organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-2-[(R)-2,2-Di­methyl-1,3-dioxolan-4-yl]-1,3-oxa­thio­lan-5-one

aSchool of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, People's Republic of China, and bSchool of Life Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China
*Correspondence e-mail: qpw@bit.edu.cn

(Received 14 April 2009; accepted 28 May 2009; online 6 June 2009)

In the title compound, C8H12O4S, the two five-membered rings both adopt envelope conformations. In the crystal, weak C—H⋯O inter­actions link neighbouring mol­ecules.

Related literature

The title compound is a precursor for the preparation of an important nucleoside drug. For applications of nucleosides in the fields of biology, drugs and chemistry, see: Goodyear et al. (2005[Goodyear, M. D., Hill, M. L., West, J. P. & Whitehead, A. J. (2005). Tetrahedron Lett. 46, 8535-8538.]); Simons (2001[Simons, C. (2001). Nucleoside Mimetics, Their Chemistry and Biological Properties. Amsterdam: Gordon and Breach Science Publisher.]); Vittori et al. (2006[Vittori, S., Dal Ben, D., Lambertucci, C., Marucci, G., Volpini, R. & Cristalli, G. (2006). Curr. Med. Chem. 13, 3529-3552.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12O4S

  • Mr = 204.24

  • Monoclinic, P 21

  • a = 6.5528 (13) Å

  • b = 9.4029 (19) Å

  • c = 7.9240 (16) Å

  • β = 106.60 (3)°

  • V = 467.89 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.50 × 0.20 × 0.15 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear, CrystalStructure and RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.859, Tmax = 0.952

  • 1941 measured reflections

  • 1705 independent reflections

  • 1275 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.129

  • S = 1.01

  • 1705 reflections

  • 119 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 593 Friedel pairs

  • Flack parameter: −0.01 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O3i 0.97 2.58 3.428 (4) 146
C1—H1B⋯O2ii 0.97 2.41 3.306 (6) 153
C3—H3⋯O2iii 0.98 2.55 3.265 (4) 129
Symmetry codes: (i) x, y, z-1; (ii) [-x+2, y+{\script{1\over 2}}, -z+1]; (iii) x-1, y, z.

Data collection: RAPID-AUTO (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear, CrystalStructure and RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear, CrystalStructure and RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nucleosides are a very important series of compounds in the fields of biology, drugs and chemistry (Simons, 2001); as an example, lamivudine is used as a drug for HIV and HBV diseases (Goodyear et al., 2005; Vittori et al., 2006). Studies of the synthesis of nucleoside mimetics are essential.

The purpose of this structure determination was to establish the molecular conformation of the title compound obtained by coupling (R)-(+)-2,2-dimethyl-1,3-dioxolane-4-carboxaldehyde with 2-mercaptoacetic acid. The chirality at the 2-position (C3) is R; this satisfies our requirements for the preparation of corresponding L-nucleosides. All bond lengths and bond angles have expected values. The two 5-membered rings both adopt envelope conformations with atoms C3 and C6 at the flap. Three intermolecular C—H···O interactions link neighbouring molecules.

Related literature top

For applications of nucleosides in the fields of biology,

drugs and chemistry, see: Goodyear et al. (2005); Simons (2001); Vittori et al. (2006).

Experimental top

A solution of (R)-(+)-2,2-dimethyl -1,3-dioxolane-4-carboxaldehyde (6.51 g, 50.0 mmol) and 2-mercaptoacetic acid (4.20 ml, 60.0 mmol) in toluene (200 ml) was heated under reflux for 1.5 h. After the reaction mixture was cooled to room temperature, a saturated aqueous solution of NaHCO3 (30 ml) was added and these two layers were separated. The organic layer was washed with brine, dried (MgSO4) and concentrated under reduced pressure. The residue was isolated through short column chromatography on silica gel, which was eluted with EtOAc-petroleum to give the target compound (4.96 g, 48%). m.p. 75–77°C.

50 mg of the final product was dissolved in petroleum ether (5 ml) and the solution was kept at room temperature for 2 days to give colorless single crystals.

Refinement top

H atoms were included in the riding model approximation, with C—H distances 0.96–0.98 Å, and with Uiso(H) = kUeq(C), where k = 1.5 for methyl H and 1.2 for all other H atoms.

Computing details top

Data collection: RAPID-AUTO (Rigaku/MSC, 2005); cell refinement: RAPID-AUTO (Rigaku/MSC, 2005); data reduction: CrystalStructure (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
(R)-2-[(R)-2,2-Dimethyl-1,3-dioxolan-4-yl]-1,3-oxathiolan-5-one top
Crystal data top
C8H12O4SF(000) = 216
Mr = 204.24Dx = 1.450 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.5528 (13) ÅCell parameters from 1941 reflections
b = 9.4029 (19) Åθ = 2.7–27.5°
c = 7.9240 (16) ŵ = 0.33 mm1
β = 106.60 (3)°T = 293 K
V = 467.89 (16) Å3Block, colourless
Z = 20.50 × 0.20 × 0.15 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1705 independent reflections
Radiation source: fine-focus sealed tube1275 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 2.7°
Ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1211
Tmin = 0.859, Tmax = 0.952l = 1010
1941 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.088P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.129(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.24 e Å3
1705 reflectionsΔρmin = 0.20 e Å3
119 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.102 (15)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 593 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (13)
Crystal data top
C8H12O4SV = 467.89 (16) Å3
Mr = 204.24Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.5528 (13) ŵ = 0.33 mm1
b = 9.4029 (19) ÅT = 293 K
c = 7.9240 (16) Å0.50 × 0.20 × 0.15 mm
β = 106.60 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1705 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1275 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.952Rint = 0.056
1941 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.129Δρmax = 0.24 e Å3
S = 1.01Δρmin = 0.20 e Å3
1705 reflectionsAbsolute structure: Flack (1983), 593 Friedel pairs
119 parametersAbsolute structure parameter: 0.01 (13)
1 restraint
Special details top

Experimental. 1H NMR(CDCl3,P.P.M.): 1.41 (d, 6 H), 3.58(d, 4 H), 3.77 (d, 1 H), 3.92 (dd, 1 H), 4.12 (dd, 1 H), 4.35 (m, 1 H), 5.45(d, 1 H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.57296 (17)0.19608 (12)0.31212 (10)0.0733 (4)
O10.7766 (4)0.0255 (3)0.5605 (3)0.0514 (6)
O21.1103 (4)0.0457 (3)0.5630 (4)0.0734 (8)
O30.8026 (4)0.1607 (2)0.9331 (3)0.0560 (6)
O40.7352 (4)0.2936 (2)0.6920 (3)0.0482 (5)
C10.8546 (6)0.1980 (5)0.3737 (4)0.0612 (9)
H1A0.90490.18030.27180.073*
H1B0.90750.28990.42250.073*
C20.9307 (6)0.0859 (4)0.5061 (4)0.0502 (8)
C30.5800 (5)0.1011 (4)0.5101 (4)0.0509 (8)
H30.46220.03280.48510.061*
C40.5669 (5)0.1947 (4)0.6584 (4)0.0486 (7)
H40.43020.24510.62690.058*
C50.5987 (5)0.1192 (5)0.8312 (4)0.0567 (9)
H5A0.49140.14770.88710.068*
H5B0.59150.01690.81440.068*
C60.8418 (5)0.2954 (4)0.8756 (4)0.0486 (8)
C71.0731 (6)0.3117 (5)0.9004 (6)0.0742 (11)
H7A1.10100.40440.86140.111*
H7B1.12010.24050.83300.111*
H7C1.14830.30061.02280.111*
C80.7487 (7)0.4089 (5)0.9608 (5)0.0743 (12)
H8A0.77780.50000.91820.111*
H8B0.81060.40461.08610.111*
H8C0.59750.39540.93320.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0745 (6)0.0908 (9)0.0459 (4)0.0108 (6)0.0034 (4)0.0026 (5)
O10.0541 (13)0.0404 (12)0.0659 (14)0.0020 (10)0.0269 (11)0.0011 (11)
O20.0606 (17)0.0628 (18)0.107 (2)0.0052 (14)0.0402 (16)0.0045 (16)
O30.0649 (15)0.0446 (14)0.0563 (12)0.0047 (11)0.0139 (10)0.0108 (11)
O40.0566 (12)0.0465 (12)0.0411 (10)0.0113 (11)0.0132 (9)0.0000 (9)
C10.082 (2)0.053 (2)0.0589 (18)0.012 (2)0.0367 (17)0.0009 (17)
C20.059 (2)0.0397 (17)0.0597 (18)0.0016 (15)0.0293 (16)0.0084 (14)
C30.0457 (16)0.0508 (19)0.0557 (17)0.0117 (15)0.0134 (14)0.0050 (16)
C40.0389 (14)0.0522 (19)0.0563 (15)0.0025 (15)0.0163 (12)0.0032 (17)
C50.0558 (19)0.060 (2)0.062 (2)0.0076 (17)0.0287 (17)0.0027 (16)
C60.0548 (19)0.0429 (18)0.0453 (16)0.0041 (15)0.0100 (14)0.0022 (13)
C70.058 (2)0.065 (3)0.088 (3)0.0082 (19)0.004 (2)0.004 (2)
C80.106 (3)0.057 (2)0.063 (2)0.015 (2)0.027 (2)0.0093 (18)
Geometric parameters (Å, º) top
S1—C11.769 (4)C3—H30.9800
S1—C31.795 (4)C4—C51.504 (5)
O1—C21.333 (4)C4—H40.9800
O1—C31.425 (4)C5—H5A0.9700
O2—C21.195 (4)C5—H5B0.9700
O3—C61.395 (4)C6—C81.483 (5)
O3—C51.405 (4)C6—C71.480 (5)
O4—C41.408 (4)C7—H7A0.9600
O4—C61.423 (4)C7—H7B0.9600
C1—C21.470 (5)C7—H7C0.9600
C1—H1A0.9700C8—H8A0.9600
C1—H1B0.9700C8—H8B0.9600
C3—C41.490 (5)C8—H8C0.9600
C1—S1—C389.97 (16)O3—C5—C4104.7 (3)
C2—O1—C3113.9 (3)O3—C5—H5A110.8
C6—O3—C5107.4 (3)C4—C5—H5A110.8
C4—O4—C6109.3 (2)O3—C5—H5B110.8
C2—C1—S1107.7 (3)C4—C5—H5B110.8
C2—C1—H1A110.2H5A—C5—H5B108.9
S1—C1—H1A110.2O3—C6—O4103.9 (3)
C2—C1—H1B110.2O3—C6—C8111.5 (3)
S1—C1—H1B110.2O4—C6—C8109.2 (3)
H1A—C1—H1B108.5O3—C6—C7109.1 (3)
O2—C2—O1119.9 (3)O4—C6—C7108.8 (3)
O2—C2—C1126.4 (3)C8—C6—C7113.8 (4)
O1—C2—C1113.7 (3)C6—C7—H7A109.5
O1—C3—C4109.0 (3)C6—C7—H7B109.5
O1—C3—S1106.8 (2)H7A—C7—H7B109.5
C4—C3—S1113.7 (3)C6—C7—H7C109.5
O1—C3—H3109.1H7A—C7—H7C109.5
C4—C3—H3109.1H7B—C7—H7C109.5
S1—C3—H3109.1C6—C8—H8A109.5
O4—C4—C3108.7 (2)C6—C8—H8B109.5
O4—C4—C5104.0 (3)H8A—C8—H8B109.5
C3—C4—C5114.5 (3)C6—C8—H8C109.5
O4—C4—H4109.8H8A—C8—H8C109.5
C3—C4—H4109.8H8B—C8—H8C109.5
C5—C4—H4109.8
C3—S1—C1—C219.2 (3)S1—C3—C4—O457.3 (3)
C3—O1—C2—O2168.2 (3)O1—C3—C4—C554.1 (3)
C3—O1—C2—C113.0 (4)S1—C3—C4—C5173.1 (2)
S1—C1—C2—O2171.1 (3)C6—O3—C5—C428.4 (3)
S1—C1—C2—O17.6 (4)O4—C4—C5—O311.8 (4)
C2—O1—C3—C496.1 (3)C3—C4—C5—O3106.7 (3)
C2—O1—C3—S127.2 (3)C5—O3—C6—O433.7 (3)
C1—S1—C3—O126.0 (3)C5—O3—C6—C883.8 (3)
C1—S1—C3—C494.2 (3)C5—O3—C6—C7149.6 (3)
C6—O4—C4—C3130.9 (3)C4—O4—C6—O325.9 (3)
C6—O4—C4—C58.5 (3)C4—O4—C6—C893.2 (4)
O1—C3—C4—O461.7 (3)C4—O4—C6—C7142.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O3i0.972.583.428 (4)146
C1—H1B···O2ii0.972.413.306 (6)153
C3—H3···O2iii0.982.553.265 (4)129
Symmetry codes: (i) x, y, z1; (ii) x+2, y+1/2, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC8H12O4S
Mr204.24
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)6.5528 (13), 9.4029 (19), 7.9240 (16)
β (°) 106.60 (3)
V3)467.89 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.50 × 0.20 × 0.15
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.859, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
1941, 1705, 1275
Rint0.056
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.129, 1.01
No. of reflections1705
No. of parameters119
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.20
Absolute structureFlack (1983), 593 Friedel pairs
Absolute structure parameter0.01 (13)

Computer programs: RAPID-AUTO (Rigaku/MSC, 2005), CrystalStructure (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O3i0.972.583.428 (4)146
C1—H1B···O2ii0.972.413.306 (6)153
C3—H3···O2iii0.982.553.265 (4)129
Symmetry codes: (i) x, y, z1; (ii) x+2, y+1/2, z+1; (iii) x1, y, z.
 

Acknowledgements

The authors thank the National Science Foundation of China (30340070) and the Ministry of Science and Technology of China (2006AA100216) for financial support.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoodyear, M. D., Hill, M. L., West, J. P. & Whitehead, A. J. (2005). Tetrahedron Lett. 46, 8535–8538.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear, CrystalStructure and RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimons, C. (2001). Nucleoside Mimetics, Their Chemistry and Biological Properties. Amsterdam: Gordon and Breach Science Publisher.  Google Scholar
First citationVittori, S., Dal Ben, D., Lambertucci, C., Marucci, G., Volpini, R. & Cristalli, G. (2006). Curr. Med. Chem. 13, 3529–3552.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds