inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of Zn2Mo3O8

aSciences Chimiques de Rennes, UMR CNRS No. 6226, Université de Rennes I–INSA Rennes, Avenue du Général Leclerc, 35042 Rennes CEDEX, France
*Correspondence e-mail: Patrick.Gougeon@univ-rennes1.fr

(Received 13 May 2009; accepted 9 June 2009; online 13 June 2009)

The crystal structure of dizinc trimolybdenum(IV) octa­oxide, Zn2Mo3O8, has been redetermined from single-crystal X-ray data. The structure has been reported previously based on neutron powder diffraction data [Hibble et al. (1999[Hibble, S. J., Cooper, S. P., Patat, S. & Hannon, A. C. (1999). Acta Cryst. B55, 683-697.]). Acta Cryst. B55, 683-697] and single-crystal data [McCarroll et al. (1957[McCarroll, W. H., Katz, L. & Ward, R. (1957). J. Am. Chem. Soc. 79, 5410-5414.]). J. Am. Chem. Soc. 79, 5410–5414; Ansell & Katz (1966[Ansell, G. B. & Katz, L. (1966). Acta Cryst. 21, 482-485.]) Acta Cryst. 21, 482–485]. The results of the current redetermination show an improvement in the precision of the structural and geometric parameters with all atoms refined with anisotropic displacement parameters. The crystal structure consists of distorted hexa­gonal-close-packed oxygen layers with stacking sequence abac along [001] and is held together by alternating zinc and molybdenum layers. The Zn atoms occupy both tetra­hedral and octa­hedral inter­stices with a ratio of 1:1. The Mo atoms occupy octa­hedral sites and form strongly bonded triangular clusters involving three MoO6 octa­hedra that are each shared along two edges, forming a Mo3O13 unit. All atoms lie on special positions. The Zn atoms are in 2b Wyckoff positions with 3m. site symmetry, the Mo atoms are in 6c Wyckoff positions with . m. site symmetry and the O atoms are in 2a, 2b and 6c Wyckoff positions with 3m. and . m. site symmetries, respectively.

Related literature

The synthesis of Zn2Mo3O8 is described by McCarroll et al. (1957[McCarroll, W. H., Katz, L. & Ward, R. (1957). J. Am. Chem. Soc. 79, 5410-5414.]). For previous reports of the crystal structure, see: McCarroll et al. (1957[McCarroll, W. H., Katz, L. & Ward, R. (1957). J. Am. Chem. Soc. 79, 5410-5414.]); Ansell & Katz (1966[Ansell, G. B. & Katz, L. (1966). Acta Cryst. 21, 482-485.]); Hibble et al. (1999[Hibble, S. J., Cooper, S. P., Patat, S. & Hannon, A. C. (1999). Acta Cryst. B55, 683-697.]). Zn2Mo3O8 is isotypic with the mineral kamiokite, Fe2Mo3O8 (Kanazawa & Sasaki, 1986[Kanazawa, Y. & Sasaki, A. (1986). Acta Cryst. C42, 9-11.]). For other compounds containing Mo3O13 cluster units, see: Betteridge et al. (1984[Betteridge, P. W., Cheetham, A. K., Howard, J. A. K., Jakubicki, G. & McCarroll, W. H. (1984). Inorg. Chem. 23, 737-740.]); Collins et al. (1989[Collins, B. T., Fine, S. M., Potenza, J. A., Greenblatt, M. & Tsai, P. P. (1989). Inorg. Chem. 28, 2444-2447.]); Gall & Gougeon (2005[Gall, P. & Gougeon, P. (2005). Acta Cryst. C61, i69-i70.]); Gougeon & Gall (2007[Gougeon, P. & Gall, P. (2007). Acta Cryst. E63, i143.]); McCarroll (1977[McCarroll, W. H. (1977). Inorg. Chem. 16, 3351-3353.]); Torardi & McCarley (1985[Torardi, C. C. & McCarley, R. E. (1985). Inorg. Chem. 24, 476-481.]).

Experimental

Crystal data
  • Zn2Mo3O8

  • Mr = 546.56

  • Hexagonal, P 63 m c

  • a = 5.7816 (2) Å

  • c = 9.9345 (3) Å

  • V = 287.59 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 14.59 mm−1

  • T = 293 K

  • 0.21 × 0.13 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: analytical (de Meulenaer & Tompa, 1965[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.]) Tmin = 0.048, Tmax = 0.157

  • 8536 measured reflections

  • 790 independent reflections

  • 778 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.013

  • wR(F2) = 0.029

  • S = 1.16

  • 790 reflections

  • 33 parameters

  • 1 restraint

  • Δρmax = 0.97 e Å−3

  • Δρmin = −1.06 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 322 Friedel pairs

  • Flack parameter: 0.155 (15)

Table 1
Selected bond lengths (Å)

Mo1—O1 1.9549 (14)
Mo1—O4 2.0286 (19)
Mo1—O2 2.0804 (10)
Mo1—O3 2.1415 (14)
Mo1—Mo1i 2.5326 (2)
Zn1—O3ii 1.963 (3)
Zn2—O1 2.0467 (18)
Zn2—O2iii 2.1431 (16)
Symmetry codes: (i) -x+y, -x, z; (ii) x, y+1, z; (iii) [y, -x+y, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Bergerhoff, 1996[Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The M2Mo3O8 compounds, where M is a divalent metal such as Mg, Zn, Fe, Co, Ni, Zn and Cd, were first synthesized by McCarroll et al. (1957). They presented the results of structure determination on Zn2Mo3O8 from photographic data (R = 0.118). Later, a refinement of the structure was accomplished by Ansell & Katz (1966) with a R factor of 0.069. Among the above compounds, it is interesting to note that Fe2Mo3O8 is a mineral known as kamiokite (Kanazawa & Sasaki, 1986). The main structural feature of Zn2Mo3O8 is the occurrence of Mo3O13 cluster units sharing part of their oxygen atoms to form layers according to the connective formula Mo3O4O6/2O3/3. The oxygen atoms form an hexagonal-close-packing with a stacking sequence abac along [001] (Fig. 1). The Mo—Mo distance within the Mo3 triangle (Fig. 2) is 2.5326 (2) Å which differs slightly from 2.524 (2) Å found previously and is equal to that found in the isotopic compound Fe2Mo3O8 (2.5326 (5) Å). The Mo—O distances range from 1.9549 (14) to 2.1415 (14) Å compared to 1.928 (20) to 2.128 (30) Å in the previous determination based on single-crystal data (1.953 (4)–2.135 (4) in Fe2Mo3O8). In our work, The ZnO4 tetrahedra appear more regular with Zn—O distances of 1.963 (3) and 1.9687 (15) Å instead of 1.98 (1) and 1.99 (3) Å while the ZnO6 octahedra are more distorted with Zn—O distances of 2.0467 (18) and 2.1431 (16) Å compared to 2.072 (20) and 2.123 (10) Å observed by Ansell & Katz (1966).

For other compounds containing Mo3O13 cluster units, see: Betteridge et al. (1984); Collins et al. (1989); Gall & Gougeon (2005); Gougeon & Gall (2007); McCarroll (1977); Torardi & McCarley (1985).

Related literature top

The synthesis of Zn2Mo3O8 is described by McCarroll et al. (1957). For previous reports of the crystal structure, see: McCarroll et al. (1957); Ansell & Katz (1966); Hibble et al. (1999). Zn2Mo3O8 is isotypic with the mineral kamiokite, Fe2Mo3O8 (Kanazawa & Sasaki, 1986). For other compounds containing Mo3O13 cluster units, see: Betteridge et al. (1984); Collins et al. (1989); Gall & Gougeon (2005); Gougeon & Gall (2007); McCarroll (1977); Torardi & McCarley (1985).

Experimental top

Single crystals of Zn2Mo3O8 were obtained by the reaction of ZnO, MoO3, and Mo. The initial mixture (ca 5 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc welding system. The charge was heated at the rate of 300 K/h up to 1573 K, the temperature which was held for 48 h, then cooled at 100 K/h down to 1373 K and finally cooled down to room temperature by switching off the furnace.

Refinement top

The highest peak and the deepest hole are located 0.68 Å and 0.74 Å from Mo1. The crystal under investigation was racemically twinned with a twin component ratio of 0.155 (15):0.845 (155).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT (Nonius, 1998); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : View of Zn2Mo3O8 along [110].
[Figure 2] Fig. 2. : Plot showing the atom-numbering scheme of the Mo3O13 cluster unit. Displacement ellipsoids are drawn at the 97% probability level.
dizinc trimolybdenum(IV) octaoxide top
Crystal data top
Zn2Mo3O8Dx = 6.312 Mg m3
Mr = 546.56Mo Kα radiation, λ = 0.71069 Å
Hexagonal, P63mcCell parameters from 6245 reflections
Hall symbol: P 6c -2cθ = 0.9–44.0°
a = 5.7816 (2) ŵ = 14.59 mm1
c = 9.9345 (3) ÅT = 293 K
V = 287.59 (2) Å3Irregular block, black
Z = 20.21 × 0.13 × 0.07 mm
F(000) = 500
Data collection top
Nonius KappaCCD
diffractometer
790 independent reflections
Radiation source: fine-focus sealed tube778 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ scans (κ = 0) + additional ω scansθmax = 44.0°, θmin = 4.1°
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
h = 117
Tmin = 0.048, Tmax = 0.157k = 1111
8536 measured reflectionsl = 1619
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0117P)2 + 0.2665P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.013(Δ/σ)max = 0.001
wR(F2) = 0.029Δρmax = 0.97 e Å3
S = 1.16Δρmin = 1.06 e Å3
790 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
33 parametersExtinction coefficient: 0.0306 (13)
1 restraintAbsolute structure: Flack (1983), 322 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.155 (15)
Crystal data top
Zn2Mo3O8Z = 2
Mr = 546.56Mo Kα radiation
Hexagonal, P63mcµ = 14.59 mm1
a = 5.7816 (2) ÅT = 293 K
c = 9.9345 (3) Å0.21 × 0.13 × 0.07 mm
V = 287.59 (2) Å3
Data collection top
Nonius KappaCCD
diffractometer
790 independent reflections
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
778 reflections with I > 2σ(I)
Tmin = 0.048, Tmax = 0.157Rint = 0.023
8536 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0131 restraint
wR(F2) = 0.029Δρmax = 0.97 e Å3
S = 1.16Δρmin = 1.06 e Å3
790 reflectionsAbsolute structure: Flack (1983), 322 Friedel pairs
33 parametersAbsolute structure parameter: 0.155 (15)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.29203 (3)0.146014 (13)0.925032 (13)0.00373 (3)
Zn10.66670.66670.62348 (6)0.00671 (7)
Zn20.33330.33330.68932 (6)0.00606 (7)
O10.16669 (16)0.16669 (16)0.8086 (2)0.00588 (19)
O20.51182 (15)0.0236 (3)1.04041 (16)0.0055 (2)
O30.66670.33330.8210 (3)0.0054 (4)
O40.00000.00001.0666 (3)0.0057 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00333 (5)0.00389 (4)0.00377 (5)0.00166 (2)0.00017 (5)0.00008 (2)
Zn10.00746 (10)0.00746 (10)0.00521 (15)0.00373 (5)0.0000.000
Zn20.00647 (10)0.00647 (10)0.00525 (15)0.00323 (5)0.0000.000
O10.0061 (4)0.0061 (4)0.0052 (5)0.0028 (4)0.0007 (2)0.0007 (2)
O20.0048 (3)0.0056 (5)0.0066 (6)0.0028 (2)0.0005 (2)0.0011 (4)
O30.0063 (5)0.0063 (5)0.0038 (8)0.0031 (2)0.0000.000
O40.0068 (5)0.0068 (5)0.0036 (8)0.0034 (3)0.0000.000
Geometric parameters (Å, º) top
Mo1—O11.9549 (14)Zn1—O2v1.9687 (15)
Mo1—O1i1.9549 (14)Zn1—O2vi1.9687 (15)
Mo1—O42.0286 (19)Zn1—O2vii1.9687 (15)
Mo1—O22.0804 (10)Zn2—O12.0467 (18)
Mo1—O2ii2.0804 (10)Zn2—O1viii2.0467 (18)
Mo1—O32.1415 (14)Zn2—O1ix2.0467 (18)
Mo1—Mo1iii2.5326 (2)Zn2—O2x2.1431 (16)
Mo1—Mo1i2.5326 (2)Zn2—O2xi2.1431 (16)
Zn1—O3iv1.963 (3)Zn2—O2vii2.1431 (16)
O1—Mo1—O1i95.38 (11)O1—Zn2—O1viii89.84 (8)
O1—Mo1—O4100.30 (5)O1—Zn2—O1ix89.84 (8)
O1i—Mo1—O4100.30 (5)O1viii—Zn2—O1ix89.84 (8)
O1—Mo1—O291.06 (7)O1—Zn2—O2x96.01 (5)
O1i—Mo1—O2166.69 (5)O1viii—Zn2—O2x171.73 (8)
O4—Mo1—O289.96 (6)O1ix—Zn2—O2x96.01 (5)
O1—Mo1—O2ii166.69 (5)O1—Zn2—O2xi96.01 (5)
O1i—Mo1—O2ii91.06 (7)O1viii—Zn2—O2xi96.01 (5)
O4—Mo1—O2ii89.96 (6)O1ix—Zn2—O2xi171.73 (7)
O2—Mo1—O2ii80.41 (8)O2x—Zn2—O2xi77.60 (7)
O1—Mo1—O389.76 (6)O1—Zn2—O2vii171.73 (7)
O1i—Mo1—O389.76 (6)O1viii—Zn2—O2vii96.01 (5)
O4—Mo1—O3164.96 (9)O1ix—Zn2—O2vii96.01 (5)
O2—Mo1—O378.60 (6)O2x—Zn2—O2vii77.60 (7)
O2ii—Mo1—O378.60 (6)O2xi—Zn2—O2vii77.60 (7)
O1—Mo1—Mo1iii49.63 (4)Mo1—O1—Mo1iii80.75 (7)
O1i—Mo1—Mo1iii95.26 (4)Mo1—O1—Zn2137.21 (4)
O4—Mo1—Mo1iii51.38 (4)Mo1iii—O1—Zn2137.21 (4)
O2—Mo1—Mo1iii97.78 (4)Zn1xii—O2—Mo1119.89 (5)
O2ii—Mo1—Mo1iii141.34 (3)Zn1xii—O2—Mo1xiii119.89 (5)
O3—Mo1—Mo1iii139.34 (4)Mo1—O2—Mo1xiii102.68 (7)
O1—Mo1—Mo1i95.26 (4)Zn1xii—O2—Zn2xiv111.56 (8)
O1i—Mo1—Mo1i49.63 (4)Mo1—O2—Zn2xiv99.62 (5)
O4—Mo1—Mo1i51.38 (4)Mo1xiii—O2—Zn2xiv99.62 (5)
O2—Mo1—Mo1i141.34 (3)Zn1xv—O3—Mo1xiii118.84 (7)
O2ii—Mo1—Mo1i97.78 (4)Zn1xv—O3—Mo1ii118.84 (7)
O3—Mo1—Mo1i139.34 (4)Mo1xiii—O3—Mo1ii98.68 (9)
Mo1iii—Mo1—Mo1i60.0Zn1xv—O3—Mo1118.84 (7)
O3iv—Zn1—O2v114.79 (5)Mo1xiii—O3—Mo198.68 (9)
O3iv—Zn1—O2vi114.79 (5)Mo1ii—O3—Mo198.68 (9)
O2v—Zn1—O2vi103.67 (6)Mo1iii—O4—Mo177.25 (8)
O3iv—Zn1—O2vii114.79 (5)Mo1iii—O4—Mo1i77.25 (8)
O2v—Zn1—O2vii103.67 (6)Mo1—O4—Mo1i77.25 (8)
O2vi—Zn1—O2vii103.67 (6)
Symmetry codes: (i) y, xy, z; (ii) x+y1, x1, z; (iii) x+y, x, z; (iv) x, y+1, z; (v) x1, y+1, z+1/2; (vi) y1, x+y, z+1/2; (vii) xy, x+1, z+1/2; (viii) x+y1, x, z; (ix) y, xy+1, z; (x) y, x+y, z+1/2; (xi) x1, y, z+1/2; (xii) x1, y+1, z1/2; (xiii) y1, xy, z; (xiv) x1, y, z1/2; (xv) x, y1, z.

Experimental details

Crystal data
Chemical formulaZn2Mo3O8
Mr546.56
Crystal system, space groupHexagonal, P63mc
Temperature (K)293
a, c (Å)5.7816 (2), 9.9345 (3)
V3)287.59 (2)
Z2
Radiation typeMo Kα
µ (mm1)14.59
Crystal size (mm)0.21 × 0.13 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionAnalytical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.048, 0.157
No. of measured, independent and
observed [I > 2σ(I)] reflections
8536, 790, 778
Rint0.023
(sin θ/λ)max1)0.977
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.029, 1.16
No. of reflections790
No. of parameters33
No. of restraints1
Δρmax, Δρmin (e Å3)0.97, 1.06
Absolute structureFlack (1983), 322 Friedel pairs
Absolute structure parameter0.155 (15)

Computer programs: COLLECT (Nonius, 1998), EVALCCD (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Bergerhoff, 1996).

Selected bond lengths (Å) top
Mo1—O11.9549 (14)Mo1—Mo1i2.5326 (2)
Mo1—O42.0286 (19)Zn1—O3ii1.963 (3)
Mo1—O22.0804 (10)Zn2—O12.0467 (18)
Mo1—O32.1415 (14)Zn2—O2iii2.1431 (16)
Symmetry codes: (i) x+y, x, z; (ii) x, y+1, z; (iii) y, x+y, z+1/2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAnsell, G. B. & Katz, L. (1966). Acta Cryst. 21, 482–485.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationBetteridge, P. W., Cheetham, A. K., Howard, J. A. K., Jakubicki, G. & McCarroll, W. H. (1984). Inorg. Chem. 23, 737–740.  CrossRef CAS Web of Science Google Scholar
First citationCollins, B. T., Fine, S. M., Potenza, J. A., Greenblatt, M. & Tsai, P. P. (1989). Inorg. Chem. 28, 2444–2447.  CrossRef CAS Web of Science Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGall, P. & Gougeon, P. (2005). Acta Cryst. C61, i69–i70.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGougeon, P. & Gall, P. (2007). Acta Cryst. E63, i143.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHibble, S. J., Cooper, S. P., Patat, S. & Hannon, A. C. (1999). Acta Cryst. B55, 683–697.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKanazawa, Y. & Sasaki, A. (1986). Acta Cryst. C42, 9–11.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMcCarroll, W. H. (1977). Inorg. Chem. 16, 3351–3353.  CrossRef CAS Web of Science Google Scholar
First citationMcCarroll, W. H., Katz, L. & Ward, R. (1957). J. Am. Chem. Soc. 79, 5410–5414.  CrossRef CAS Web of Science Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTorardi, C. C. & McCarley, R. E. (1985). Inorg. Chem. 24, 476–481.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds