organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro-N-o-tolyl­benzamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 11 June 2009; accepted 13 June 2009; online 20 June 2009)

In the title compound, C14H11Cl2NO, the central C—C(O)—N—C amide unit makes dihedral angles of 68.71 (11) and 54.92 (12)°, respectively, with the dichloro­benzene and tolyl rings. The two aromatic rings are inclined at 16.25 (17)°. In the crystal, N—H⋯O hydrogen bonds link mol­ecules into zigzag chains propagating in [001]. C—H⋯Cl contacts link these chains and additional C—H⋯O contacts generate stacks down b. Weak C—H⋯π and C—Cl⋯π inter­actions [Cl⋯centroid distance = 3.5422 (15) Å] may also stabilize the structure.

Related literature

For the biological activity of benzamide derivatives, see: Saeed et al. (2008a[Saeed, A., Khera, R. A., Gotoh, K. & Ishida, H. (2008a). Acta Cryst. E64, o1934.]). For related structures, see: Gowda et al. (2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1365.]); Saeed et al. (2008b[Saeed, A., Khera, R. A., Abbas, N., Gotoh, K. & Ishida, H. (2008b). Acta Cryst. E64, o2043.]); Zhou & Zheng (2007[Zhou, B. & Zheng, P.-W. (2007). Acta Cryst. E63, o4630.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11Cl2NO

  • Mr = 280.14

  • Monoclinic, C c

  • a = 22.517 (4) Å

  • b = 6.0405 (9) Å

  • c = 9.6332 (17) Å

  • β = 104.838 (9)°

  • V = 1266.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 92 K

  • 0.46 × 0.27 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.615, Tmax = 0.91

  • 9889 measured reflections

  • 3475 independent reflections

  • 3195 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.158

  • S = 1.15

  • 3475 reflections

  • 164 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.36 e Å−3

  • Δρmin = −0.62 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1248 Friedel pairs

  • Flack parameter: 0.05 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.04 2.865 (4) 156
C6—H6⋯O1ii 0.95 2.55 3.415 (4) 151
C11—H11⋯Cl2iii 0.95 2.83 3.680 (3) 150
C14—H14CCg2i 0.98 2.87 3.528 (4) 125
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [x, -y+2, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y-{\script{3\over 2}}, z]. Cg2 is the centroid of the C8–C13 ring.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The biological activity and applications of benzamide derivatives have been described in an earlier paper (Saeed et al. 2008a). In the title compound, (I) & Fig. 1, the central C2–C1(O1)–N1–C8 amide unit makes dihedral angles of 68.71 (11) ° and 54.92 (12) ° with the C2···C7 and C8···C13 rings, respectively. The two aromatic rings are inclined at 16.25 (17)°. Bond distances within the molecule are normal (Allen et al. 1987) and similar to those observed in comparable structures (Gowda et al. 2008; Saeed et al. 2008b; Zhou & Zheng 2007). In the crystal, N1—H1···O1 hydrogen bonds link molecules into zig-zag chains down the c axis; Table 1 & Fig. 2. C11—H11···Cl2 contacts link these chains and additional C6—H6···O1 contacts generate three-dimensional stacks down b, Fig. 3. C14—H14···π and Cl1···π interactions (Cl···Cg1 distance 3.5422 (15) Å; Cg1 is the centroid of the C2···C7 ring) may also stabilize the structure.

Related literature top

For the biological activity of benzamide derivatives, see: Saeed et al. (2008a). For related structures, see: Gowda et al. (2008); Saeed et al. (2008b); Zhou & Zheng (2007). For reference structural data, see: Allen et al. (1987). Cg1 is the centroid of the C2–C7 ring.

Experimental top

2,4-Dichlorobenzoyl chloride (5.4 mmol) in CHCl3 was treated with 2-methylaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq. 1 M HCl and saturated aq. NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded (I) (81%) as colourless crystals: Anal. calcd. for C14H11Cl2NO: C 60.02, H 3.96, N 5.00%; found: C 60.05, H 3.97, N 4.97%.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic 0.98 Å, Uiso = 1.5Ueq (C) for CH3 atoms and 0.88 Å, Uiso = 1.2Ueq (N) for the NH group. In the final electron density maps, peaks in excess of 1.0 e Å-3 were found approximately 0.8 Å from both Cl atoms but no obvious chemical significance could be attached to them; there was no obvious evidence for disorder involving the Cl atoms.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Zig-zag chains of (I) down the c axis. Dashed lines indicate N—H···O hydrogen bonds and C—H···Cl contacts.
[Figure 3] Fig. 3. Crystal packing of (I) viewed down the b axis. Dashed lines indicate N—H···O hydrogen bonds as well as C—H···O and C—H···Cl contacts.
2,4-Dichloro-N-o-tolylbenzamide top
Crystal data top
C14H11Cl2NOF(000) = 576
Mr = 280.14Dx = 1.469 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5253 reflections
a = 22.517 (4) Åθ = 2.2–32.4°
b = 6.0405 (9) ŵ = 0.50 mm1
c = 9.6332 (17) ÅT = 92 K
β = 104.838 (9)°Block, colourless
V = 1266.6 (4) Å30.46 × 0.27 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3475 independent reflections
Radiation source: fine-focus sealed tube3195 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 33.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 3433
Tmin = 0.615, Tmax = 0.91k = 98
9889 measured reflectionsl = 1214
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0952P)2 + 1.0992P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
3475 reflectionsΔρmax = 1.36 e Å3
164 parametersΔρmin = 0.62 e Å3
2 restraintsAbsolute structure: Flack (1983), 1248 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (8)
Crystal data top
C14H11Cl2NOV = 1266.6 (4) Å3
Mr = 280.14Z = 4
Monoclinic, CcMo Kα radiation
a = 22.517 (4) ŵ = 0.50 mm1
b = 6.0405 (9) ÅT = 92 K
c = 9.6332 (17) Å0.46 × 0.27 × 0.19 mm
β = 104.838 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
3475 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3195 reflections with I > 2σ(I)
Tmin = 0.615, Tmax = 0.91Rint = 0.043
9889 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.158Δρmax = 1.36 e Å3
S = 1.15Δρmin = 0.62 e Å3
3475 reflectionsAbsolute structure: Flack (1983), 1248 Friedel pairs
164 parametersAbsolute structure parameter: 0.05 (8)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16543 (13)0.5847 (4)0.3277 (3)0.0250 (5)
C10.17020 (14)0.5816 (5)0.2022 (3)0.0185 (5)
C20.22063 (13)0.7094 (5)0.1617 (3)0.0172 (5)
C30.28213 (14)0.6506 (5)0.2168 (3)0.0173 (5)
Cl10.30103 (4)0.41955 (12)0.32639 (7)0.02356 (18)
C40.32950 (13)0.7736 (5)0.1848 (3)0.0178 (5)
H40.37120.73110.22120.021*
C50.31386 (14)0.9607 (5)0.0978 (3)0.0184 (5)
Cl20.37258 (4)1.11763 (13)0.06163 (7)0.02513 (18)
C60.25310 (15)1.0223 (5)0.0405 (3)0.0211 (5)
H60.24331.14920.01920.025*
C70.20711 (15)0.8956 (5)0.0719 (3)0.0202 (6)
H70.16540.93550.03190.024*
N10.13248 (12)0.4699 (5)0.0939 (3)0.0197 (5)
H10.13650.48940.00630.024*
C80.08611 (13)0.3210 (5)0.1147 (3)0.0191 (5)
C90.10239 (14)0.1560 (5)0.2194 (3)0.0218 (6)
H90.14350.14580.27620.026*
C100.05858 (17)0.0073 (6)0.2407 (4)0.0272 (7)
H100.06960.10410.31230.033*
C110.00132 (17)0.0223 (6)0.1568 (4)0.0291 (7)
H110.03160.07800.17190.035*
C120.01736 (15)0.1832 (6)0.0507 (4)0.0261 (6)
H120.05840.18890.00750.031*
C130.02600 (14)0.3385 (5)0.0276 (3)0.0203 (5)
C140.00831 (15)0.5163 (6)0.0857 (4)0.0261 (6)
H14A0.01530.66220.04010.039*
H14B0.03520.50070.13580.039*
H14C0.03330.50120.15480.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0322 (12)0.0350 (13)0.0103 (10)0.0082 (9)0.0100 (9)0.0035 (8)
C10.0219 (12)0.0242 (13)0.0107 (12)0.0017 (9)0.0067 (10)0.0010 (9)
C20.0202 (11)0.0246 (13)0.0082 (10)0.0028 (9)0.0060 (9)0.0016 (9)
C30.0242 (12)0.0183 (11)0.0107 (11)0.0014 (9)0.0067 (9)0.0010 (9)
Cl10.0313 (4)0.0213 (3)0.0185 (3)0.0008 (2)0.0070 (3)0.0049 (2)
C40.0207 (13)0.0207 (12)0.0125 (12)0.0008 (9)0.0048 (10)0.0008 (9)
C50.0230 (12)0.0197 (11)0.0139 (13)0.0038 (9)0.0074 (10)0.0004 (9)
Cl20.0260 (3)0.0289 (3)0.0217 (4)0.0064 (3)0.0084 (3)0.0042 (3)
C60.0262 (13)0.0243 (13)0.0137 (12)0.0005 (10)0.0068 (11)0.0018 (10)
C70.0225 (13)0.0270 (14)0.0115 (13)0.0012 (10)0.0053 (10)0.0014 (10)
N10.0225 (11)0.0289 (12)0.0092 (10)0.0043 (9)0.0069 (9)0.0008 (9)
C80.0207 (12)0.0266 (13)0.0114 (12)0.0019 (10)0.0067 (10)0.0032 (9)
C90.0256 (13)0.0275 (14)0.0141 (13)0.0000 (11)0.0085 (11)0.0030 (11)
C100.0376 (17)0.0237 (14)0.0233 (16)0.0026 (12)0.0134 (14)0.0027 (11)
C110.0348 (17)0.0288 (15)0.0274 (18)0.0101 (13)0.0149 (14)0.0045 (13)
C120.0236 (13)0.0322 (16)0.0231 (16)0.0039 (11)0.0070 (12)0.0050 (13)
C130.0224 (13)0.0261 (13)0.0139 (13)0.0008 (10)0.0073 (10)0.0032 (10)
C140.0252 (14)0.0351 (16)0.0181 (15)0.0001 (12)0.0060 (12)0.0004 (12)
Geometric parameters (Å, º) top
O1—C11.241 (4)N1—H10.8800
C1—N11.346 (4)C8—C91.399 (4)
C1—C21.505 (4)C8—C131.402 (4)
C2—C31.396 (4)C9—C101.388 (5)
C2—C71.404 (4)C9—H90.9500
C3—C41.397 (4)C10—C111.386 (5)
C3—Cl11.736 (3)C10—H100.9500
C4—C51.398 (4)C11—C121.389 (5)
C4—H40.9500C11—H110.9500
C5—C61.388 (4)C12—C131.412 (5)
C5—Cl21.733 (3)C12—H120.9500
C6—C71.382 (5)C13—C141.510 (5)
C6—H60.9500C14—H14A0.9800
C7—H70.9500C14—H14B0.9800
N1—C81.431 (4)C14—H14C0.9800
O1—C1—N1124.6 (3)C9—C8—C13121.3 (3)
O1—C1—C2120.3 (3)C9—C8—N1118.9 (3)
N1—C1—C2115.1 (3)C13—C8—N1119.7 (3)
C3—C2—C7118.4 (3)C10—C9—C8120.2 (3)
C3—C2—C1120.8 (3)C10—C9—H9119.9
C7—C2—C1120.8 (3)C8—C9—H9119.9
C2—C3—C4121.3 (3)C11—C10—C9119.6 (3)
C2—C3—Cl1120.0 (2)C11—C10—H10120.2
C4—C3—Cl1118.7 (2)C9—C10—H10120.2
C3—C4—C5118.2 (3)C10—C11—C12120.3 (3)
C3—C4—H4120.9C10—C11—H11119.8
C5—C4—H4120.9C12—C11—H11119.8
C6—C5—C4121.8 (3)C11—C12—C13121.4 (3)
C6—C5—Cl2119.9 (2)C11—C12—H12119.3
C4—C5—Cl2118.3 (2)C13—C12—H12119.3
C7—C6—C5118.8 (3)C8—C13—C12117.1 (3)
C7—C6—H6120.6C8—C13—C14121.5 (3)
C5—C6—H6120.6C12—C13—C14121.4 (3)
C6—C7—C2121.5 (3)C13—C14—H14A109.5
C6—C7—H7119.3C13—C14—H14B109.5
C2—C7—H7119.3H14A—C14—H14B109.5
C1—N1—C8123.1 (3)C13—C14—H14C109.5
C1—N1—H1118.5H14A—C14—H14C109.5
C8—N1—H1118.5H14B—C14—H14C109.5
O1—C1—C2—C366.1 (4)C1—C2—C7—C6176.2 (3)
N1—C1—C2—C3114.1 (3)O1—C1—N1—C87.1 (5)
O1—C1—C2—C7111.4 (4)C2—C1—N1—C8173.2 (3)
N1—C1—C2—C768.4 (4)C1—N1—C8—C950.9 (4)
C7—C2—C3—C40.3 (4)C1—N1—C8—C13130.9 (3)
C1—C2—C3—C4177.3 (3)C13—C8—C9—C101.0 (5)
C7—C2—C3—Cl1179.2 (2)N1—C8—C9—C10179.1 (3)
C1—C2—C3—Cl13.2 (4)C8—C9—C10—C110.4 (5)
C2—C3—C4—C51.2 (4)C9—C10—C11—C120.8 (6)
Cl1—C3—C4—C5179.3 (2)C10—C11—C12—C131.6 (6)
C3—C4—C5—C61.7 (5)C9—C8—C13—C120.3 (5)
C3—C4—C5—Cl2178.4 (2)N1—C8—C13—C12178.4 (3)
C4—C5—C6—C70.6 (5)C9—C8—C13—C14180.0 (3)
Cl2—C5—C6—C7179.4 (2)N1—C8—C13—C141.8 (4)
C5—C6—C7—C21.0 (5)C11—C12—C13—C81.0 (5)
C3—C2—C7—C61.4 (5)C11—C12—C13—C14178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.042.865 (4)156
C6—H6···O1ii0.952.553.415 (4)151
C11—H11···Cl2iii0.952.833.680 (3)150
C14—H14C···Cg2i0.982.873.528 (4)125
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+2, z1/2; (iii) x1/2, y3/2, z.

Experimental details

Crystal data
Chemical formulaC14H11Cl2NO
Mr280.14
Crystal system, space groupMonoclinic, Cc
Temperature (K)92
a, b, c (Å)22.517 (4), 6.0405 (9), 9.6332 (17)
β (°) 104.838 (9)
V3)1266.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.46 × 0.27 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.615, 0.91
No. of measured, independent and
observed [I > 2σ(I)] reflections
9889, 3475, 3195
Rint0.043
(sin θ/λ)max1)0.768
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.158, 1.15
No. of reflections3475
No. of parameters164
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.36, 0.62
Absolute structureFlack (1983), 1248 Friedel pairs
Absolute structure parameter0.05 (8)

Computer programs: APEX2 (Bruker, 2006), APEX2 and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.042.865 (4)156
C6—H6···O1ii0.952.553.415 (4)151
C11—H11···Cl2iii0.952.833.680 (3)150
C14—H14C···Cg2i0.982.873.528 (4)125
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+2, z1/2; (iii) x1/2, y3/2, z.
 

Acknowledgements

We thank the University of Otago for purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1365.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A., Abbas, N., Gotoh, K. & Ishida, H. (2008b). Acta Cryst. E64, o2043.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A., Gotoh, K. & Ishida, H. (2008a). Acta Cryst. E64, o1934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationZhou, B. & Zheng, P.-W. (2007). Acta Cryst. E63, o4630.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds