organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­but­oxy­phenyl­boronic acid

aPhysical Chemistry Department, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
*Correspondence e-mail: serek@ch.pw.edu.pl

(Received 16 June 2009; accepted 17 June 2009; online 24 June 2009)

In the crystal of the title compound, C14H23BO4, centrosymmetric dimers linked by pairs of O—H⋯O hydrogen bonds occur. The dimers are linked via C—H⋯O contacts, generating a two-dimensional array parallel to (12[\overline{1}]). These are inter­connected by weak O—H⋯O hydrogen bonds, as well as C—H⋯π inter­actions.

Related literature

For the structural characterization of related ortho-alk­oxy aryl­boronic acids, see: Dąbrowski et al. (2006[Dąbrowski, M., Luliński, S., Serwatowski, J. & Szczerbinska, M. (2006). Acta Cryst. C62, o702-o704.], 2008[Dąbrowski, M., Luliński, S. & Serwatowski, J. (2008). Acta Cryst. E64, o414-o415.]); Luliński (2008[Luliński, S. (2008). Acta Cryst. E64, o1963.]); Yang et al. (2005[Yang, Y., Escobedo, J. O., Wong, A., Schowalter, C. M., Touchy, M. C., Jiao, L., Crowe, W. E., Fronczek, F. R. & Strongin, R. M. (2005). J. Org. Chem. 70, 6907-6912.]).

[Scheme 1]

Experimental

Crystal data
  • C14H23BO4

  • Mr = 266.13

  • Triclinic, [P \overline 1]

  • a = 5.3129 (8) Å

  • b = 11.3611 (13) Å

  • c = 13.7362 (17) Å

  • α = 112.747 (11)°

  • β = 94.311 (11)°

  • γ = 100.385 (11)°

  • V = 742.45 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.65 × 0.20 × 0.09 mm

Data collection
  • Oxford Diffraction KM-4-CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.96, Tmax = 0.99

  • 14053 measured reflections

  • 3570 independent reflections

  • 2633 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.05

  • 3570 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O2i 0.876 (16) 1.889 (17) 2.7649 (11) 178.9 (14)
O2—H2o⋯O3 0.839 (15) 2.129 (15) 2.7469 (10) 130.3 (13)
O2—H2o⋯O1ii 0.839 (15) 2.610 (15) 3.2205 (12) 130.7 (12)
C10—H10C⋯O4iii 0.98 2.60 3.5739 (15) 173 (1)
C9′—H9B′⋯O1iv 0.99 2.71 3.4314 (17) 130 (1)
C7—H7BCgvi 0.99 2.74 3.6237 (12) 149
C7′—H7B′⋯Cgvii 0.99 2.80 3.7109 (12) 153
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x, -y+2, -z+2; (iv) -x+2, -y+1, -z+2; (v) -x+1, -y+1, -z+2; (vi) -x-1, -y+1, -z+1; (vii) x+1, y, z+1. Cg is the centroid of the C1–C6 ring.

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The ability of arylboronic acids to form supramolecular assemblies due to intermolecular hydrogen bonding is well known. Our interest has focused on ortho-alkoxy derivatives and the influence of various factors (including the number and length of the alkoxy group) on their structural behaviour. The molecular structure of (I) shows the boronic groups possesses an exo-endo conformation and is slightly twisted with respect to the benzene ring, Fig. 1. However, the entire molecule including both butoxy groups remains essentially planar. The endo-oriented OH group is engaged in an intramolecular O—H···O hydrogen bond with the 2-butoxy-O atom, resulting in the formation of a six-membered ring, Table 1. This motif is generally typical of ortho-alkoxyarylboronic acids structures (Yang et al., 2005; Dąbrowski et al., 2006, 2008; Luliński, 2008). The supramolecular assembly of (I) is similar to that observed previously for 2,4-dimethoxyphenylboronic acid (Yang et al., 2005). Centrosymmetric hydrogen-bonded dimers of (I) are linked by weaker C—H···O contacts, of which there are two types (Table 1). The first one connects the terminal methyl of the 2-butoxy group with the O atom of the adjacent molecule whereas the second one is formed between the γ-methylene unit of the 4-butoxy group and the O atom of the exo-OH group. As a result a 2-D array is formed, aligned parallel to the (121) plane. The supramolecular architecture extends further due to other interactions. They involve weak cross-linking O—H···O hydrogen bonds between the endo-OH group and the O atom of exo-OH group from the neighbouring layer. Finally, C—H···π interactions occur between the α-methylene units of 2-butoxy as well as 4-butoxy groups and the aromatic ring of another molecule; the distances of H7B and H7B' from the ring centroid are 2.7363 (4)Å [symmetry code (vi): -1 - x, 1 - y, 1 - z] and 2.8035 (5)Å [symmetry code (vii): 1 + x, y, 1 + z], respectively. As a result, a 3-D network is formed. In conclusion, the hydrogen-bonded dimeric structure of (I) is typical of boronic acids whereas the unique secondary supramolecular assembly is achieved due to weaker hydrogen bonds and C—H-π interactions.

Related literature top

For the structural characterization of related ortho-alkoxy arylboronic acids, see: Dąbrowski et al. (2006, 2008); Luliński (2008); Yang et al. (2005).

Experimental top

Crystals were grown by slow evaporation of a hexane/acetone (10 ml, 1:1) solution of (I) (Aldrich, 0.3 g).

Refinement top

Carbon-bound H atoms were placed in calculated positions with C—H = 0.95–0.99 Å, and were included in the refinement in the riding model approximation with U(H) set to 1.2–1.5Ueq(C). The H1o and H2o atoms were refined without constraint; O—H distances = 0.839 (15) and 0.876 (16) Å.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme. The intramolecular hydrogen bond is shown as a dashed line. Displacement ellipsoids for all non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing diagram for (I) showing hydrogen bonding and CH···π interactions (dashed lines). H atoms not involved in intermolecular interactions are omitted for clarity.
2,4-Dibutoxyphenylboronic acid top
Crystal data top
C14H23BO4V = 742.45 (17) Å3
Mr = 266.13Z = 2
Triclinic, P1F(000) = 288
Hall symbol: -P 1Dx = 1.190 Mg m3
a = 5.3129 (8) ÅMelting point: 369 K
b = 11.3611 (13) ÅMo Kα radiation, λ = 0.71073 Å
c = 13.7362 (17) ŵ = 0.08 mm1
α = 112.747 (11)°T = 100 K
β = 94.311 (11)°Prismatic, colourless
γ = 100.385 (11)°0.65 × 0.20 × 0.09 mm
Data collection top
Oxford Diffraction KM-4-CCD
diffractometer
3570 independent reflections
Radiation source: fine-focus sealed tube2633 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 8.6479 pixels mm-1θmax = 28.6°, θmin = 3.1°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction 2005)
k = 1515
Tmin = 0.96, Tmax = 0.99l = 1818
14053 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0557P)2]
where P = (Fo2 + 2Fc2)/3
3570 reflections(Δ/σ)max = 0.001
180 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C14H23BO4γ = 100.385 (11)°
Mr = 266.13V = 742.45 (17) Å3
Triclinic, P1Z = 2
a = 5.3129 (8) ÅMo Kα radiation
b = 11.3611 (13) ŵ = 0.08 mm1
c = 13.7362 (17) ÅT = 100 K
α = 112.747 (11)°0.65 × 0.20 × 0.09 mm
β = 94.311 (11)°
Data collection top
Oxford Diffraction KM-4-CCD
diffractometer
3570 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction 2005)
2633 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 0.99Rint = 0.018
14053 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.38 e Å3
3570 reflectionsΔρmin = 0.23 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.56253 (19)0.61272 (9)0.78929 (7)0.0153 (2)
C20.72694 (19)0.56726 (10)0.84327 (8)0.0170 (2)
H20.82620.50950.80310.020*
C30.75323 (19)0.60219 (10)0.95310 (8)0.0171 (2)
H30.86660.56850.98690.021*
C40.60985 (19)0.68740 (10)1.01210 (7)0.0155 (2)
C50.44559 (18)0.73795 (9)0.96259 (8)0.0159 (2)
H50.35020.79741.00360.019*
C60.42293 (18)0.70058 (9)0.85288 (8)0.0146 (2)
C70.14424 (19)0.84955 (10)0.85803 (8)0.0167 (2)
H7A0.27540.92740.90860.020*
H7B0.02320.81900.89920.020*
C80.00127 (19)0.88312 (10)0.77716 (8)0.0169 (2)
H8A0.12200.80250.72440.020*
H8B0.12390.91540.73820.020*
C90.15422 (19)0.98636 (10)0.82756 (8)0.0187 (2)
H9A0.03281.06990.87510.022*
H9B0.26920.95800.87170.022*
C100.3170 (2)1.00821 (11)0.74256 (9)0.0240 (2)
H10A0.43930.92590.69620.036*
H10B0.20321.03780.69960.036*
H10C0.41321.07500.77720.036*
C7'0.79357 (19)0.68855 (10)1.17808 (8)0.0173 (2)
H7A'0.97340.71831.16870.021*
H7B'0.75280.59181.15140.021*
C8'0.7655 (2)0.74945 (10)1.29481 (8)0.0192 (2)
H8A'0.58850.71401.30370.023*
H8B'0.78920.84541.31850.023*
C9'0.9634 (2)0.72152 (11)1.36433 (8)0.0244 (3)
H9A'1.14000.75841.35600.029*
H9B'0.94210.62551.33910.029*
C10'0.9371 (3)0.77900 (13)1.48245 (9)0.0378 (3)
H10D0.76400.74141.49150.057*
H10E0.96210.87431.50850.057*
H10F1.06840.75821.52330.057*
O10.73656 (14)0.51449 (8)0.61804 (6)0.0245 (2)
O20.34414 (15)0.57844 (8)0.60251 (6)0.0253 (2)
O30.26778 (13)0.74719 (7)0.79858 (5)0.01810 (17)
O40.61551 (13)0.72922 (7)1.12026 (5)0.01908 (18)
B10.5445 (2)0.56749 (11)0.66526 (9)0.0170 (2)
H1o0.709 (3)0.4847 (14)0.5482 (13)0.049 (4)*
H2o0.231 (3)0.6103 (14)0.6371 (12)0.051 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0172 (5)0.0154 (5)0.0130 (5)0.0038 (4)0.0023 (4)0.0053 (4)
C20.0199 (5)0.0166 (5)0.0144 (5)0.0070 (4)0.0038 (4)0.0049 (4)
C30.0201 (5)0.0188 (5)0.0150 (5)0.0080 (4)0.0012 (4)0.0083 (4)
C40.0180 (5)0.0172 (5)0.0106 (5)0.0029 (4)0.0018 (4)0.0057 (4)
C50.0166 (5)0.0166 (5)0.0140 (5)0.0060 (4)0.0034 (4)0.0045 (4)
C60.0140 (5)0.0160 (5)0.0149 (5)0.0036 (4)0.0005 (4)0.0077 (4)
C70.0188 (5)0.0176 (5)0.0137 (5)0.0084 (4)0.0033 (4)0.0045 (4)
C80.0179 (5)0.0190 (5)0.0155 (5)0.0068 (4)0.0027 (4)0.0078 (4)
C90.0197 (5)0.0185 (5)0.0188 (5)0.0073 (4)0.0044 (4)0.0071 (4)
C100.0232 (6)0.0251 (6)0.0264 (6)0.0108 (5)0.0040 (4)0.0111 (5)
C7'0.0198 (5)0.0211 (5)0.0133 (5)0.0087 (4)0.0019 (4)0.0079 (4)
C8'0.0244 (6)0.0222 (5)0.0126 (5)0.0093 (4)0.0038 (4)0.0069 (4)
C9'0.0322 (6)0.0298 (6)0.0145 (5)0.0136 (5)0.0032 (4)0.0097 (5)
C10'0.0571 (9)0.0448 (8)0.0151 (6)0.0230 (7)0.0018 (5)0.0117 (5)
O10.0283 (4)0.0359 (5)0.0108 (4)0.0177 (4)0.0041 (3)0.0064 (3)
O20.0296 (4)0.0386 (5)0.0122 (4)0.0227 (4)0.0060 (3)0.0081 (3)
O30.0230 (4)0.0218 (4)0.0117 (3)0.0131 (3)0.0022 (3)0.0057 (3)
O40.0248 (4)0.0248 (4)0.0107 (3)0.0120 (3)0.0029 (3)0.0076 (3)
B10.0229 (6)0.0161 (6)0.0125 (5)0.0067 (5)0.0026 (5)0.0053 (4)
Geometric parameters (Å, º) top
C1—C21.3932 (13)C9—H9B0.9900
C1—C61.4140 (13)C10—H10A0.9800
C1—B11.5674 (14)C10—H10B0.9800
C2—C31.3923 (13)C10—H10C0.9800
C2—H20.9500C7'—O41.4379 (11)
C3—C41.3879 (14)C7'—C8'1.5123 (14)
C3—H30.9500C7'—H7A'0.9900
C4—O41.3697 (11)C7'—H7B'0.9900
C4—C51.3955 (13)C8'—C9'1.5237 (14)
C5—C61.3875 (13)C8'—H8A'0.9900
C5—H50.9500C8'—H8B'0.9900
C6—O31.3736 (11)C9'—C10'1.5251 (15)
C7—O31.4392 (11)C9'—H9A'0.9900
C7—C81.5105 (13)C9'—H9B'0.9900
C7—H7A0.9900C10'—H10D0.9800
C7—H7B0.9900C10'—H10E0.9800
C8—C91.5217 (13)C10'—H10F0.9800
C8—H8A0.9900O1—B11.3577 (13)
C8—H8B0.9900O1—H1o0.876 (16)
C9—C101.5241 (14)O2—B11.3727 (13)
C9—H9A0.9900O2—H2o0.839 (15)
C2—C1—C6116.20 (8)C9—C10—H10B109.5
C2—C1—B1119.80 (8)H10A—C10—H10B109.5
C6—C1—B1123.99 (9)C9—C10—H10C109.5
C3—C2—C1123.36 (9)H10A—C10—H10C109.5
C3—C2—H2118.3H10B—C10—H10C109.5
C1—C2—H2118.3O4—C7'—C8'107.43 (8)
C4—C3—C2118.41 (9)O4—C7'—H7A'110.2
C4—C3—H3120.8C8'—C7'—H7A'110.2
C2—C3—H3120.8O4—C7'—H7B'110.2
O4—C4—C3124.59 (9)C8'—C7'—H7B'110.2
O4—C4—C5114.68 (8)H7A'—C7'—H7B'108.5
C3—C4—C5120.73 (9)C7'—C8'—C9'111.40 (8)
C6—C5—C4119.37 (9)C7'—C8'—H8A'109.3
C6—C5—H5120.3C9'—C8'—H8A'109.3
C4—C5—H5120.3C7'—C8'—H8B'109.3
O3—C6—C5122.81 (8)C9'—C8'—H8B'109.3
O3—C6—C1115.27 (8)H8A'—C8'—H8B'108.0
C5—C6—C1121.91 (8)C8'—C9'—C10'112.88 (9)
O3—C7—C8106.65 (8)C8'—C9'—H9A'109.0
O3—C7—H7A110.4C10'—C9'—H9A'109.0
C8—C7—H7A110.4C8'—C9'—H9B'109.0
O3—C7—H7B110.4C10'—C9'—H9B'109.0
C8—C7—H7B110.4H9A'—C9'—H9B'107.8
H7A—C7—H7B108.6C9'—C10'—H10D109.5
C7—C8—C9113.05 (8)C9'—C10'—H10E109.5
C7—C8—H8A109.0H10D—C10'—H10E109.5
C9—C8—H8A109.0C9'—C10'—H10F109.5
C7—C8—H8B109.0H10D—C10'—H10F109.5
C9—C8—H8B109.0H10E—C10'—H10F109.5
H8A—C8—H8B107.8B1—O1—H1o113.8 (9)
C8—C9—C10111.28 (8)B1—O2—H2o113.1 (10)
C8—C9—H9A109.4C6—O3—C7119.23 (7)
C10—C9—H9A109.4C4—O4—C7'117.93 (7)
C8—C9—H9B109.4O1—B1—O2118.73 (9)
C10—C9—H9B109.4O1—B1—C1118.07 (9)
H9A—C9—H9B108.0O2—B1—C1123.20 (9)
C9—C10—H10A109.5
C6—C1—C2—C31.25 (15)C7—C8—C9—C10174.85 (9)
B1—C1—C2—C3179.69 (9)O4—C7'—C8'—C9'175.14 (8)
C1—C2—C3—C40.48 (15)C7'—C8'—C9'—C10'178.76 (10)
C2—C3—C4—O4179.58 (9)C5—C6—O3—C76.91 (13)
C2—C3—C4—C50.72 (15)C1—C6—O3—C7172.13 (8)
O4—C4—C5—C6179.21 (8)C8—C7—O3—C6177.59 (8)
C3—C4—C5—C61.07 (15)C3—C4—O4—C7'3.91 (14)
C4—C5—C6—O3179.22 (9)C5—C4—O4—C7'175.81 (8)
C4—C5—C6—C10.24 (14)C8'—C7'—O4—C4178.89 (8)
C2—C1—C6—O3178.18 (8)C2—C1—B1—O117.36 (14)
B1—C1—C6—O30.84 (14)C6—C1—B1—O1161.62 (10)
C2—C1—C6—C50.88 (14)C2—C1—B1—O2162.36 (10)
B1—C1—C6—C5179.89 (9)C6—C1—B1—O218.66 (16)
O3—C7—C8—C9177.25 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.876 (16)1.889 (17)2.7649 (11)178.9 (14)
O2—H2o···O30.839 (15)2.129 (15)2.7469 (10)130.3 (13)
O2—H2o···O1ii0.839 (15)2.610 (15)3.2205 (12)130.7 (12)
C10—H10C···O4iii0.982.603.5739 (15)173 (1)
C9—H9B···O1iv0.992.713.4314 (17)130 (1)
C7—H7B···Cgv0.992.743.6237 (12)149
C7—H7B···Cgvi0.992.803.7109 (12)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y+2, z+2; (iv) x+2, y+1, z+2; (v) x1, y+1, z+1; (vi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H23BO4
Mr266.13
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.3129 (8), 11.3611 (13), 13.7362 (17)
α, β, γ (°)112.747 (11), 94.311 (11), 100.385 (11)
V3)742.45 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.65 × 0.20 × 0.09
Data collection
DiffractometerOxford Diffraction KM-4-CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction 2005)
Tmin, Tmax0.96, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
14053, 3570, 2633
Rint0.018
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.05
No. of reflections3570
No. of parameters180
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.23

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.876 (16)1.889 (17)2.7649 (11)178.9 (14)
O2—H2o···O30.839 (15)2.129 (15)2.7469 (10)130.3 (13)
O2—H2o···O1ii0.839 (15)2.610 (15)3.2205 (12)130.7 (12)
C10—H10C···O4iii0.982.603.5739 (15)173.25 (7)
C9'—H9B'···O1iv0.992.713.4314 (17)130.04 (8)
C7—H7B···Cgv0.992.743.6237 (12)149
C7'—H7B'···Cgvi0.992.803.7109 (12)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y+2, z+2; (iv) x+2, y+1, z+2; (v) x1, y+1, z+1; (vi) x+1, y, z+1.
 

Acknowledgements

The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw. This work was supported by Warsaw University of Technology and by the Aldrich Chemical Co through donation of chemicals and equipment..

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDąbrowski, M., Luliński, S. & Serwatowski, J. (2008). Acta Cryst. E64, o414–o415.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDąbrowski, M., Luliński, S., Serwatowski, J. & Szczerbinska, M. (2006). Acta Cryst. C62, o702–o704.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLuliński, S. (2008). Acta Cryst. E64, o1963.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y., Escobedo, J. O., Wong, A., Schowalter, C. M., Touchy, M. C., Jiao, L., Crowe, W. E., Fronczek, F. R. & Strongin, R. M. (2005). J. Org. Chem. 70, 6907–6912.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds