organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1507-o1508

N-tert-Butyl-3-hydr­­oxy-5-androstene-17-carboxamide monohydrate

aSchool of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410004, People's Republic of China, bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand, and cSchool of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
*Correspondence e-mail: js_li@yahoo.com.cn

(Received 1 June 2009; accepted 3 June 2009; online 6 June 2009)

In the title compound, C24H39NO2·H2O, the A and C rings of the pregnolene derivative sterol adopt chair conformations, with the B ring in a flattened chair conformation and the five-membered ring in an envelope conformation twisted about the C/D ring junction. The N-tert-butyl­carboxamide substituent is equatorial. The 3β-hydr­oxy H atom and one H atom of the water mol­ecule are disordered over two positions with equal occupancies. In the crystal structure, O—H⋯O hydrogen bonds between the 3β-hydr­oxy groups of neighbouring mol­ecules form dimers in the bc plane and these dimers are stacked along the a axis by additional O—H⋯O hydrogen bonds involving the water mol­ecules. The steric effect of the bulky tert-butyl substituent in the carboxamide chain precludes hydrogen-bond formation by the N—H group.

Related literature

The title compound is an inter­mediate in the synthesis of finasteride (Li et al., 2001[Li, X. J., Chen, L. G., Fang, F. & Wang, X. J. (2001). Chin. J. Pharm. 32, 236-238.]). For pharmaceutical applications of finasteride, systematic name N-(tert-but­yl)-3-oxo-4-aza-5-androst-1-ene-17-carboxamide, see: Rasmusson et al. (1984[Rasmusson, G. H., Reynold, G. F. & Utne, T. (1984). J. Med. Chem. 27, 1690-1701.], 1986[Rasmusson, G. H., Reynold, G. F. & Utne, T. (1986). J. Med. Chem. 29, 2298-2315.]); Rasmusson & Reynold (1985[Rasmusson, G. H. & Reynold, G. F. (1985). Eur. Patent No. 0 155 096.]); US National Library of Medicine and National Institutes of Health (2008[US National Library of Medicine and National Institutes of Health (2008). http://www.nlm.nih.gov/medlineplus/druginfo/meds/a698016.html .]). For pregnenolone and its derivatives, see: Finar (1959[Finar, I. L. (1959). Organic Chemistry, Vol. 2, Stereochemistry and the Chemistry of Natural Products, 2nd ed., pp. 495-497. London: Longman.]). For the preparation of the title compound, see: Rasmusson et al. (1984[Rasmusson, G. H., Reynold, G. F. & Utne, T. (1984). J. Med. Chem. 27, 1690-1701.]); Dolling et al. (1999[Dolling, U. H., McCauley, J. A. & Varsolona, R. J. (1999). Eur. Patent No. 655 458.]). For related structures, see: Bordner et al. (1978[Bordner, J., Hennessee, G. L. A. & Chandross, R. J. (1978). Cryst. Struct. Commun. 7, 513-515.]); Lancaster et al. (2007[Lancaster, R. W., Karamertzanis, P. G., Hulme, A. T., Tocher, D. A., Lewis, T. C. & Price, S. L. (2007). J. Pharm. Sci. 96, 3419-3430.]); Duax et al. (1989[Duax, W. L., Griffin, J. F., Strong, P. D. & Guan, Y. (1989). Acta Cryst. C45, 1433-1435.]); Shukla et al. (2008[Shukla, Y. J., Fronczek, F. R., Pawar, R. S. & Khan, I. A. (2008). Acta Cryst. E64, o1643-o1644.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C24H39NO2·H2O

  • Mr = 391.58

  • Monoclinic, C 2

  • a = 9.934 (6) Å

  • b = 7.469 (5) Å

  • c = 30.647 (18) Å

  • β = 91.547 (10)°

  • V = 2273 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.15 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.989

  • 4186 measured reflections

  • 2146 independent reflections

  • 1735 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.114

  • S = 1.07

  • 2146 reflections

  • 277 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1OA⋯O1i 0.821 (11) 1.99 (4) 2.783 (6) 161 (10)
O1—H1OB⋯O1Wii 0.819 (11) 2.31 (9) 2.756 (5) 115 (8)
O1W—H1W⋯O1Wi 0.847 (11) 2.26 (6) 2.798 (9) 121 (6)
O1W—H2WA⋯O1iii 0.850 (11) 1.93 (6) 2.756 (5) 163 (20)
Symmetry codes: (i) -x+1, y, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Finasteride, systematic name N-(tert-butyl)-3-oxo-4-aza-5-androst-1-ene-17-carboxamide, is an azasteroid used in the treatment of both Benign Prostatic Hypertrophy and hair loss in the male adults (Rasmusson et al., 1984,1986; Rasmusson & Reynold, 1985; US National Library of Medicine and National Institutes of Health, 2008). The title compound, (I), Fig. 1, is a derivative of pregnenolone (Finar, 1959) which crystallizes with a solvent water molecule and is a key intermediate in the synthesis of finasteride (Li et al., 2001).

The A and C rings of the steroid skeleton (C1—C5, C10 and C8,C9,C11—C14) have chair conformations (Cremer & Pople, 1975) with atoms C3 and C10 - 0.668 (5) and 0.604 (5) Å from the C1,C2,C4,C5 plane (r.m.s. deviation 0.018 Å) and atoms C9 and C13 - 0.601 (4) and 0.701 (4) Å from the C8,C11,C12,C14 plane (r.m.s. deviation 0.011 Å). Ring B (C5—C10) has a flattened chair conformation with an r.m.s. deviation of 0.091 Å from the plane through atoms C5—C7,C9,C10 with atom C8 displaced 0.588 (4) Å from this plane. The five membered ring D (C13—C17) has an envelope conformation twisted about the C/D ring junction with atom C14 - 0.617 (5) Å from the plane through C13,C15—C17 (r.m.s. deviation 0.082 Å).

The close similarity between this molecule and pregnenolone is amply demonstrated by the fact that the structure overlays with that of pregnenolone (Lancaster et al., 2007; refcode PREGOL01 in the Cambridge Structural Database, version 5.30, Feb. 2009; Allen, 2002) with an r.m.s. deviation of 0.111 Å. This deviation drops to 0.045 Å if the carbonyl O2 atom is omitted from the calculation, Fig. 2 (Macrae et al., 2006). The C16—C17—C20—O2 torsion angle which defines the conformation of the carboxamide group with respect to the main skeleton is -26.9 (5) °, significantly greater than the values in the range -3.0 to 0.6 ° reported for pregnenolone itself (Bordner et al., 1978; Lancaster et al., 2007) but more comparable to those found in pregnenolone derivatives with substituents elsewhere on the steroid backbone (Duax et al., 1989; Shukla et al., 2008).

In the crystal structure O1—H1OA···O1 hydrogen bonds form dimers in the bc plane. O1W—H1W···O1W hydrogen bonds link pairs of water molecules, while O1—H1O···O1W and O1W—H2W···O1 interactions stack the dimers along a (Fig. 3). The amide N1—H1 group is not involved in hydrogen bonding interactions, presumably because of the shielding effect of the bulky tert-butyl substituents.

Related literature top

The title compound is a key intermediate in the synthesis of finasteride (Li et al., 2001). For pharmacetical applications of finasteride, systematic name N-(tert-butyl)-3-oxo-4-aza-5-androst-1-ene-17-carboxamide, see: Rasmusson et al. (1984, 1986); Rasmusson & Reynold (1985); US National Library of Medicine and National Institutes of Health (2008). For pregnenolone and its derivatives, see: Finar (1959). For the preparation of the title compound, see: Rasmusson et al. (1984); Dolling et al. (1999). For related structures, see: Bordner et al. (1978); Lancaster et al. (2007); Duax et al. (1989); Shukla et al. (2008). For ring puckering analysis, see: Cremer & Pople (1975). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The title compound was prepared from pregnenolone as previously described (Rasmusson et al., 1984; Dolling et al., 1999). A single-crystal of the title compound, suitable for X-ray analysis, was grown by slow evaporation of the solvent DMF/H2O (1:2 v:v).

Refinement top

The H atoms bound to C were positioned geometrically and constrained to ride on their parent atoms [C—H distances are 0.97–0.98Å for CH2 and CH groups with Uiso(H) = 1.2 Ueq(C), and 0.96 Å for CH3 groups. The O—H and N—H hydrogen atoms were refined with their isotropic displacement parameters 1.2 Ueq(O,N) for the O—H and N—H groups and 1.5 Ueq(O) for the water molecule. Distances were constrained to 0.82 (1) Å for the O—H bond 0.85 (1) Å in the water molecule and 0.90 (1)Å for the N—H bond. The H1O atom on O1 and the H2W atom of the water molecule are each disordered over two positions with equal occupancies. This disorder leads to a close approach of the O1 atoms and their hydrogen atoms on adjacent molecules. The absolute configuration of (I) could not be determined and Friedel equivalents were averaged in the refinement. The chosen configuration was based on that of the pregnenolone precursor with C3 S, C8 R, C9 S, C10 R, C13 S and C14 S.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Only one disorder component of the disordered O—H group and water molecule is shown.
[Figure 2] Fig. 2. An overlay in Mercury (Macrae et al., 2006) of the non-hydrogen atoms common to the structures of (I) and pregnenolone (Lancaster et al., 2007).
[Figure 3] Fig. 3. Crystal packing of (I) viewed approximately down the b axis. Hydrogen bonds are drawn as dashed lines and H atoms not involved in hydrogen bonding have been omitted.
N-(tert-butyl)-3-hydroxy-10,13-dimethyl- 2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydo-1H- cyclopenta[α]phenanthrene-17-carboxamide monohydrate top
Crystal data top
C24H39NO2·H2OF(000) = 864
Mr = 391.58Dx = 1.144 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 734 reflections
a = 9.934 (6) Åθ = 3.3–26.2°
b = 7.469 (5) ŵ = 0.07 mm1
c = 30.647 (18) ÅT = 293 K
β = 91.547 (10)°Block, colourless
V = 2273 (2) Å30.40 × 0.30 × 0.15 mm
Z = 4
Data collection top
Bruker SMART 1K CCD
diffractometer
2146 independent reflections
Radiation source: fine-focus sealed tube1735 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.971, Tmax = 0.989k = 58
4186 measured reflectionsl = 3236
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.5179P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.003
2146 reflectionsΔρmax = 0.18 e Å3
277 parametersΔρmin = 0.15 e Å3
7 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0095 (13)
Crystal data top
C24H39NO2·H2OV = 2273 (2) Å3
Mr = 391.58Z = 4
Monoclinic, C2Mo Kα radiation
a = 9.934 (6) ŵ = 0.07 mm1
b = 7.469 (5) ÅT = 293 K
c = 30.647 (18) Å0.40 × 0.30 × 0.15 mm
β = 91.547 (10)°
Data collection top
Bruker SMART 1K CCD
diffractometer
2146 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1735 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.989Rint = 0.035
4186 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0487 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.18 e Å3
2146 reflectionsΔρmin = 0.15 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4428 (4)0.2304 (5)0.35592 (10)0.0384 (9)
H1A0.46270.33960.34030.046*
H1B0.35770.18470.34430.046*
C30.3985 (3)0.1094 (5)0.42947 (10)0.0379 (9)
H30.31430.05650.41810.045*
O10.3816 (3)0.1542 (4)0.47468 (8)0.0467 (7)
H1OA0.450 (6)0.128 (13)0.489 (3)0.070*0.50
H1OB0.358 (10)0.052 (5)0.480 (3)0.070*0.50
C40.5102 (4)0.0249 (5)0.42418 (11)0.0374 (9)
H4A0.59260.02220.43740.045*
H4B0.48770.13440.43940.045*
C50.5333 (3)0.0670 (5)0.37715 (10)0.0300 (8)
C60.5374 (3)0.2341 (5)0.36342 (11)0.0350 (8)
H60.52380.32390.38380.042*
C70.5621 (3)0.2899 (5)0.31783 (11)0.0346 (8)
H7A0.47880.33500.30480.042*
H7B0.62690.38710.31830.042*
C80.6145 (3)0.1399 (5)0.28958 (10)0.0273 (7)
H80.71020.12160.29680.033*
C90.5391 (3)0.0331 (4)0.29865 (10)0.0264 (7)
H90.44350.00650.29330.032*
C100.5527 (3)0.0933 (4)0.34704 (10)0.0268 (7)
C190.6913 (3)0.1751 (5)0.35760 (10)0.0388 (9)
H19A0.70370.18590.38870.058*
H19B0.69690.29140.34440.058*
H19C0.76020.09920.34630.058*
C110.5739 (4)0.1816 (5)0.26685 (10)0.0365 (8)
H11A0.66490.22230.27350.044*
H11B0.51380.28190.27130.044*
C120.5642 (4)0.1268 (5)0.21887 (10)0.0372 (9)
H12A0.47080.10390.21060.045*
H12B0.59630.22390.20090.045*
C130.6473 (3)0.0400 (5)0.21091 (10)0.0292 (8)
C180.7972 (3)0.0009 (5)0.21675 (12)0.0404 (9)
H18A0.84860.10260.20900.061*
H18B0.81690.03170.24670.061*
H18C0.82040.09940.19830.061*
C140.5993 (3)0.1847 (4)0.24156 (10)0.0288 (8)
H140.50220.19570.23570.035*
C150.6607 (4)0.3561 (5)0.22482 (12)0.0451 (10)
H15A0.60810.45940.23310.054*
H15B0.75240.37080.23600.054*
C160.6573 (4)0.3311 (6)0.17535 (12)0.0553 (11)
H16A0.59030.40940.16180.066*
H16B0.74440.35920.16350.066*
C170.6212 (4)0.1340 (6)0.16646 (11)0.0389 (9)
H170.52440.12770.15960.047*
C200.6943 (4)0.0543 (6)0.12881 (12)0.0448 (10)
O20.8041 (3)0.1105 (5)0.11812 (9)0.0679 (10)
N10.6348 (3)0.0865 (5)0.10950 (9)0.0459 (9)
H1N0.553 (2)0.120 (6)0.1186 (12)0.055*
C210.6855 (4)0.1911 (7)0.07302 (11)0.0499 (11)
C220.8179 (5)0.2794 (9)0.08648 (17)0.0811 (16)
H22A0.80440.35570.11120.122*
H22B0.85010.34940.06260.122*
H22C0.88300.18890.09410.122*
C230.5815 (5)0.3306 (8)0.06214 (15)0.0794 (17)
H23A0.49800.27330.05400.119*
H23B0.61120.40240.03830.119*
H23C0.56860.40540.08710.119*
C240.7039 (5)0.0700 (9)0.03397 (13)0.0816 (17)
H24A0.77580.01290.04020.122*
H24B0.72550.14100.00900.122*
H24C0.62210.00500.02800.122*
O1W0.3597 (4)0.5303 (7)0.49476 (16)0.1038 (14)
H1W0.416 (6)0.553 (13)0.5152 (16)0.156*
H2WA0.288 (15)0.55 (3)0.508 (7)0.156*0.50
H2WB0.299 (18)0.60 (2)0.503 (8)0.156*0.50
C20.4264 (4)0.2760 (5)0.40398 (11)0.0408 (9)
H2A0.50800.33230.41540.049*
H2B0.35270.35990.40700.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (2)0.037 (2)0.0293 (18)0.0108 (17)0.0050 (15)0.0067 (17)
C30.0364 (19)0.046 (2)0.0312 (18)0.0048 (18)0.0004 (13)0.0004 (17)
O10.0488 (17)0.061 (2)0.0309 (14)0.0033 (15)0.0086 (11)0.0015 (14)
C40.048 (2)0.036 (2)0.0277 (18)0.0011 (17)0.0005 (15)0.0079 (16)
C50.0281 (17)0.032 (2)0.0299 (17)0.0031 (15)0.0014 (13)0.0066 (16)
C60.038 (2)0.033 (2)0.0345 (19)0.0038 (16)0.0023 (14)0.0095 (17)
C70.0400 (19)0.0231 (19)0.041 (2)0.0042 (15)0.0028 (15)0.0031 (16)
C80.0254 (16)0.0282 (18)0.0286 (17)0.0008 (15)0.0034 (12)0.0023 (15)
C90.0237 (15)0.0247 (17)0.0306 (17)0.0005 (13)0.0002 (12)0.0023 (14)
C100.0296 (17)0.0271 (18)0.0237 (16)0.0045 (14)0.0023 (12)0.0027 (14)
C190.0403 (19)0.043 (2)0.0332 (18)0.0118 (18)0.0021 (14)0.0019 (18)
C110.054 (2)0.0279 (19)0.0284 (18)0.0077 (18)0.0066 (15)0.0042 (16)
C120.043 (2)0.041 (2)0.0278 (18)0.0085 (17)0.0038 (14)0.0069 (17)
C130.0269 (17)0.032 (2)0.0288 (18)0.0008 (15)0.0037 (13)0.0001 (16)
C180.0337 (19)0.044 (2)0.044 (2)0.0035 (17)0.0026 (15)0.0073 (18)
C140.0256 (16)0.0274 (19)0.0335 (18)0.0029 (14)0.0020 (13)0.0041 (15)
C150.056 (2)0.036 (2)0.043 (2)0.0040 (19)0.0084 (17)0.0065 (18)
C160.068 (3)0.051 (3)0.048 (2)0.007 (2)0.0149 (19)0.014 (2)
C170.0376 (19)0.049 (2)0.0301 (18)0.0050 (18)0.0024 (14)0.0062 (18)
C200.044 (2)0.057 (3)0.033 (2)0.001 (2)0.0091 (16)0.007 (2)
O20.062 (2)0.089 (3)0.0546 (18)0.0252 (18)0.0296 (14)0.0116 (18)
N10.0422 (17)0.064 (2)0.0315 (16)0.0094 (17)0.0086 (13)0.0049 (17)
C210.052 (2)0.066 (3)0.032 (2)0.009 (2)0.0086 (16)0.004 (2)
C220.068 (3)0.096 (4)0.079 (3)0.017 (3)0.000 (3)0.010 (3)
C230.088 (3)0.095 (4)0.056 (3)0.027 (3)0.019 (2)0.021 (3)
C240.106 (4)0.100 (5)0.039 (2)0.021 (4)0.013 (2)0.005 (3)
O1W0.076 (3)0.106 (4)0.131 (4)0.021 (3)0.019 (2)0.036 (3)
C20.049 (2)0.041 (2)0.0326 (19)0.0135 (18)0.0085 (15)0.0001 (18)
Geometric parameters (Å, º) top
C1—C21.525 (5)C13—C181.526 (5)
C1—C101.527 (5)C13—C171.548 (5)
C1—H1A0.9700C18—H18A0.9600
C1—H1B0.9700C18—H18B0.9600
C3—O11.440 (4)C18—H18C0.9600
C3—C21.499 (5)C14—C151.514 (5)
C3—C41.508 (5)C14—H140.9800
C3—H30.9800C15—C161.527 (5)
O1—H1OA0.821 (11)C15—H15A0.9700
O1—H1OB0.819 (11)C15—H15B0.9700
C4—C51.499 (5)C16—C171.537 (6)
C4—H4A0.9700C16—H16A0.9700
C4—H4B0.9700C16—H16B0.9700
C5—C61.318 (5)C17—C201.503 (5)
C5—C101.527 (5)C17—H170.9800
C6—C71.485 (5)C20—O21.222 (4)
C6—H60.9300C20—N11.337 (5)
C7—C81.517 (5)N1—C211.465 (5)
C7—H7A0.9700N1—H1N0.899 (10)
C7—H7B0.9700C21—C231.499 (6)
C8—C141.513 (4)C21—C241.515 (6)
C8—C91.522 (5)C21—C221.518 (6)
C8—H80.9800C22—H22A0.9600
C9—C111.523 (5)C22—H22B0.9600
C9—C101.552 (4)C22—H22C0.9600
C9—H90.9800C23—H23A0.9600
C10—C191.533 (4)C23—H23B0.9600
C19—H19A0.9600C23—H23C0.9600
C19—H19B0.9600C24—H24A0.9600
C19—H19C0.9600C24—H24B0.9600
C11—C121.527 (4)C24—H24C0.9600
C11—H11A0.9700O1W—H1W0.847 (11)
C11—H11B0.9700O1W—H2WA0.850 (11)
C12—C131.519 (5)O1W—H2WB0.850 (11)
C12—H12A0.9700C2—H2A0.9700
C12—H12B0.9700C2—H2B0.9700
C13—C141.517 (5)
C2—C1—C10114.7 (3)C14—C13—C17100.0 (3)
C2—C1—H1A108.6C12—C13—C17115.8 (3)
C10—C1—H1A108.6C18—C13—C17109.5 (3)
C2—C1—H1B108.6C13—C18—H18A109.5
C10—C1—H1B108.6C13—C18—H18B109.5
H1A—C1—H1B107.6H18A—C18—H18B109.5
O1—C3—C2109.6 (3)C13—C18—H18C109.5
O1—C3—C4111.3 (3)H18A—C18—H18C109.5
C2—C3—C4110.4 (3)H18B—C18—H18C109.5
O1—C3—H3108.5C8—C14—C15119.1 (3)
C2—C3—H3108.5C8—C14—C13114.8 (3)
C4—C3—H3108.5C15—C14—C13104.9 (3)
C3—O1—H1OA110 (7)C8—C14—H14105.7
C3—O1—H1OB92 (7)C15—C14—H14105.7
H1OA—O1—H1OB85 (9)C13—C14—H14105.7
C5—C4—C3112.0 (3)C14—C15—C16103.6 (3)
C5—C4—H4A109.2C14—C15—H15A111.0
C3—C4—H4A109.2C16—C15—H15A111.0
C5—C4—H4B109.2C14—C15—H15B111.0
C3—C4—H4B109.2C16—C15—H15B111.0
H4A—C4—H4B107.9H15A—C15—H15B109.0
C6—C5—C4120.8 (3)C15—C16—C17107.0 (3)
C6—C5—C10122.9 (3)C15—C16—H16A110.3
C4—C5—C10116.2 (3)C17—C16—H16A110.3
C5—C6—C7125.0 (3)C15—C16—H16B110.3
C5—C6—H6117.5C17—C16—H16B110.3
C7—C6—H6117.5H16A—C16—H16B108.6
C6—C7—C8113.4 (3)C20—C17—C16113.6 (3)
C6—C7—H7A108.9C20—C17—C13115.0 (3)
C8—C7—H7A108.9C16—C17—C13104.2 (3)
C6—C7—H7B108.9C20—C17—H17107.9
C8—C7—H7B108.9C16—C17—H17107.9
H7A—C7—H7B107.7C13—C17—H17107.9
C14—C8—C7111.4 (3)O2—C20—N1122.6 (4)
C14—C8—C9109.2 (3)O2—C20—C17121.5 (4)
C7—C8—C9110.2 (2)N1—C20—C17115.8 (3)
C14—C8—H8108.7C20—N1—C21126.9 (3)
C7—C8—H8108.7C20—N1—H1N118 (3)
C9—C8—H8108.7C21—N1—H1N115 (3)
C8—C9—C11112.3 (2)N1—C21—C23106.9 (3)
C8—C9—C10112.9 (3)N1—C21—C24109.6 (4)
C11—C9—C10112.6 (3)C23—C21—C24109.7 (4)
C8—C9—H9106.1N1—C21—C22109.7 (3)
C11—C9—H9106.1C23—C21—C22110.2 (5)
C10—C9—H9106.1C24—C21—C22110.6 (4)
C5—C10—C1108.4 (2)C21—C22—H22A109.5
C5—C10—C19108.2 (3)C21—C22—H22B109.5
C1—C10—C19109.8 (3)H22A—C22—H22B109.5
C5—C10—C9109.9 (3)C21—C22—H22C109.5
C1—C10—C9108.7 (2)H22A—C22—H22C109.5
C19—C10—C9111.8 (2)H22B—C22—H22C109.5
C10—C19—H19A109.5C21—C23—H23A109.5
C10—C19—H19B109.5C21—C23—H23B109.5
H19A—C19—H19B109.5H23A—C23—H23B109.5
C10—C19—H19C109.5C21—C23—H23C109.5
H19A—C19—H19C109.5H23A—C23—H23C109.5
H19B—C19—H19C109.5H23B—C23—H23C109.5
C9—C11—C12114.3 (3)C21—C24—H24A109.5
C9—C11—H11A108.7C21—C24—H24B109.5
C12—C11—H11A108.7H24A—C24—H24B109.5
C9—C11—H11B108.7C21—C24—H24C109.5
C12—C11—H11B108.7H24A—C24—H24C109.5
H11A—C11—H11B107.6H24B—C24—H24C109.5
C13—C12—C11110.7 (3)H1W—O1W—H2WA98 (10)
C13—C12—H12A109.5H1W—O1W—H2WB96 (10)
C11—C12—H12A109.5H2WA—O1W—H2WB29 (10)
C13—C12—H12B109.5C3—C2—C1110.1 (3)
C11—C12—H12B109.5C3—C2—H2A109.6
H12A—C12—H12B108.1C1—C2—H2A109.6
C14—C13—C12107.7 (2)C3—C2—H2B109.6
C14—C13—C18113.1 (3)C1—C2—H2B109.6
C12—C13—C18110.5 (3)H2A—C2—H2B108.2
O1—C3—C4—C5177.4 (3)C7—C8—C14—C1555.4 (4)
C2—C3—C4—C555.4 (4)C9—C8—C14—C15177.3 (3)
C3—C4—C5—C6129.1 (4)C7—C8—C14—C13179.1 (3)
C3—C4—C5—C1051.6 (4)C9—C8—C14—C1357.1 (3)
C4—C5—C6—C7178.8 (3)C12—C13—C14—C860.6 (4)
C10—C5—C6—C70.5 (5)C18—C13—C14—C861.8 (4)
C5—C6—C7—C813.3 (5)C17—C13—C14—C8178.2 (3)
C6—C7—C8—C14163.2 (3)C12—C13—C14—C15166.8 (3)
C6—C7—C8—C941.8 (4)C18—C13—C14—C1570.8 (4)
C14—C8—C9—C1149.4 (3)C17—C13—C14—C1545.5 (3)
C7—C8—C9—C11172.1 (3)C8—C14—C15—C16165.9 (3)
C14—C8—C9—C10178.2 (3)C13—C14—C15—C1635.7 (4)
C7—C8—C9—C1059.2 (3)C14—C15—C16—C1711.1 (4)
C6—C5—C10—C1133.6 (4)C15—C16—C17—C20142.5 (3)
C4—C5—C10—C147.1 (4)C15—C16—C17—C1316.6 (4)
C6—C5—C10—C19107.5 (4)C14—C13—C17—C20162.4 (3)
C4—C5—C10—C1971.9 (3)C12—C13—C17—C2082.3 (4)
C6—C5—C10—C914.9 (4)C18—C13—C17—C2043.4 (4)
C4—C5—C10—C9165.7 (3)C14—C13—C17—C1637.4 (3)
C2—C1—C10—C549.6 (4)C12—C13—C17—C16152.7 (3)
C2—C1—C10—C1968.4 (4)C18—C13—C17—C1681.6 (4)
C2—C1—C10—C9169.1 (3)C16—C17—C20—O226.9 (5)
C8—C9—C10—C544.6 (3)C13—C17—C20—O293.0 (5)
C11—C9—C10—C5173.2 (3)C16—C17—C20—N1156.3 (3)
C8—C9—C10—C1163.0 (3)C13—C17—C20—N183.7 (4)
C11—C9—C10—C168.4 (3)O2—C20—N1—C211.8 (6)
C8—C9—C10—C1975.7 (3)C17—C20—N1—C21178.5 (4)
C11—C9—C10—C1952.9 (4)C20—N1—C21—C23178.2 (4)
C8—C9—C11—C1250.1 (4)C20—N1—C21—C2459.4 (5)
C10—C9—C11—C12179.0 (3)C20—N1—C21—C2262.2 (6)
C9—C11—C12—C1353.5 (4)O1—C3—C2—C1179.3 (3)
C11—C12—C13—C1455.9 (4)C4—C3—C2—C157.7 (4)
C11—C12—C13—C1868.1 (4)C10—C1—C2—C357.1 (4)
C11—C12—C13—C17166.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1OA···O1i0.82 (1)1.99 (4)2.783 (6)161 (10)
O1W—H1W···O1Wi0.85 (1)2.26 (6)2.798 (9)121 (6)
O1—H1OB···O1Wii0.82 (1)2.31 (9)2.756 (5)115 (8)
O1W—H2WA···O1iii0.85 (1)1.93 (6)2.756 (5)163 (20)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y1/2, z+1; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC24H39NO2·H2O
Mr391.58
Crystal system, space groupMonoclinic, C2
Temperature (K)293
a, b, c (Å)9.934 (6), 7.469 (5), 30.647 (18)
β (°) 91.547 (10)
V3)2273 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.30 × 0.15
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.971, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
4186, 2146, 1735
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.114, 1.07
No. of reflections2146
No. of parameters277
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1OA···O1i0.821 (11)1.99 (4)2.783 (6)161 (10)
O1W—H1W···O1Wi0.847 (11)2.26 (6)2.798 (9)121 (6)
O1—H1OB···O1Wii0.819 (11)2.31 (9)2.756 (5)115 (8)
O1W—H2WA···O1iii0.850 (11)1.93 (6)2.756 (5)163 (20)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y1/2, z+1; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

We thank Professor J. Song, Professor L. G. Chen and Dr X. J. Wang, Tianjin University, for their help and also thank Professor G. B. Jameson, Massey University, for useful discussions.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBordner, J., Hennessee, G. L. A. & Chandross, R. J. (1978). Cryst. Struct. Commun. 7, 513–515.  CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolling, U. H., McCauley, J. A. & Varsolona, R. J. (1999). Eur. Patent No. 655 458.  Google Scholar
First citationDuax, W. L., Griffin, J. F., Strong, P. D. & Guan, Y. (1989). Acta Cryst. C45, 1433–1435.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFinar, I. L. (1959). Organic Chemistry, Vol. 2, Stereochemistry and the Chemistry of Natural Products, 2nd ed., pp. 495–497. London: Longman.  Google Scholar
First citationLancaster, R. W., Karamertzanis, P. G., Hulme, A. T., Tocher, D. A., Lewis, T. C. & Price, S. L. (2007). J. Pharm. Sci. 96, 3419–3430.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, X. J., Chen, L. G., Fang, F. & Wang, X. J. (2001). Chin. J. Pharm. 32, 236–238.  CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRasmusson, G. H. & Reynold, G. F. (1985). Eur. Patent No. 0 155 096.  Google Scholar
First citationRasmusson, G. H., Reynold, G. F. & Utne, T. (1984). J. Med. Chem. 27, 1690–1701.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRasmusson, G. H., Reynold, G. F. & Utne, T. (1986). J. Med. Chem. 29, 2298–2315.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShukla, Y. J., Fronczek, F. R., Pawar, R. S. & Khan, I. A. (2008). Acta Cryst. E64, o1643–o1644.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUS National Library of Medicine and National Institutes of Health (2008). http://www.nlm.nih.gov/medlineplus/druginfo/meds/a698016.htmlGoogle Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1507-o1508
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds