organic compounds
(E)-1-(4-Fluorophenyl)ethan-1-one semicarbazone
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, National Institute of Technology–Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my
In the title compound, C9H10FN3O, the semicarbazone group is nearly planar, with the maximum deviation of 0.044 (1) Å for one of the N atoms. The mean plane of semicarbazone group forms a dihedral angle of 30.94 (4)° with the benzene ring. The molecules are linked into a supramolecular chain by N—H⋯O hydrogen bonds formed along the c axis. The is further stabilized by weak intermolucular C—H⋯π interactions; the closest C⋯Cg contact is 3.6505 (11) Å.
Related literature
For hydrogen-bond motifs, see: Bernstein et al. (1995). For applications of semicarbazone derivatives, see: Chandra & Gupta (2005); Jain et al. (2002); Pilgram (1978); Warren et al. (1977); Yogeeswari et al. (2004). For the preparation of the compound, see: Furniss et al. (1978). For related structures, see: Fun et al. (2009a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809022521/tk2477sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809022521/tk2477Isup2.hkl
Semicarbazide hydrochloride (0.86 g, 7.70 mmol) and freshly recrystallized sodium acetate (0.77 g, 9.40 mmol) were dissolved in water (10 ml) following a literature procedure (Furniss et al., 1978). The reaction mixture was stirred at room temperature for 10 minutes. To this, 4-fluoroacetophenone (1.00 g, 7.23 mmol) was added and the mixture was shaken well. A little alcohol was added to dissolve the turbidity. The mixture was shaken for a further 10 minutes and allowed to stand. The title compound (I) crystallizes on standing for 6 h. The separated crystals were filtered, washed with cold water and recrystallized from ethanol. Yield: 1.34 g (95%). M.p. 485-486 K.
All hydrogen atoms were located from the difference Fourier map and refined freely, N—H = 0.820 (19) - 0.957 (19) Å and C–H = 0.945 (19) - 1.005 (18) Å.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms. | |
Fig. 2. The crystal packing of (I), viewed down the b axis, showing the molecules are linked along the c axis. Hydrogen bonds are shown in as dashed lines. |
C9H10FN3O | F(000) = 408 |
Mr = 195.20 | Dx = 1.428 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5018 reflections |
a = 18.8207 (3) Å | θ = 4.2–38.8° |
b = 6.6387 (1) Å | µ = 0.11 mm−1 |
c = 7.3074 (1) Å | T = 100 K |
β = 95.887 (1)° | Needle, colourless |
V = 908.21 (2) Å3 | 0.30 × 0.10 × 0.08 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 3998 independent reflections |
Radiation source: fine-focus sealed tube | 2766 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ϕ and ω scans | θmax = 35.0°, θmin = 1.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −29→30 |
Tmin = 0.876, Tmax = 0.991 | k = −10→10 |
17523 measured reflections | l = −7→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.151 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.078P)2 + 0.1557P] where P = (Fo2 + 2Fc2)/3 |
3998 reflections | (Δ/σ)max < 0.001 |
167 parameters | Δρmax = 0.51 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
C9H10FN3O | V = 908.21 (2) Å3 |
Mr = 195.20 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 18.8207 (3) Å | µ = 0.11 mm−1 |
b = 6.6387 (1) Å | T = 100 K |
c = 7.3074 (1) Å | 0.30 × 0.10 × 0.08 mm |
β = 95.887 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 3998 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2766 reflections with I > 2σ(I) |
Tmin = 0.876, Tmax = 0.991 | Rint = 0.033 |
17523 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.151 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.51 e Å−3 |
3998 reflections | Δρmin = −0.30 e Å−3 |
167 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.50077 (4) | 0.48694 (11) | 0.79001 (10) | 0.02274 (17) | |
O1 | −0.01336 (4) | 0.50372 (12) | 0.73484 (10) | 0.01547 (16) | |
N1 | 0.16753 (5) | 0.50702 (12) | 0.66798 (11) | 0.01257 (16) | |
N2 | 0.09495 (5) | 0.50670 (13) | 0.62389 (11) | 0.01339 (17) | |
N3 | 0.08724 (5) | 0.50728 (15) | 0.93755 (12) | 0.01734 (19) | |
C1 | 0.31185 (5) | 0.59520 (16) | 0.76477 (14) | 0.01595 (19) | |
C2 | 0.38374 (6) | 0.59368 (17) | 0.82935 (14) | 0.0178 (2) | |
C3 | 0.43028 (5) | 0.49203 (16) | 0.72738 (15) | 0.01591 (19) | |
C4 | 0.40812 (6) | 0.39453 (17) | 0.56461 (14) | 0.0177 (2) | |
C5 | 0.33579 (5) | 0.39948 (17) | 0.50051 (13) | 0.01569 (19) | |
C6 | 0.28652 (5) | 0.49812 (14) | 0.60026 (13) | 0.01153 (17) | |
C7 | 0.20888 (5) | 0.49673 (14) | 0.53803 (13) | 0.01158 (17) | |
C8 | 0.05269 (5) | 0.50588 (15) | 0.76711 (13) | 0.01249 (18) | |
C9 | 0.18228 (6) | 0.48336 (16) | 0.33718 (13) | 0.01471 (19) | |
H1A | 0.2783 (8) | 0.667 (2) | 0.8362 (19) | 0.023 (4)* | |
H2A | 0.4017 (8) | 0.666 (3) | 0.943 (2) | 0.031 (4)* | |
H4A | 0.4422 (7) | 0.324 (2) | 0.4966 (19) | 0.021 (3)* | |
H5A | 0.3214 (7) | 0.328 (2) | 0.3860 (19) | 0.017 (3)* | |
H9A | 0.1565 (9) | 0.602 (3) | 0.303 (2) | 0.035 (4)* | |
H9B | 0.1536 (9) | 0.364 (3) | 0.317 (2) | 0.037 (5)* | |
H9C | 0.2216 (10) | 0.480 (2) | 0.254 (2) | 0.031 (5)* | |
H1N2 | 0.0681 (10) | 0.502 (2) | 0.505 (3) | 0.029 (4)* | |
H1N3 | 0.1329 (10) | 0.506 (2) | 0.947 (2) | 0.025 (4)* | |
H2N3 | 0.0643 (10) | 0.505 (2) | 1.027 (3) | 0.030 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0096 (3) | 0.0346 (4) | 0.0230 (3) | 0.0012 (2) | −0.0031 (2) | −0.0014 (3) |
O1 | 0.0103 (3) | 0.0256 (4) | 0.0103 (3) | −0.0002 (3) | 0.0004 (2) | −0.0005 (3) |
N1 | 0.0098 (3) | 0.0167 (4) | 0.0110 (3) | 0.0002 (3) | 0.0002 (3) | 0.0005 (3) |
N2 | 0.0101 (3) | 0.0220 (4) | 0.0080 (3) | −0.0003 (3) | 0.0004 (3) | 0.0000 (3) |
N3 | 0.0120 (4) | 0.0317 (5) | 0.0082 (3) | −0.0002 (3) | 0.0003 (3) | −0.0006 (3) |
C1 | 0.0137 (4) | 0.0188 (5) | 0.0150 (4) | 0.0013 (4) | −0.0002 (3) | −0.0034 (3) |
C2 | 0.0152 (4) | 0.0214 (5) | 0.0161 (4) | 0.0001 (4) | −0.0022 (3) | −0.0036 (4) |
C3 | 0.0097 (4) | 0.0205 (5) | 0.0169 (4) | 0.0002 (3) | −0.0017 (3) | 0.0026 (3) |
C4 | 0.0131 (4) | 0.0230 (5) | 0.0173 (4) | 0.0029 (4) | 0.0021 (3) | −0.0016 (4) |
C5 | 0.0134 (4) | 0.0202 (5) | 0.0133 (4) | 0.0012 (3) | 0.0006 (3) | −0.0024 (3) |
C6 | 0.0107 (4) | 0.0134 (4) | 0.0103 (4) | 0.0005 (3) | 0.0002 (3) | 0.0007 (3) |
C7 | 0.0116 (4) | 0.0128 (4) | 0.0102 (4) | 0.0005 (3) | 0.0003 (3) | −0.0006 (3) |
C8 | 0.0114 (4) | 0.0167 (4) | 0.0094 (4) | 0.0000 (3) | 0.0009 (3) | −0.0005 (3) |
C9 | 0.0122 (4) | 0.0211 (5) | 0.0105 (4) | −0.0010 (4) | −0.0003 (3) | −0.0006 (3) |
F1—C3 | 1.3587 (12) | C2—C3 | 1.3826 (15) |
O1—C8 | 1.2413 (12) | C2—H2A | 0.989 (17) |
N1—C7 | 1.2900 (13) | C3—C4 | 1.3805 (15) |
N1—N2 | 1.3709 (12) | C4—C5 | 1.3939 (14) |
N2—C8 | 1.3779 (13) | C4—H4A | 0.971 (14) |
N2—H1N2 | 0.957 (19) | C5—C6 | 1.3995 (14) |
N3—C8 | 1.3446 (13) | C5—H5A | 0.976 (14) |
N3—H1N3 | 0.856 (18) | C6—C7 | 1.4851 (13) |
N3—H2N3 | 0.820 (19) | C7—C9 | 1.5040 (13) |
C1—C2 | 1.3866 (14) | C9—H9A | 0.945 (19) |
C1—C6 | 1.4037 (14) | C9—H9B | 0.964 (18) |
C1—H1A | 0.983 (14) | C9—H9C | 1.005 (18) |
C7—N1—N2 | 119.27 (8) | C4—C5—C6 | 120.83 (9) |
N1—N2—C8 | 117.41 (8) | C4—C5—H5A | 116.8 (8) |
N1—N2—H1N2 | 129.3 (10) | C6—C5—H5A | 122.3 (8) |
C8—N2—H1N2 | 113.3 (10) | C5—C6—C1 | 118.42 (9) |
C8—N3—H1N3 | 117.6 (12) | C5—C6—C7 | 121.42 (8) |
C8—N3—H2N3 | 119.6 (13) | C1—C6—C7 | 120.14 (8) |
H1N3—N3—H2N3 | 122.7 (18) | N1—C7—C6 | 115.04 (8) |
C2—C1—C6 | 121.47 (9) | N1—C7—C9 | 123.77 (9) |
C2—C1—H1A | 118.7 (8) | C6—C7—C9 | 121.19 (8) |
C6—C1—H1A | 119.8 (8) | O1—C8—N3 | 123.76 (9) |
C3—C2—C1 | 118.04 (9) | O1—C8—N2 | 120.04 (9) |
C3—C2—H2A | 120.6 (9) | N3—C8—N2 | 116.20 (9) |
C1—C2—H2A | 121.4 (9) | C7—C9—H9A | 108.5 (11) |
F1—C3—C4 | 118.48 (9) | C7—C9—H9B | 108.7 (10) |
F1—C3—C2 | 118.77 (9) | H9A—C9—H9B | 112.6 (16) |
C4—C3—C2 | 122.75 (10) | C7—C9—H9C | 113.6 (11) |
C3—C4—C5 | 118.48 (10) | H9A—C9—H9C | 104.5 (14) |
C3—C4—H4A | 120.7 (8) | H9B—C9—H9C | 109.0 (14) |
C5—C4—H4A | 120.8 (8) | ||
C7—N1—N2—C8 | 176.26 (9) | C2—C1—C6—C7 | 177.96 (9) |
C6—C1—C2—C3 | −0.43 (16) | N2—N1—C7—C6 | 179.99 (8) |
C1—C2—C3—F1 | −179.17 (10) | N2—N1—C7—C9 | −0.23 (14) |
C1—C2—C3—C4 | 0.56 (17) | C5—C6—C7—N1 | 150.01 (10) |
F1—C3—C4—C5 | 179.90 (9) | C1—C6—C7—N1 | −28.31 (13) |
C2—C3—C4—C5 | 0.17 (17) | C5—C6—C7—C9 | −29.77 (14) |
C3—C4—C5—C6 | −1.05 (16) | C1—C6—C7—C9 | 151.91 (10) |
C4—C5—C6—C1 | 1.16 (15) | N1—N2—C8—O1 | −179.35 (9) |
C4—C5—C6—C7 | −177.18 (9) | N1—N2—C8—N3 | 0.57 (13) |
C2—C1—C6—C5 | −0.41 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N2···O1i | 0.96 (2) | 1.94 (2) | 2.8998 (11) | 179.2 (18) |
N3—H2N3···O1ii | 0.82 (2) | 2.07 (2) | 2.8901 (12) | 176 (2) |
C2—H2A···Cg1iii | 0.989 (17) | 2.927 (18) | 3.7250 (12) | 138.5 (12) |
C5—H5A···Cg1iv | 0.976 (14) | 2.825 (13) | 3.6505 (11) | 142.8 (10) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+1, −z+2; (iii) x, −y+1/2, z−1/2; (iv) x, −y−1/2, z−3/2. |
Experimental details
Crystal data | |
Chemical formula | C9H10FN3O |
Mr | 195.20 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 18.8207 (3), 6.6387 (1), 7.3074 (1) |
β (°) | 95.887 (1) |
V (Å3) | 908.21 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.30 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.876, 0.991 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17523, 3998, 2766 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.807 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.151, 1.07 |
No. of reflections | 3998 |
No. of parameters | 167 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.51, −0.30 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N2···O1i | 0.96 (2) | 1.94 (2) | 2.8998 (11) | 179.2 (18) |
N3—H2N3···O1ii | 0.82 (2) | 2.07 (2) | 2.8901 (12) | 176 (2) |
C2—H2A···Cg1iii | 0.989 (17) | 2.927 (18) | 3.7250 (12) | 138.5 (12) |
C5—H5A···Cg1iv | 0.976 (14) | 2.825 (13) | 3.6505 (11) | 142.8 (10) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+1, −z+2; (iii) x, −y+1/2, z−1/2; (iv) x, −y−1/2, z−3/2. |
Acknowledgements
HKF thanks Universiti Sains Malaysia for the Research University Golden Goose Grant No. 1001/PFIZIK/811012. CSY thanks the Malaysian Government and Universiti Sains Malaysia for the award of the post of Research Officer under the Science Fund grant No. 305/PFIZIK/613312. AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chandra, S. & Gupta, L. K. (2005). Spectrochim. Acta Part A, 62, 1089–1094. CrossRef Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fun, H.-K., Chantrapromma, S., Sujith, K. V. & Kalluraya, B. (2009a). Acta Cryst. E65, o445. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Goh, J. H., Padaki, M., Malladi, S. & Isloor, A. M. (2009b). Acta Cryst. E65, o1591–o1592. Web of Science CSD CrossRef IUCr Journals Google Scholar
Furniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel's Textbook of Practical Organic Chemistry, 4th ed., p. 1112. London: ELBS. Google Scholar
Jain, V. K., Handa, A., Pandya, R., Shrivastav, P. & Agrawal, Y. K. (2002). React. Funct. Polym. 51, 101–110. Web of Science CrossRef CAS Google Scholar
Pilgram, K. H. G. (1978). US Patent No. 4 108 399. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Warren, J. D., Woodward, D. L. & Hargreaves, R. T. (1977). J. Med. Chem. 20, 1520–1521. CrossRef CAS PubMed Web of Science Google Scholar
Yogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Farmaco, 59, 609–613. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In organic chemistry, a semicarbazone is a derivative of an aldehyde or ketone formed by a condensation between a ketone or aldehyde and semicarbazide. Semicarbazones find a large number of applications in the field of synthetic chemistry, such as in medicinal chemistry (Warren et al., 1977), organometallics (Chandra & Gupta, 2005), polymers (Jain et al., 2002), and herbicides (Pilgram, 1978). 4-Sulphamoylphenyl semicarbazones were found to possess anti-convulsant activity (Yogeeswari et al., 2004). We hereby report the crystal structure of a semicarbazone of commercial importance, (I).
The bond lengths and angles for (I), Fig. 1, are comparable to those found in related structures (Fun et al., 2009a, b). A maximum deviation of 0.044 (1) Å for atom N2 from the mean plane formed by atoms O1, N1, N2, N3, C6, C7, C8 and C9, indicates that the semicarbazone group is nearly planar. This mean plane makes a dihedral angle of 30.94 (4)° with the C1–C6 benzene ring. The molecules are linked into one-dimensional chains by intermolecular N—H···O hydrogen bonds along the c axis (Fig. 2); these hydrogen bonding interactions generate R22(8) ring motifs (Bernstein et al., 1995). The crystal structure is stabilized by weak intermolecular C—H···π interactions (Table 1).