organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-(Bi­phenyl-2,2′-di­yl)bis­­(furan-2-carboxamide)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 June 2009; accepted 9 June 2009; online 13 June 2009)

The title mol­ecule, C22H16N2O4, is a 2,2′-disubstituted biphenyl whose phenyl­ene rings are rotated by 66.5 (1)° so as to avoid repulsion by the substituents. Only one of the two amide –NH– fragments engages in hydrogen bonding, and this inter­acts with the amido –C(=O)– acceptor of an inversion-related mol­ecule to generate a hydrogen-bonded dimer.

Related literature

The Heck reaction produces the desired stilbene along with a symmetrical biaryl owing to homocoupling of the aryl halide reactant. For the synthesis of stilbene carboxamides synthesized by using radical cations in a modified Heck reaction; see: Thomas et al. (2008[Thomas, N. F., Kee, C.-H., Ariffin, A., Awang, K., Weber, J.-F. F., Lim, C.-G., Mukhtar, M. R. & Abdul Hadi, A. H. (2008). Heterocycles, 75, 1097-1108.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16N2O4

  • Mr = 372.37

  • Triclinic, [P \overline 1]

  • a = 8.1784 (2) Å

  • b = 10.1399 (2) Å

  • c = 11.1475 (2) Å

  • α = 99.938 (1)°

  • β = 107.521 (1)°

  • γ = 92.439 (1)°

  • V = 863.92 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 6080 measured reflections

  • 3836 independent reflections

  • 3349 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.111

  • S = 1.03

  • 3836 reflections

  • 261 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.88 (1) 2.12 (1) 2.970 (1) 165 (1)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

The Heck reaction produces the desired stilbene along with a symmetrical biaryl owing to homocoupling of the aryl halide reactant. For the synthesis of stilbene carboxamides synthesized by using radical cations in a modified Heck reaction; see: Thomas et al. (2008).

Experimental top

N-(2-Iodophenyl)furan-2-carboxamide (1.51 g, 4.81 mmol) was dissolved in DMF (30 ml) under a nitrogen atmosphere. The solution was heated to 393 K. Palladium acetate (0.01 g, 0.05 mmol) was added followed by triethylamine (2.4 ml, 0.2 mol) and 4-methoxystyrene (0.83 g, 6.16 mmol). The mixture was heated for 48 h. The solution was cooled and then mixed with saturated sodium chloride. The organic compound was extracted with ethylacetate. The ethylacetate solution was dried with sodium sulfate. The solvent was evaporated and the product purified by column chromatography (0.12 g, 10% yield). Single crystals were obtained by recrystallization from hexane/chloroform.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation with U(H) set to 1.2Ueq(C). The nitrogen-bound H atoms were located in a difference Fourier map, and were refined with a restraint of N–H 0.88±0.01 Å

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C22H16N2O4 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radiius.
[Figure 2] Fig. 2. Hydrogen-bonded dimer in the crystal structure of (I). Red dashed lines represent N-H···O hydrogen bonds.
N,N'-(Biphenyl-2,2'-diyl)bis(furan-2-carboxamide) top
Crystal data top
C22H16N2O4Z = 2
Mr = 372.37F(000) = 388
Triclinic, P1Dx = 1.431 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1784 (2) ÅCell parameters from 3508 reflections
b = 10.1399 (2) Åθ = 2.6–28.3°
c = 11.1475 (2) ŵ = 0.10 mm1
α = 99.938 (1)°T = 100 K
β = 107.521 (1)°Block, colorless
γ = 92.439 (1)°0.30 × 0.25 × 0.20 mm
V = 863.92 (3) Å3
Data collection top
Bruker SMART APEX
diffractometer
3349 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
ω scansh = 1010
6080 measured reflectionsk = 1213
3836 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0627P)2 + 0.3539P]
where P = (Fo2 + 2Fc2)/3
3836 reflections(Δ/σ)max = 0.001
261 parametersΔρmax = 0.33 e Å3
2 restraintsΔρmin = 0.27 e Å3
Crystal data top
C22H16N2O4γ = 92.439 (1)°
Mr = 372.37V = 863.92 (3) Å3
Triclinic, P1Z = 2
a = 8.1784 (2) ÅMo Kα radiation
b = 10.1399 (2) ŵ = 0.10 mm1
c = 11.1475 (2) ÅT = 100 K
α = 99.938 (1)°0.30 × 0.25 × 0.20 mm
β = 107.521 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3349 reflections with I > 2σ(I)
6080 measured reflectionsRint = 0.015
3836 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
3836 reflectionsΔρmin = 0.27 e Å3
261 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37952 (12)0.28756 (9)0.22024 (9)0.0174 (2)
O20.32912 (12)0.61791 (9)0.36569 (9)0.0186 (2)
O30.42615 (12)0.02447 (10)0.82668 (9)0.0213 (2)
O40.80281 (12)0.23741 (9)0.86550 (9)0.0191 (2)
N10.29107 (14)0.41257 (11)0.42005 (10)0.0156 (2)
H10.295 (2)0.3271 (10)0.3921 (17)0.028 (5)*
N20.47787 (14)0.16551 (11)0.70037 (10)0.0148 (2)
H20.5491 (17)0.2298 (13)0.6951 (15)0.016 (4)*
C10.40891 (17)0.24580 (13)0.10565 (13)0.0190 (3)
H1a0.43040.15700.07490.023*
C20.40293 (17)0.34894 (14)0.04255 (13)0.0190 (3)
H2a0.41800.34560.03910.023*
C30.36958 (16)0.46370 (13)0.12235 (12)0.0173 (3)
H30.35810.55170.10440.021*
C40.35755 (16)0.42216 (12)0.22885 (12)0.0155 (3)
C50.32496 (16)0.49452 (12)0.34438 (12)0.0145 (2)
C60.24862 (16)0.44495 (13)0.53444 (12)0.0144 (2)
C70.23946 (17)0.57726 (13)0.59222 (12)0.0169 (3)
H70.26030.65010.55370.020*
C80.19978 (17)0.60133 (13)0.70591 (12)0.0182 (3)
H80.19500.69130.74550.022*
C90.16695 (17)0.49624 (14)0.76291 (12)0.0192 (3)
H90.13860.51380.84040.023*
C100.17609 (17)0.36502 (13)0.70536 (12)0.0174 (3)
H100.15390.29280.74430.021*
C110.21726 (16)0.33732 (12)0.59167 (12)0.0142 (2)
C120.21741 (16)0.19410 (12)0.53056 (12)0.0142 (3)
C130.08880 (17)0.13778 (13)0.41514 (12)0.0164 (3)
H130.00940.19370.37310.020*
C140.07515 (17)0.00244 (13)0.36117 (12)0.0182 (3)
H140.01210.03370.28250.022*
C150.18976 (17)0.08003 (13)0.42285 (12)0.0178 (3)
H150.17900.17340.38770.021*
C160.31983 (16)0.02613 (13)0.53571 (12)0.0161 (3)
H160.39910.08260.57700.019*
C170.33501 (16)0.11065 (12)0.58905 (12)0.0141 (2)
C180.52125 (16)0.10827 (12)0.80562 (12)0.0150 (3)
C190.69553 (16)0.15138 (12)0.89706 (12)0.0155 (3)
C200.77797 (18)0.11564 (13)1.01001 (13)0.0195 (3)
H200.73190.05771.05290.023*
C210.94791 (18)0.18268 (15)1.05134 (13)0.0226 (3)
H211.03800.17791.12720.027*
C220.95558 (18)0.25413 (15)0.96175 (13)0.0226 (3)
H221.05460.30900.96520.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0214 (5)0.0138 (4)0.0181 (4)0.0017 (4)0.0076 (4)0.0032 (3)
O20.0226 (5)0.0136 (4)0.0217 (5)0.0018 (4)0.0085 (4)0.0058 (4)
O30.0197 (5)0.0241 (5)0.0206 (5)0.0031 (4)0.0051 (4)0.0095 (4)
O40.0162 (5)0.0212 (5)0.0196 (5)0.0015 (4)0.0041 (4)0.0065 (4)
N10.0211 (6)0.0113 (5)0.0162 (5)0.0023 (4)0.0082 (4)0.0031 (4)
N20.0136 (5)0.0140 (5)0.0169 (5)0.0005 (4)0.0037 (4)0.0057 (4)
C10.0176 (6)0.0193 (6)0.0187 (6)0.0010 (5)0.0066 (5)0.0011 (5)
C20.0166 (6)0.0231 (6)0.0170 (6)0.0003 (5)0.0058 (5)0.0029 (5)
C30.0160 (6)0.0178 (6)0.0185 (6)0.0005 (5)0.0056 (5)0.0050 (5)
C40.0143 (6)0.0132 (6)0.0185 (6)0.0005 (5)0.0036 (5)0.0044 (5)
C50.0124 (5)0.0151 (6)0.0158 (6)0.0013 (4)0.0031 (5)0.0050 (5)
C60.0132 (6)0.0158 (6)0.0140 (6)0.0022 (4)0.0031 (5)0.0039 (5)
C70.0176 (6)0.0147 (6)0.0177 (6)0.0030 (5)0.0038 (5)0.0044 (5)
C80.0182 (6)0.0163 (6)0.0176 (6)0.0056 (5)0.0026 (5)0.0012 (5)
C90.0198 (6)0.0230 (7)0.0143 (6)0.0049 (5)0.0048 (5)0.0031 (5)
C100.0178 (6)0.0192 (6)0.0157 (6)0.0015 (5)0.0044 (5)0.0060 (5)
C110.0120 (6)0.0143 (6)0.0148 (6)0.0019 (4)0.0016 (5)0.0037 (4)
C120.0153 (6)0.0140 (6)0.0150 (6)0.0001 (5)0.0063 (5)0.0047 (5)
C130.0178 (6)0.0162 (6)0.0154 (6)0.0026 (5)0.0044 (5)0.0053 (5)
C140.0194 (6)0.0181 (6)0.0153 (6)0.0015 (5)0.0040 (5)0.0018 (5)
C150.0211 (6)0.0139 (6)0.0193 (6)0.0002 (5)0.0089 (5)0.0018 (5)
C160.0157 (6)0.0146 (6)0.0202 (6)0.0034 (5)0.0078 (5)0.0053 (5)
C170.0141 (6)0.0156 (6)0.0137 (6)0.0000 (5)0.0057 (5)0.0040 (4)
C180.0154 (6)0.0147 (6)0.0156 (6)0.0032 (5)0.0055 (5)0.0032 (5)
C190.0163 (6)0.0147 (6)0.0166 (6)0.0018 (5)0.0064 (5)0.0036 (5)
C200.0205 (7)0.0206 (6)0.0171 (6)0.0020 (5)0.0049 (5)0.0049 (5)
C210.0183 (7)0.0283 (7)0.0178 (6)0.0018 (5)0.0017 (5)0.0023 (5)
C220.0152 (6)0.0277 (7)0.0219 (7)0.0026 (5)0.0032 (5)0.0024 (5)
Geometric parameters (Å, º) top
O1—C11.3695 (16)C8—H80.9500
O1—C41.3749 (15)C9—C101.3893 (18)
O2—C51.2295 (15)C9—H90.9500
O3—C181.2267 (16)C10—C111.3931 (18)
O4—C221.3613 (16)C10—H100.9500
O4—C191.3716 (15)C11—C121.4941 (17)
N1—C51.3572 (16)C12—C171.3957 (18)
N1—C61.4093 (16)C12—C131.4030 (17)
N1—H10.875 (9)C13—C141.3853 (17)
N2—C181.3569 (16)C13—H130.9500
N2—C171.4311 (16)C14—C151.3884 (19)
N2—H20.877 (9)C14—H140.9500
C1—C21.3521 (19)C15—C161.3858 (18)
C1—H1a0.9500C15—H150.9500
C2—C31.4267 (19)C16—C171.3961 (17)
C2—H2a0.9500C16—H160.9500
C3—C41.3550 (18)C18—C191.4765 (18)
C3—H30.9500C19—C201.3559 (18)
C4—C51.4715 (18)C20—C211.4255 (19)
C6—C71.3999 (17)C20—H200.9500
C6—C111.4067 (17)C21—C221.345 (2)
C7—C81.3851 (18)C21—H210.9500
C7—H70.9500C22—H220.9500
C8—C91.3869 (19)
C1—O1—C4106.32 (10)C11—C10—H10119.4
C22—O4—C19105.90 (10)C10—C11—C6118.87 (12)
C5—N1—C6129.64 (11)C10—C11—C12119.07 (11)
C5—N1—H1114.1 (12)C6—C11—C12121.97 (11)
C6—N1—H1116.3 (12)C17—C12—C13118.24 (11)
C18—N2—C17122.19 (10)C17—C12—C11122.04 (11)
C18—N2—H2118.8 (10)C13—C12—C11119.58 (11)
C17—N2—H2118.2 (10)C14—C13—C12121.42 (12)
C2—C1—O1110.34 (11)C14—C13—H13119.3
C2—C1—H1a124.8C12—C13—H13119.3
O1—C1—H1a124.8C13—C14—C15119.56 (12)
C1—C2—C3106.73 (12)C13—C14—H14120.2
C1—C2—H2a126.6C15—C14—H14120.2
C3—C2—H2a126.6C16—C15—C14120.02 (12)
C4—C3—C2106.31 (12)C16—C15—H15120.0
C4—C3—H3126.8C14—C15—H15120.0
C2—C3—H3126.8C15—C16—C17120.36 (12)
C3—C4—O1110.30 (11)C15—C16—H16119.8
C3—C4—C5131.50 (12)C17—C16—H16119.8
O1—C4—C5118.19 (11)C12—C17—C16120.35 (11)
O2—C5—N1125.53 (12)C12—C17—N2120.43 (11)
O2—C5—C4120.77 (11)C16—C17—N2119.14 (11)
N1—C5—C4113.70 (11)O3—C18—N2124.03 (12)
C7—C6—C11120.02 (11)O3—C18—C19119.98 (12)
C7—C6—N1122.95 (11)N2—C18—C19115.98 (11)
C11—C6—N1117.03 (11)C20—C19—O4110.52 (11)
C8—C7—C6119.61 (12)C20—C19—C18131.14 (12)
C8—C7—H7120.2O4—C19—C18118.26 (11)
C6—C7—H7120.2C19—C20—C21106.02 (12)
C9—C8—C7121.07 (12)C19—C20—H20127.0
C9—C8—H8119.5C21—C20—H20127.0
C7—C8—H8119.5C22—C21—C20106.47 (12)
C8—C9—C10119.20 (12)C22—C21—H21126.8
C8—C9—H9120.4C20—C21—H21126.8
C10—C9—H9120.4C21—C22—O4111.09 (12)
C9—C10—C11121.23 (12)C21—C22—H22124.5
C9—C10—H10119.4O4—C22—H22124.5
C4—O1—C1—C21.04 (14)C10—C11—C12—C13109.90 (14)
O1—C1—C2—C30.66 (15)C6—C11—C12—C1366.72 (16)
C1—C2—C3—C40.00 (14)C17—C12—C13—C141.43 (19)
C2—C3—C4—O10.65 (14)C11—C12—C13—C14174.25 (11)
C2—C3—C4—C5179.98 (13)C12—C13—C14—C150.66 (19)
C1—O1—C4—C31.04 (14)C13—C14—C15—C161.8 (2)
C1—O1—C4—C5179.49 (11)C14—C15—C16—C170.93 (19)
C6—N1—C5—O22.2 (2)C13—C12—C17—C162.34 (18)
C6—N1—C5—C4177.63 (12)C11—C12—C17—C16173.22 (11)
C3—C4—C5—O211.2 (2)C13—C12—C17—N2174.26 (11)
O1—C4—C5—O2169.42 (11)C11—C12—C17—N210.18 (18)
C3—C4—C5—N1168.56 (13)C15—C16—C17—C121.20 (18)
O1—C4—C5—N110.77 (16)C15—C16—C17—N2175.44 (11)
C5—N1—C6—C71.9 (2)C18—N2—C17—C12133.43 (13)
C5—N1—C6—C11178.99 (12)C18—N2—C17—C1649.93 (17)
C11—C6—C7—C80.14 (19)C17—N2—C18—O315.7 (2)
N1—C6—C7—C8178.89 (12)C17—N2—C18—C19163.63 (11)
C6—C7—C8—C90.7 (2)C22—O4—C19—C200.32 (15)
C7—C8—C9—C100.7 (2)C22—O4—C19—C18176.70 (11)
C8—C9—C10—C110.1 (2)O3—C18—C19—C201.2 (2)
C9—C10—C11—C60.48 (19)N2—C18—C19—C20179.49 (13)
C9—C10—C11—C12177.20 (12)O3—C18—C19—O4175.11 (11)
C7—C6—C11—C100.46 (18)N2—C18—C19—O44.22 (17)
N1—C6—C11—C10179.55 (11)O4—C19—C20—C210.45 (15)
C7—C6—C11—C12177.08 (11)C18—C19—C20—C21176.06 (13)
N1—C6—C11—C123.83 (18)C19—C20—C21—C220.40 (16)
C10—C11—C12—C1765.60 (16)C20—C21—C22—O40.22 (16)
C6—C11—C12—C17117.78 (14)C19—O4—C22—C210.05 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.88 (1)2.12 (1)2.970 (1)165 (1)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H16N2O4
Mr372.37
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.1784 (2), 10.1399 (2), 11.1475 (2)
α, β, γ (°)99.938 (1), 107.521 (1), 92.439 (1)
V3)863.92 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6080, 3836, 3349
Rint0.015
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.111, 1.03
No. of reflections3836
No. of parameters261
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.88 (1)2.12 (1)2.970 (1)165 (1)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank the Malaysia Toray Science Foundation for supporting this study. CHK thanks MOSTI for an NSF schol­arship.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, N. F., Kee, C.-H., Ariffin, A., Awang, K., Weber, J.-F. F., Lim, C.-G., Mukhtar, M. R. & Abdul Hadi, A. H. (2008). Heterocycles, 75, 1097–1108.  CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds