–28.3°
b = 13.5126 (2) ŵ = 15.02 mm1
c = 14.0140 (2) ÅT = 140 K
V = 1534.05 (4) Å3Prism, yellow
Z = 40.20 × 0.10 × 0.05 mm
Data collection top
Bruker SMART APEX
diffractometer
1837 independent reflections
Radiation source: fine-focus sealed tube1752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.153, Tmax = 0.521k = 1717
10101 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0233P)2 + 1.8105P]
where P = (Fo2 + 2Fc2)/3
1837 reflections(Δ/σ)max = 0.001
91 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
[PbI2(C9H15N5O)]V = 1534.05 (4) Å3
Mr = 670.25Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 8.1010 (1) ŵ = 15.02 mm1
b = 13.5126 (2) ÅT = 140 K
c = 14.0140 (2) Å0.20 × 0.10 × 0.05 mm
Data collection top
Bruker SMART APEX
diffractometer
1837 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1752 reflections with I > 2σ(I)
Tmin = 0.153, Tmax = 0.521Rint = 0.028
10101 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.043H-atom parameters constrained
S = 1.05Δρmax = 0.72 e Å3
1837 reflectionsΔρmin = 0.90 e Å3
91 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pb10.55277 (2)0.75000.769395 (12)0.01565 (6)
I10.26714 (3)0.588041 (17)0.831700 (16)0.02101 (7)
O10.3482 (4)0.75000.6436 (2)0.0171 (7)
N10.3822 (5)0.75000.5481 (3)0.0137 (8)
N20.4236 (4)0.6615 (2)0.4053 (2)0.0184 (6)0.50
N30.3560 (4)0.5806 (2)0.5498 (2)0.0237 (7)
H310.35650.52260.52130.028*
H320.33400.58470.61120.028*
N40.4716 (6)0.75000.2638 (3)0.0187 (9)
C10.3887 (4)0.6625 (3)0.5000 (2)0.0183 (7)
C20.4236 (4)0.6615 (2)0.4053 (2)0.0184 (6)0.50
H20.43520.60070.37180.022*0.50
C30.4417 (6)0.75000.3590 (3)0.0173 (9)
C40.5041 (5)0.6591 (3)0.2101 (3)0.0224 (7)
H4A0.47320.60100.24930.027*
H4B0.62340.65440.19560.027*
C50.4058 (5)0.6583 (3)0.1176 (3)0.0280 (9)
H5A0.43670.59920.07980.034*
H5B0.28670.65350.13260.034*
C60.4363 (8)0.75000.0587 (4)0.0350 (14)
H6A0.55170.75000.03540.042*
H6B0.36210.75000.00260.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01521 (10)0.01598 (10)0.01577 (10)0.0000.00072 (6)0.000
I10.02066 (14)0.01606 (12)0.02631 (12)0.00058 (9)0.00187 (9)0.00768 (8)
O10.0150 (17)0.0263 (18)0.0099 (13)0.0000.0015 (12)0.000
N10.0143 (19)0.0163 (19)0.0105 (16)0.0000.0019 (14)0.000
N20.0168 (16)0.0230 (17)0.0155 (14)0.0007 (13)0.0001 (12)0.0035 (12)
N30.0270 (17)0.0148 (15)0.0294 (15)0.0038 (13)0.0040 (13)0.0053 (12)
N40.026 (2)0.018 (2)0.0118 (18)0.0000.0012 (16)0.000
C10.0145 (16)0.0208 (18)0.0197 (16)0.0011 (14)0.0007 (13)0.0043 (13)
C20.0168 (16)0.0230 (17)0.0155 (14)0.0007 (13)0.0001 (12)0.0035 (12)
C30.014 (2)0.022 (2)0.016 (2)0.0000.0009 (18)0.000
C40.0249 (19)0.0211 (18)0.0211 (16)0.0032 (16)0.0036 (15)0.0038 (14)
C50.025 (2)0.036 (2)0.0226 (18)0.0012 (17)0.0035 (15)0.0130 (16)
C60.039 (4)0.051 (4)0.014 (2)0.0000.006 (2)0.000
Geometric parameters (Å, º) top
Pb1—O12.419 (3)N4—C31.356 (6)
Pb1—O1i2.686 (3)N4—C41.464 (4)
Pb1—I13.3024 (3)N4—C4iii1.464 (4)
Pb1—I1ii3.1325 (3)C3—C2iii1.368 (4)
Pb1—I1i3.1325 (3)C3—N2iii1.368 (4)
Pb1—I1iii3.3024 (3)C4—C51.522 (5)
O1—N11.366 (5)C4—H4A0.9900
N1—C11.363 (4)C4—H4B0.9900
N1—C1iii1.363 (4)C5—C61.509 (5)
N2—C11.358 (4)C5—H5A0.9900
N2—C31.368 (4)C5—H5B0.9900
N3—C11.335 (4)C6—C5iii1.509 (5)
N3—H310.8800C6—H6A0.9900
N3—H320.8800C6—H6B0.9900
O1—Pb1—O1i160.22 (9)C4—N4—C4iii114.1 (4)
O1—Pb1—I1i92.88 (5)N3—C1—N2123.0 (3)
O1i—Pb1—I1i73.21 (5)N3—C1—N1116.9 (3)
O1—Pb1—I1ii92.88 (5)N2—C1—N1120.1 (3)
O1i—Pb1—I1ii73.21 (5)N4—C3—N2119.0 (2)
I1i—Pb1—I1ii88.636 (10)N4—C3—C2iii119.0 (2)
O1—Pb1—I173.30 (5)N2—C3—C2iii121.9 (4)
O1i—Pb1—I1120.29 (4)N4—C3—N2iii119.0 (2)
I1i—Pb1—I192.581 (7)N2—C3—N2iii121.9 (4)
I1ii—Pb1—I1166.169 (8)C2iii—C3—N2iii0.0 (3)
O1—Pb1—I1iii73.30 (5)N4—C4—C5110.5 (3)
O1i—Pb1—I1iii120.29 (4)N4—C4—H4A109.6
I1i—Pb1—I1iii166.169 (8)C5—C4—H4A109.6
I1ii—Pb1—I1iii92.581 (7)N4—C4—H4B109.6
I1—Pb1—I1iii83.011 (9)C5—C4—H4B109.6
Pb1iv—I1—Pb178.806 (5)H4A—C4—H4B108.1
N1—O1—Pb1125.2 (3)C6—C5—C4112.0 (4)
N1—O1—Pb1iv128.6 (3)C6—C5—H5A109.2
Pb1—O1—Pb1iv106.25 (11)C4—C5—H5A109.2
O1—N1—C1119.5 (2)C6—C5—H5B109.2
O1—N1—C1iii119.5 (2)C4—C5—H5B109.2
C1—N1—C1iii120.5 (4)H5A—C5—H5B107.9
C1—N2—C3118.5 (3)C5iii—C6—C5110.4 (4)
C1—N3—H31120.0C5iii—C6—H6A109.6
C1—N3—H32120.0C5—C6—H6A109.6
H31—N3—H32120.0C5iii—C6—H6B109.6
C3—N4—C4122.51 (19)C5—C6—H6B109.6
C3—N4—C4iii122.51 (19)H6A—C6—H6B108.1
O1—Pb1—I1—Pb1iv35.49 (5)C3—N2—C1—N3174.6 (4)
O1i—Pb1—I1—Pb1iv160.24 (6)C3—N2—C1—N13.9 (5)
I1i—Pb1—I1—Pb1iv127.726 (10)O1—N1—C1—N31.9 (5)
I1ii—Pb1—I1—Pb1iv32.94 (2)C1iii—N1—C1—N3169.9 (3)
I1iii—Pb1—I1—Pb1iv39.115 (7)O1—N1—C1—N2179.5 (3)
O1i—Pb1—O1—N10.000 (2)C1iii—N1—C1—N28.7 (7)
I1i—Pb1—O1—N144.389 (6)C4—N4—C3—N27.1 (7)
I1ii—Pb1—O1—N144.389 (6)C4iii—N4—C3—N2175.6 (4)
I1—Pb1—O1—N1136.222 (16)C4—N4—C3—C2iii175.6 (4)
I1iii—Pb1—O1—N1136.222 (17)C4iii—N4—C3—C2iii7.1 (7)
O1i—Pb1—O1—Pb1iv180.0C4—N4—C3—N2iii175.6 (4)
I1i—Pb1—O1—Pb1iv135.611 (6)C4iii—N4—C3—N2iii7.1 (7)
I1ii—Pb1—O1—Pb1iv135.611 (6)C1—N2—C3—N4178.0 (4)
I1—Pb1—O1—Pb1iv43.778 (16)C1—N2—C3—C2iii0.8 (7)
I1iii—Pb1—O1—Pb1iv43.778 (16)C1—N2—C3—N2iii0.8 (7)
Pb1—O1—N1—C194.1 (3)C3—N4—C4—C5134.8 (5)
Pb1iv—O1—N1—C185.9 (3)C4iii—N4—C4—C555.8 (6)
Pb1—O1—N1—C1iii94.1 (3)N4—C4—C5—C654.1 (5)
Pb1iv—O1—N1—C1iii85.9 (3)C4—C5—C6—C5iii53.5 (6)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1/2, y+3/2, z+3/2; (iii) x, y+3/2, z; (iv) x1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formula[PbI2(C9H15N5O)]
Mr670.25
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)140
a, b, c (Å)8.1010 (1), 13.5126 (2), 14.0140 (2)
V3)1534.05 (4)
Z4
Radiation typeMo Kα
µ (mm1)15.02
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.153, 0.521
No. of measured, independent and
observed [I > 2σ(I)] reflections
10101, 1837, 1752
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.043, 1.05
No. of reflections1837
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.90

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank IROST and the University of Malaya for supporting this study.

References

First citationAkama, H., Haramura, M., Tanaka, A., Akimoto, T. & Hirayama, N. (2004). Anal. Sci. 20, 29–30.  Web of Science PubMed Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMartín-Islán, A. P., Martín-Ramos, D. & Sainz-Díaz, C. I. (2008). J. Pharm. Sci. 97, 815–830.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds