organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(5-Iso­propyl-3-methyl­sulfanyl-1-benzo­furan-2-yl)acetic acid

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 3 June 2009; accepted 4 June 2009; online 10 June 2009)

There are two mol­ecules in the asymmetric unit of the title compound, C14H16O3S. In the crystal structure, the carboxyl groups are involved in inter­molecular O—H⋯O hydrogen bonds, which link the mol­ecules into centrosymmetric dimers. These dimers are further packed into stacks along the a axis by aromatic ππ inter­actions between the furan rings of adjacent mol­ecules [centroid–centroid distance = 3.430 (4) Å] and by additional C—H⋯π and C—H⋯O inter­actions.

Related literature

For the crystal structures of similar 2-(3-methyl­sulfanyl-1-benzofuran-2-yl)acetic acid derivatives, see: Choi et al. (2009[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o998.]); Seo et al. (2007[Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o2048-o2049.]). For the biological and pharmacological activity of benzofuran compounds, see: Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]); Ward (1997[Ward, R. S. (1997). Nat. Prod. Rep. 14, 43-74.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16O3S

  • Mr = 264.33

  • Monoclinic, P 21 /c

  • a = 17.160 (2) Å

  • b = 8.7773 (7) Å

  • c = 17.819 (2) Å

  • β = 93.905 (2)°

  • V = 2677.6 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 19182 measured reflections

  • 4727 independent reflections

  • 3284 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.139

  • S = 1.09

  • 4727 reflections

  • 336 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O3i 0.86 (4) 1.79 (4) 2.649 (3) 174 (4)
O5—H5O⋯O6ii 0.75 (4) 1.88 (4) 2.621 (3) 170 (5)
C19—H19⋯O5iii 0.95 2.70 3.567 (4) 151
C9—H9BCg4 0.99 2.57 3.350 (4) 136
C23—H23ACg2 0.99 2.58 3.299 (4) 129
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]. Cg2 and Cg4 are the centroids of the C2–C7 and C16-C21 benzene rings, respectively.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The benzofuran compounds have attracted considerable interest in view of their biological and pharmacological properties (Howlett et al., 1999; Ward, 1997). As a part of our ongoing studies on the synthesis and structures of 2-(3-methylsulfanyl-1-benzofuran-2-yl)acetic acid analogues, the crystal structure of 2-(5-ethyl-3-methylsulfanyl-1-benzofuran-2-yl)acetic acid (Seo et al., 2007) and 2-(3-methylsulfanyl-5-propyl-1-benzofuran-2-yl)acetic acid (Choi et al., 2009) have been described in the literature. Here we report the crystal structure of the title compound, 2-(5-isopropyl-3-methylsulfanyl-1-benzofuran-2-yl)acetic acid which crystallizes with two unique molecules, denoted as A & B, in the asymmetric unit (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.003 (2) Å for A and 0.011 (2) Å for B, respectively, from the least-squares plane defined by the nine constituent atoms. In the crystal structure, the carboxyl groups are involved in intermolecular O–H···O hydrogen bonds (Fig. 2 and Table 1), which link the molecules into centrosymmetric dimers. These dimers are further packed into stacks along the a-axis by aromatic ππ interactions between the furan rings from the adjacent molecules. The Cg1···Cg3 distance is 3.430 (4) Å (Cg1 and Cg3 are the centroids of C1/C2/C7/O1/C8 furan ring and C15/C16/C21/O4/C22 furan ring, respectively). In addition, the crystal packing exhibits two different C–H···π interactions between a methylene H atom and the benzene ring from adjacent molecules (Table 1 and Fig. 2); Cg2 and Cg4 are the centroids of the C2–C7 benzene ring and the C16-C21 benzene ring, respectively, and a non-classical C–H···O hydrogen bond between a benzene H atom and the O atom of the hydroxy group (Table 1 and Fig. 2).

Related literature top

For the crystal structures of similar 2-(3-methylsulfanyl-1-benzofuran-2-yl)acetic acid derivatives, see: Choi et al. (2009); Seo et al. (2007). For the biological and pharmacological activity of benzofuran compounds, see: Howlett et al. (1999); Ward (1997). Cg2 and Cg4 are the centroids of the C2–C7 and C16-C21 benzene rings, respectively.

Experimental top

Ethyl 2-(5-isopropyl-3-methylsulfanyl-1-benzofuran-2-yl)acetate (292 mg, 1.0 mmol) was added to a solution of potassium hydroxide (337 mg, 6.0 mmol) in water (25 ml) and methanol (25 ml), and the mixture was refluxed for 5h, then cooled. Water was added, and the solution was extracted with dichloromethane. The aqueous layer was acidified to pH 1 with concentrated hydrochloric acid and then extracted with chloroform, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (hexane-ethyl acetate,1 : 2 v/v) to afford the title compound as a colorless solid [yield 85%, m.p. 412-413 K; Rf = 0.69 (hexane-ethyl acetate, 1 : 2 v/v )]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in benzene at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 1.30 (d, J = 6.96 Hz, 6H), 2.33 (s, 3H), 3.01-3.07 (m, 1H), 4.03 (s, 2H), 7.19 (dd, J = 8.44 Hz and J = 1.84 Hz, 1H), 7.38 (d, J = 8.84 Hz, 1H), 7.47 (s, 1H), 10.08 (s, 1H); EI-MS 264 [M+].

Refinement top

Atoms H2O and H5O of the hydroxy groups were found in a difference Fourier map and refined freely. The other H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for the aryl, 0.99 Å for the methylene, 1.00 Å for the methine, and 0.98 Å for the methyl H atoms.Uiso(H) = 1.2Ueq(C) for the aryl, methine and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small cycles of arbitrary radius.
[Figure 2] Fig. 2. The O–H···O hydrogen bonds, and ππ, C–H···π, C–H···O interactions (dotted lines) in the title compound. [Symmetry code: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z; (iii) x, -y + 3/2, z + 1/2.]
2-(5-Isopropyl-3-methylsulfanyl-1-benzofuran-2-yl)acetic acid top
Crystal data top
C14H16O3SF(000) = 1120
Mr = 264.33Dx = 1.311 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5245 reflections
a = 17.160 (2) Åθ = 2.4–28.0°
b = 8.7773 (7) ŵ = 0.24 mm1
c = 17.819 (2) ÅT = 173 K
β = 93.905 (2)°Block, colorless
V = 2677.6 (5) Å30.30 × 0.20 × 0.20 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
3284 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.066
Graphite monochromatorθmax = 25.0°, θmin = 1.2°
Detector resolution: 10.0 pixels mm-1h = 2020
ϕ and ω scansk = 1010
19182 measured reflectionsl = 2120
4727 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: difference Fourier map
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0613P)2 + 1.3164P]
where P = (Fo2 + 2Fc2)/3
4727 reflections(Δ/σ)max < 0.001
336 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H16O3SV = 2677.6 (5) Å3
Mr = 264.33Z = 8
Monoclinic, P21/cMo Kα radiation
a = 17.160 (2) ŵ = 0.24 mm1
b = 8.7773 (7) ÅT = 173 K
c = 17.819 (2) Å0.30 × 0.20 × 0.20 mm
β = 93.905 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3284 reflections with I > 2σ(I)
19182 measured reflectionsRint = 0.066
4727 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.35 e Å3
4727 reflectionsΔρmin = 0.24 e Å3
336 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37862 (4)0.80938 (8)0.21890 (4)0.0331 (2)
S20.12907 (4)0.14800 (8)0.26676 (5)0.0351 (2)
O10.33687 (10)0.3877 (2)0.28508 (10)0.0279 (5)
O30.46953 (11)0.4873 (3)0.40822 (11)0.0375 (5)
O20.41120 (12)0.6069 (3)0.50141 (12)0.0371 (6)
H2O0.449 (2)0.570 (5)0.530 (2)0.076 (14)*
O40.15963 (10)0.5807 (2)0.21373 (11)0.0284 (5)
O60.02448 (11)0.4616 (3)0.09349 (11)0.0416 (6)
O50.09385 (13)0.4311 (3)0.00875 (13)0.0385 (6)
H5O0.063 (3)0.459 (5)0.037 (2)0.090 (18)*
C10.36056 (14)0.6137 (3)0.22892 (15)0.0225 (6)
C20.35460 (14)0.4999 (3)0.16827 (15)0.0230 (6)
C30.36002 (15)0.4995 (3)0.08765 (16)0.0261 (6)
H30.36980.59190.06220.031*
C40.35082 (15)0.3625 (3)0.04656 (16)0.0289 (7)
C50.33688 (16)0.2281 (3)0.08780 (18)0.0332 (7)
H50.33100.13460.06110.040*
C60.33120 (16)0.2260 (3)0.16803 (17)0.0333 (7)
H60.32170.13420.19410.040*
C70.34024 (14)0.3644 (3)0.20579 (15)0.0250 (6)
C80.34931 (14)0.5411 (3)0.29642 (16)0.0248 (6)
C90.34748 (15)0.5971 (3)0.37775 (15)0.0287 (7)
H9A0.34220.70940.37680.034*
H9B0.30000.55550.39880.034*
C100.41644 (15)0.5572 (3)0.43041 (15)0.0244 (6)
C110.35236 (17)0.3567 (4)0.04190 (17)0.0357 (7)
H110.34690.24750.05740.043*
C120.28631 (18)0.4423 (4)0.08121 (18)0.0476 (9)
H12A0.28940.54980.06650.057*
H12B0.23660.39940.06720.057*
H12C0.28960.43380.13570.057*
C130.42626 (19)0.4145 (5)0.07065 (19)0.0541 (10)
H13A0.47030.35430.04900.065*
H13B0.43350.52160.05630.065*
H13C0.42360.40570.12560.065*
C150.14263 (14)0.3457 (3)0.26341 (15)0.0248 (6)
C160.14678 (14)0.4533 (3)0.32748 (15)0.0227 (6)
C170.14295 (15)0.4436 (3)0.40849 (16)0.0288 (7)
H170.13670.34720.43160.035*
C180.14835 (16)0.5757 (3)0.45287 (17)0.0303 (7)
C190.15631 (15)0.7170 (3)0.41529 (17)0.0322 (7)
H190.15850.80770.44440.039*
C200.16123 (16)0.7293 (3)0.33547 (18)0.0323 (7)
H200.16740.82530.31200.039*
C210.15664 (14)0.5951 (3)0.29375 (16)0.0250 (6)
C220.15112 (14)0.4274 (3)0.19790 (16)0.0263 (6)
C230.15319 (15)0.3839 (3)0.11477 (16)0.0312 (7)
H23A0.20050.42960.09520.037*
H23B0.15870.27180.11150.037*
C240.08450 (15)0.4305 (3)0.06474 (16)0.0262 (6)
C250.14598 (19)0.5682 (4)0.54135 (18)0.0416 (8)
H250.14740.45820.55600.050*
C260.0728 (2)0.6345 (5)0.5684 (2)0.0606 (11)
H26A0.02750.57980.54530.073*
H26B0.06930.74240.55450.073*
H26C0.07360.62490.62330.073*
C270.21352 (19)0.6445 (5)0.58342 (19)0.0536 (10)
H27A0.21410.75280.57010.064*
H27B0.26230.59660.57020.064*
H27C0.20840.63400.63760.064*
C280.02834 (17)0.1368 (4)0.2460 (2)0.0464 (9)
H28A0.00140.19570.28320.070*
H28B0.01170.03010.24760.070*
H28C0.01530.17850.19570.070*
C140.47646 (16)0.8192 (4)0.25281 (19)0.0407 (8)
H14A0.48130.78600.30540.061*
H14B0.49500.92450.24940.061*
H14C0.50790.75280.22260.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0323 (4)0.0251 (4)0.0406 (5)0.0001 (3)0.0085 (3)0.0003 (3)
S20.0312 (4)0.0236 (4)0.0487 (5)0.0013 (3)0.0087 (3)0.0014 (3)
O10.0218 (10)0.0294 (11)0.0320 (11)0.0009 (8)0.0012 (8)0.0058 (9)
O30.0219 (11)0.0604 (15)0.0296 (12)0.0138 (10)0.0040 (9)0.0077 (10)
O20.0271 (11)0.0563 (15)0.0272 (12)0.0128 (10)0.0046 (9)0.0069 (10)
O40.0240 (10)0.0284 (11)0.0325 (12)0.0012 (8)0.0002 (8)0.0051 (9)
O60.0213 (11)0.0693 (16)0.0338 (12)0.0094 (10)0.0006 (9)0.0044 (11)
O50.0249 (12)0.0597 (16)0.0307 (13)0.0043 (10)0.0001 (10)0.0029 (11)
C10.0138 (12)0.0261 (15)0.0268 (16)0.0015 (11)0.0037 (11)0.0003 (12)
C20.0116 (12)0.0262 (15)0.0307 (16)0.0006 (11)0.0025 (11)0.0007 (12)
C30.0181 (13)0.0282 (16)0.0318 (17)0.0002 (11)0.0002 (12)0.0027 (13)
C40.0149 (13)0.0359 (17)0.0358 (17)0.0032 (12)0.0012 (12)0.0073 (14)
C50.0254 (15)0.0276 (16)0.046 (2)0.0036 (12)0.0002 (14)0.0101 (14)
C60.0292 (16)0.0230 (16)0.047 (2)0.0012 (12)0.0022 (14)0.0032 (14)
C70.0143 (13)0.0310 (16)0.0292 (16)0.0019 (11)0.0016 (11)0.0034 (13)
C80.0139 (13)0.0257 (15)0.0343 (17)0.0028 (11)0.0024 (11)0.0022 (12)
C90.0180 (14)0.0401 (18)0.0277 (16)0.0056 (12)0.0008 (12)0.0004 (13)
C100.0204 (14)0.0287 (16)0.0243 (16)0.0009 (12)0.0027 (12)0.0000 (12)
C110.0315 (16)0.0401 (18)0.0355 (18)0.0025 (14)0.0013 (13)0.0109 (15)
C120.0338 (18)0.077 (3)0.0315 (19)0.0059 (17)0.0015 (14)0.0036 (17)
C130.0362 (19)0.089 (3)0.038 (2)0.0022 (19)0.0099 (16)0.0099 (19)
C150.0141 (13)0.0265 (15)0.0331 (16)0.0025 (11)0.0024 (11)0.0008 (13)
C160.0091 (12)0.0248 (15)0.0339 (16)0.0004 (10)0.0011 (11)0.0015 (12)
C170.0212 (14)0.0282 (16)0.0371 (18)0.0008 (11)0.0013 (12)0.0053 (13)
C180.0217 (14)0.0314 (17)0.0377 (18)0.0001 (12)0.0020 (13)0.0014 (14)
C190.0241 (15)0.0283 (16)0.0438 (19)0.0030 (12)0.0005 (13)0.0100 (14)
C200.0277 (15)0.0182 (15)0.051 (2)0.0005 (12)0.0010 (14)0.0018 (13)
C210.0143 (13)0.0262 (15)0.0344 (17)0.0004 (11)0.0001 (11)0.0042 (13)
C220.0130 (13)0.0274 (15)0.0379 (17)0.0021 (11)0.0031 (12)0.0002 (13)
C230.0212 (14)0.0380 (18)0.0341 (17)0.0064 (12)0.0005 (12)0.0018 (14)
C240.0222 (15)0.0285 (16)0.0282 (17)0.0007 (12)0.0038 (12)0.0030 (12)
C250.056 (2)0.0343 (19)0.0361 (19)0.0008 (15)0.0111 (16)0.0042 (15)
C260.044 (2)0.088 (3)0.052 (2)0.018 (2)0.0202 (18)0.017 (2)
C270.043 (2)0.078 (3)0.039 (2)0.0160 (19)0.0024 (16)0.0119 (19)
C280.0313 (17)0.043 (2)0.066 (2)0.0109 (15)0.0088 (16)0.0017 (17)
C140.0276 (16)0.047 (2)0.048 (2)0.0114 (14)0.0016 (14)0.0024 (16)
Geometric parameters (Å, º) top
S1—C141.747 (3)C12—H12C0.9800
S1—C11.757 (3)C13—H13A0.9800
S2—C281.745 (3)C13—H13B0.9800
S2—C151.752 (3)C13—H13C0.9800
O1—C81.377 (3)C15—C221.387 (4)
O1—C71.432 (3)C15—C161.480 (4)
O3—C101.188 (3)C16—C211.398 (4)
O2—C101.347 (3)C16—C171.452 (4)
O2—H2O0.86 (4)C17—C181.403 (4)
O4—C221.380 (3)C17—H170.9500
O4—C211.436 (3)C18—C191.421 (4)
O6—C241.212 (3)C18—C251.581 (4)
O5—C241.330 (3)C19—C201.435 (4)
O5—H5O0.75 (4)C19—H190.9500
C1—C81.386 (4)C20—C211.392 (4)
C1—C21.470 (4)C20—H200.9500
C2—C71.394 (4)C22—C231.533 (4)
C2—C31.446 (4)C23—C241.486 (4)
C3—C41.411 (4)C23—H23A0.9900
C3—H30.9500C23—H23B0.9900
C4—C51.419 (4)C25—C261.493 (5)
C4—C111.579 (4)C25—C271.495 (5)
C5—C61.440 (4)C25—H251.0000
C5—H50.9500C26—H26A0.9800
C6—C71.392 (4)C26—H26B0.9800
C6—H60.9500C26—H26C0.9800
C8—C91.532 (4)C27—H27A0.9800
C9—C101.501 (4)C27—H27B0.9800
C9—H9A0.9900C27—H27C0.9800
C9—H9B0.9900C28—H28A0.9800
C11—C131.489 (4)C28—H28B0.9800
C11—C121.494 (4)C28—H28C0.9800
C11—H111.0000C14—H14A0.9800
C12—H12A0.9800C14—H14B0.9800
C12—H12B0.9800C14—H14C0.9800
C14—S1—C1100.68 (14)C21—C16—C17119.6 (2)
C28—S2—C15100.39 (14)C21—C16—C15103.7 (2)
C8—O1—C7105.5 (2)C17—C16—C15136.6 (2)
C10—O2—H2O110 (3)C18—C17—C16120.4 (3)
C22—O4—C21106.2 (2)C18—C17—H17119.8
C24—O5—H5O123 (4)C16—C17—H17119.8
C8—C1—C2108.6 (2)C17—C18—C19117.4 (3)
C8—C1—S1125.0 (2)C17—C18—C25121.5 (3)
C2—C1—S1126.4 (2)C19—C18—C25121.1 (3)
C7—C2—C3120.0 (2)C18—C19—C20123.2 (3)
C7—C2—C1103.4 (2)C18—C19—H19118.4
C3—C2—C1136.6 (2)C20—C19—H19118.4
C4—C3—C2120.4 (3)C21—C20—C19117.4 (3)
C4—C3—H3119.8C21—C20—H20121.3
C2—C3—H3119.8C19—C20—H20121.3
C3—C4—C5117.2 (3)C20—C21—C16121.9 (3)
C3—C4—C11122.5 (3)C20—C21—O4126.9 (2)
C5—C4—C11120.3 (3)C16—C21—O4111.2 (2)
C4—C5—C6123.4 (3)O4—C22—C15110.4 (2)
C4—C5—H5118.3O4—C22—C23115.6 (2)
C6—C5—H5118.3C15—C22—C23134.0 (3)
C7—C6—C5117.1 (3)C24—C23—C22116.2 (2)
C7—C6—H6121.4C24—C23—H23A108.2
C5—C6—H6121.4C22—C23—H23A108.2
C6—C7—C2122.0 (3)C24—C23—H23B108.2
C6—C7—O1126.2 (2)C22—C23—H23B108.2
C2—C7—O1111.8 (2)H23A—C23—H23B107.4
O1—C8—C1110.6 (2)O6—C24—O5125.3 (3)
O1—C8—C9116.1 (2)O6—C24—C23118.1 (3)
C1—C8—C9133.3 (3)O5—C24—C23116.6 (2)
C10—C9—C8116.8 (2)C26—C25—C27107.7 (3)
C10—C9—H9A108.1C26—C25—C18112.7 (3)
C8—C9—H9A108.1C27—C25—C18114.2 (3)
C10—C9—H9B108.1C26—C25—H25107.3
C8—C9—H9B108.1C27—C25—H25107.3
H9A—C9—H9B107.3C18—C25—H25107.3
O3—C10—O2125.6 (3)C25—C26—H26A109.5
O3—C10—C9120.2 (3)C25—C26—H26B109.5
O2—C10—C9114.3 (2)H26A—C26—H26B109.5
C13—C11—C12107.7 (3)C25—C26—H26C109.5
C13—C11—C4113.9 (3)H26A—C26—H26C109.5
C12—C11—C4112.8 (2)H26B—C26—H26C109.5
C13—C11—H11107.4C25—C27—H27A109.5
C12—C11—H11107.4C25—C27—H27B109.5
C4—C11—H11107.4H27A—C27—H27B109.5
C11—C12—H12A109.5C25—C27—H27C109.5
C11—C12—H12B109.5H27A—C27—H27C109.5
H12A—C12—H12B109.5H27B—C27—H27C109.5
C11—C12—H12C109.5S2—C28—H28A109.5
H12A—C12—H12C109.5S2—C28—H28B109.5
H12B—C12—H12C109.5H28A—C28—H28B109.5
C11—C13—H13A109.5S2—C28—H28C109.5
C11—C13—H13B109.5H28A—C28—H28C109.5
H13A—C13—H13B109.5H28B—C28—H28C109.5
C11—C13—H13C109.5S1—C14—H14A109.5
H13A—C13—H13C109.5S1—C14—H14B109.5
H13B—C13—H13C109.5H14A—C14—H14B109.5
C22—C15—C16108.5 (2)S1—C14—H14C109.5
C22—C15—S2124.3 (2)H14A—C14—H14C109.5
C16—C15—S2127.2 (2)H14B—C14—H14C109.5
C14—S1—C1—C875.9 (3)C28—S2—C15—C2283.6 (3)
C14—S1—C1—C2104.3 (2)C28—S2—C15—C1696.2 (2)
C8—C1—C2—C70.3 (3)C22—C15—C16—C210.8 (3)
S1—C1—C2—C7179.84 (19)S2—C15—C16—C21178.99 (19)
C8—C1—C2—C3179.8 (3)C22—C15—C16—C17179.4 (3)
S1—C1—C2—C30.0 (4)S2—C15—C16—C170.8 (4)
C7—C2—C3—C40.0 (4)C21—C16—C17—C180.6 (4)
C1—C2—C3—C4179.9 (3)C15—C16—C17—C18179.1 (3)
C2—C3—C4—C50.5 (4)C16—C17—C18—C191.0 (4)
C2—C3—C4—C11177.2 (2)C16—C17—C18—C25178.8 (2)
C3—C4—C5—C60.6 (4)C17—C18—C19—C201.8 (4)
C11—C4—C5—C6177.1 (2)C25—C18—C19—C20178.0 (3)
C4—C5—C6—C70.2 (4)C18—C19—C20—C211.0 (4)
C5—C6—C7—C20.3 (4)C19—C20—C21—C160.7 (4)
C5—C6—C7—O1179.9 (2)C19—C20—C21—O4179.5 (2)
C3—C2—C7—C60.4 (4)C17—C16—C21—C201.5 (4)
C1—C2—C7—C6179.5 (2)C15—C16—C21—C20178.4 (2)
C3—C2—C7—O1180.0 (2)C17—C16—C21—O4179.5 (2)
C1—C2—C7—O10.1 (3)C15—C16—C21—O40.6 (3)
C8—O1—C7—C6179.7 (3)C22—O4—C21—C20178.7 (3)
C8—O1—C7—C20.1 (3)C22—O4—C21—C160.3 (3)
C7—O1—C8—C10.3 (3)C21—O4—C22—C150.3 (3)
C7—O1—C8—C9179.2 (2)C21—O4—C22—C23179.5 (2)
C2—C1—C8—O10.4 (3)C16—C15—C22—O40.7 (3)
S1—C1—C8—O1179.74 (17)S2—C15—C22—O4179.11 (17)
C2—C1—C8—C9179.0 (3)C16—C15—C22—C23179.1 (3)
S1—C1—C8—C90.8 (4)S2—C15—C22—C231.1 (4)
O1—C8—C9—C1073.6 (3)O4—C22—C23—C2470.7 (3)
C1—C8—C9—C10107.0 (3)C15—C22—C23—C24109.6 (3)
C8—C9—C10—O31.0 (4)C22—C23—C24—O619.0 (4)
C8—C9—C10—O2178.9 (2)C22—C23—C24—O5162.5 (2)
C3—C4—C11—C1359.0 (4)C17—C18—C25—C26110.7 (3)
C5—C4—C11—C13123.4 (3)C19—C18—C25—C2669.5 (4)
C3—C4—C11—C1264.2 (4)C17—C18—C25—C27126.1 (3)
C5—C4—C11—C12113.4 (3)C19—C18—C25—C2753.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O3i0.86 (4)1.79 (4)2.649 (3)174 (4)
O5—H5O···O6ii0.75 (4)1.88 (4)2.621 (3)170 (5)
C19—H19···O5iii0.952.703.567 (4)151
C9—H9B···Cg40.992.573.350 (4)136
C23—H23A···Cg20.992.583.299 (4)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H16O3S
Mr264.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)17.160 (2), 8.7773 (7), 17.819 (2)
β (°) 93.905 (2)
V3)2677.6 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19182, 4727, 3284
Rint0.066
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.139, 1.09
No. of reflections4727
No. of parameters336
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.24

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O3i0.86 (4)1.79 (4)2.649 (3)174 (4)
O5—H5O···O6ii0.75 (4)1.88 (4)2.621 (3)170 (5)
C19—H19···O5iii0.952.703.567 (4)151.4
C9—H9B···Cg40.992.573.350 (4)136.2
C23—H23A···Cg20.992.583.299 (4)129.2
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y+3/2, z+1/2.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o998.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o2048–o2049.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWard, R. S. (1997). Nat. Prod. Rep. 14, 43–74.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds