organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(4-Hy­droxy­benzyl­­idene)-4-hy­droxy­benzohydrazide methanol solvate

aCollege of Science, Shenyang University, Shenyang 110044, People's Republic of China, and bSchool of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
*Correspondence e-mail: hongyan_ban@163.com

(Received 22 May 2009; accepted 26 May 2009; online 6 June 2009)

The title compound, C14H12N2O3·CH4O, consists of a Schiff base mol­ecule and a methanol mol­ecule of crystallization. The Schiff base mol­ecule is nearly planar, the dihedral angle between the planes of the two benzene rings being 7.2 (2)°. The mol­ecule exists in the trans configuration with respect to the methyl­idene unit. In the crystal structure, the Schiff base and methanol mol­ecules are linked through O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds, forming a three-dimensional network.

Related literature

For the biological activity of hydrazones, see: Zhong et al. (2007[Zhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774-3777.]); Raj et al. (2007[Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425-429.]); Jimenez-Pulido et al. (2008[Jimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677-1683.]). For related crystal structures, see: Ban & Li (2008a[Ban, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177.],b[Ban, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260.]); Li & Ban (2009a[Li, C.-M. & Ban, H.-Y. (2009a). Acta Cryst. E65, o876.],b[Li, C.-M. & Ban, H.-Y. (2009b). Acta Cryst. E65, o883.]); Yehye et al. (2008[Yehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824.]); Fun, Patil, Jebas et al. (2008[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]); Fun, Patil, Rao et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Yang et al. (2008[Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.]); Ejsmont et al. (2008[Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O3·CH4O

  • Mr = 288.30

  • Monoclinic, P 21 /c

  • a = 12.927 (1) Å

  • b = 9.277 (1) Å

  • c = 11.946 (2) Å

  • β = 100.147 (1)°

  • V = 1410.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.30 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.973

  • 8435 measured reflections

  • 3064 independent reflections

  • 2382 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.118

  • S = 1.06

  • 3064 reflections

  • 197 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.90 2.6877 (14) 160
O1—H1⋯N1i 0.82 2.61 3.1521 (16) 125
O3—H3⋯O1ii 0.82 1.90 2.7156 (15) 172
O4—H4⋯O2 0.82 1.95 2.7629 (15) 173
N2—H2A⋯O4iii 0.892 (9) 2.100 (11) 2.9695 (16) 164.6 (19)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y+1, z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases derived from the condensation of aldehydes with hydrazides have been shown to possess excellent biological activities (Zhong et al., 2007; Raj et al., 2007; Jimenez-Pulido et al., 2008). Due to the easy synthesis of such compounds, many Schiff bases have been synthesized and structurally characterized (Yehye et al., 2008; Fun, Patil, Jebas et al. (2008); Fun, Patil, Rao et al. (2008); Yang et al., 2008; Ejsmont et al., 2008). Recently, we have reported a few such compounds (Ban & Li, 2008a,b; Li & Ban, 2009a,b). In this paper, we report the crystal structure of the new title compound.

In the structure of the title compound (Fig. 1) the Schiff base molecule is nearly planar, the dihedral angle between the two benzene rings being 7.2 (2)°. The molecule exists in a trans configuration with respect to the methylidene unit. The torsion angle C7—N1—N2—C8 is 0.3 (2)°.

In the crystal structure, the Schiff base molecules and the methanol molecules are linked through intermolecular O—H···O, N—H···O and O—H···N hydrogen bonds (Table 1), forming a three dimensional network (Fig. 2).

Related literature top

For the biological activity of hydrazones, see: Zhong et al. (2007); Raj et al. (2007); Jimenez-Pulido et al. (2008). For related crystal structures, see: Ban & Li (2008a,b); Li & Ban (2009a,b); Yehye et al. (2008); Fun, Patil, Jebas et al. (2008); Fun, Patil, Rao et al. (2008); Yang et al. (2008); Ejsmont et al. (2008).

Experimental top

The compound was prepared by refluxing 4-hydroxybenzaldehyde (1.0 mol) with 4-hydroxybenzohydrazide (1.0 mol) in methanol (100 ml). Excess methanol was removed from the mixture by distillation. The colorless solid product was filtered and washed three times with methanol. Colorless block crystals of the title compound were obtained from a methanol solution by slow evaporation in air.

Refinement top

H2A was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1)Å. Other H atoms were placed in calculated positions (C—H = 0.93 - 0.96 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and methyl). A rotating group model was used for the methyl group of the methanol.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for the non-hydrogen atoms. Hydrogen atoms are shown as spheres of arbitrary radius. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. The packing diagram, viewed along the b axis. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.
(E)-N'-(4-Hydroxybenzylidene)-4-hydroxybenzohydrazide methanol solvate top
Crystal data top
C14H12N2O3·CH4OF(000) = 608
Mr = 288.30Dx = 1.358 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2955 reflections
a = 12.927 (1) Åθ = 2.7–29.4°
b = 9.277 (1) ŵ = 0.10 mm1
c = 11.946 (2) ÅT = 298 K
β = 100.147 (1)°Block, colorless
V = 1410.2 (3) Å30.30 × 0.30 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3064 independent reflections
Radiation source: fine-focus sealed tube2382 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1016
Tmin = 0.971, Tmax = 0.973k = 1111
8435 measured reflectionsl = 1514
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.2974P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3064 reflectionsΔρmax = 0.22 e Å3
197 parametersΔρmin = 0.17 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0112 (19)
Crystal data top
C14H12N2O3·CH4OV = 1410.2 (3) Å3
Mr = 288.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.927 (1) ŵ = 0.10 mm1
b = 9.277 (1) ÅT = 298 K
c = 11.946 (2) Å0.30 × 0.30 × 0.28 mm
β = 100.147 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3064 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2382 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.973Rint = 0.023
8435 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.22 e Å3
3064 reflectionsΔρmin = 0.17 e Å3
197 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.70137 (9)0.02841 (13)0.10898 (10)0.0378 (3)
N20.78657 (9)0.08908 (13)0.07052 (10)0.0383 (3)
O10.30453 (8)0.37263 (12)0.13979 (9)0.0485 (3)
H10.28400.34020.19590.073*
O20.80648 (8)0.24758 (12)0.21426 (9)0.0475 (3)
O31.21247 (9)0.40526 (14)0.01129 (11)0.0588 (4)
H31.23480.47470.05080.088*
O40.79337 (10)0.50038 (13)0.33324 (9)0.0565 (3)
H40.80070.42860.29530.085*
C10.56666 (10)0.15101 (15)0.07692 (11)0.0352 (3)
C20.52247 (11)0.11701 (16)0.17196 (12)0.0413 (4)
H20.55190.04410.22080.050*
C30.43564 (11)0.19027 (17)0.19437 (12)0.0410 (3)
H3A0.40710.16690.25820.049*
C40.39100 (10)0.29833 (15)0.12210 (11)0.0342 (3)
C50.43415 (12)0.33417 (17)0.02789 (13)0.0429 (4)
H50.40460.40720.02080.052*
C60.52155 (11)0.26075 (17)0.00652 (12)0.0432 (4)
H60.55070.28570.05660.052*
C70.65706 (11)0.07482 (16)0.04877 (12)0.0392 (3)
H70.68340.10260.01560.047*
C80.83705 (10)0.19889 (15)0.12912 (12)0.0347 (3)
C90.93302 (10)0.25557 (14)0.09212 (11)0.0341 (3)
C100.98624 (11)0.36828 (16)0.15352 (13)0.0420 (4)
H100.95900.40890.21330.050*
C111.07881 (12)0.42096 (17)0.12748 (13)0.0443 (4)
H111.11350.49660.16940.053*
C121.11995 (11)0.36095 (16)0.03881 (13)0.0403 (3)
C131.06694 (12)0.25061 (17)0.02465 (13)0.0451 (4)
H131.09380.21160.08530.054*
C140.97452 (11)0.19819 (16)0.00163 (12)0.0413 (4)
H140.93940.12380.04140.050*
C150.74278 (19)0.6095 (2)0.26152 (16)0.0737 (6)
H15A0.74980.69990.30120.111*
H15B0.66960.58620.23970.111*
H15C0.77450.61660.19480.111*
H2A0.8014 (16)0.059 (2)0.0042 (11)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0316 (6)0.0421 (7)0.0427 (6)0.0080 (5)0.0150 (5)0.0011 (5)
N20.0346 (6)0.0438 (7)0.0406 (7)0.0115 (5)0.0174 (5)0.0034 (5)
O10.0437 (6)0.0549 (7)0.0533 (7)0.0208 (5)0.0262 (5)0.0121 (5)
O20.0476 (6)0.0488 (6)0.0528 (6)0.0110 (5)0.0271 (5)0.0127 (5)
O30.0459 (6)0.0687 (8)0.0696 (8)0.0257 (6)0.0318 (6)0.0206 (6)
O40.0673 (8)0.0592 (7)0.0440 (6)0.0072 (6)0.0124 (5)0.0073 (5)
C10.0315 (7)0.0377 (7)0.0382 (7)0.0047 (6)0.0111 (6)0.0015 (6)
C20.0394 (8)0.0447 (8)0.0421 (8)0.0109 (6)0.0135 (6)0.0096 (6)
C30.0390 (8)0.0501 (9)0.0379 (7)0.0068 (6)0.0178 (6)0.0062 (6)
C40.0297 (7)0.0365 (7)0.0387 (7)0.0042 (5)0.0123 (6)0.0025 (6)
C50.0427 (8)0.0450 (8)0.0445 (8)0.0149 (7)0.0170 (6)0.0126 (7)
C60.0441 (8)0.0498 (9)0.0405 (8)0.0097 (7)0.0213 (7)0.0085 (7)
C70.0364 (7)0.0452 (8)0.0392 (7)0.0076 (6)0.0154 (6)0.0015 (6)
C80.0319 (7)0.0348 (7)0.0395 (7)0.0012 (6)0.0122 (6)0.0009 (6)
C90.0306 (7)0.0351 (7)0.0382 (7)0.0029 (5)0.0106 (6)0.0015 (6)
C100.0396 (8)0.0460 (8)0.0440 (8)0.0073 (6)0.0174 (6)0.0085 (6)
C110.0404 (8)0.0463 (8)0.0487 (9)0.0146 (7)0.0144 (7)0.0118 (7)
C120.0339 (7)0.0438 (8)0.0462 (8)0.0084 (6)0.0148 (6)0.0001 (6)
C130.0423 (8)0.0507 (9)0.0475 (8)0.0093 (7)0.0217 (7)0.0115 (7)
C140.0390 (8)0.0413 (8)0.0462 (8)0.0117 (6)0.0146 (6)0.0097 (6)
C150.1079 (17)0.0625 (12)0.0508 (11)0.0016 (11)0.0144 (11)0.0044 (9)
Geometric parameters (Å, º) top
N1—C71.2718 (18)C5—C61.3810 (19)
N1—N21.3853 (15)C5—H50.9300
N2—C81.3390 (18)C6—H60.9300
N2—H2A0.892 (9)C7—H70.9300
O1—C41.3611 (16)C8—C91.4846 (18)
O1—H10.8200C9—C101.3881 (19)
O2—C81.2395 (16)C9—C141.3943 (19)
O3—C121.3587 (16)C10—C111.3780 (19)
O3—H30.8200C10—H100.9300
O4—C151.410 (2)C11—C121.383 (2)
O4—H40.8200C11—H110.9300
C1—C61.382 (2)C12—C131.382 (2)
C1—C21.3939 (19)C13—C141.376 (2)
C1—C71.4549 (18)C13—H130.9300
C2—C31.3782 (19)C14—H140.9300
C2—H20.9300C15—H15A0.9600
C3—C41.381 (2)C15—H15B0.9600
C3—H3A0.9300C15—H15C0.9600
C4—C51.3817 (19)
C7—N1—N2115.06 (11)O2—C8—N2120.65 (12)
C8—N2—N1118.58 (11)O2—C8—C9121.28 (13)
C8—N2—H2A122.8 (14)N2—C8—C9118.01 (11)
N1—N2—H2A118.4 (14)C10—C9—C14118.34 (12)
C4—O1—H1109.5C10—C9—C8118.16 (12)
C12—O3—H3109.5C14—C9—C8123.46 (12)
C15—O4—H4109.5C11—C10—C9121.15 (13)
C6—C1—C2118.21 (12)C11—C10—H10119.4
C6—C1—C7119.15 (12)C9—C10—H10119.4
C2—C1—C7122.64 (13)C10—C11—C12119.76 (14)
C3—C2—C1120.74 (13)C10—C11—H11120.1
C3—C2—H2119.6C12—C11—H11120.1
C1—C2—H2119.6O3—C12—C13117.65 (13)
C2—C3—C4120.09 (12)O3—C12—C11122.48 (13)
C2—C3—H3A120.0C13—C12—C11119.87 (13)
C4—C3—H3A120.0C14—C13—C12120.20 (13)
O1—C4—C3122.32 (12)C14—C13—H13119.9
O1—C4—C5117.71 (13)C12—C13—H13119.9
C3—C4—C5119.97 (12)C13—C14—C9120.66 (13)
C6—C5—C4119.52 (13)C13—C14—H14119.7
C6—C5—H5120.2C9—C14—H14119.7
C4—C5—H5120.2O4—C15—H15A109.5
C5—C6—C1121.46 (13)O4—C15—H15B109.5
C5—C6—H6119.3H15A—C15—H15B109.5
C1—C6—H6119.3O4—C15—H15C109.5
N1—C7—C1122.36 (13)H15A—C15—H15C109.5
N1—C7—H7118.8H15B—C15—H15C109.5
C1—C7—H7118.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.902.6877 (14)160
O1—H1···N1i0.822.613.1521 (16)125
O3—H3···O1ii0.821.902.7156 (15)172
O4—H4···O20.821.952.7629 (15)173
N2—H2A···O4iii0.89 (1)2.10 (1)2.9695 (16)165 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H12N2O3·CH4O
Mr288.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.927 (1), 9.277 (1), 11.946 (2)
β (°) 100.147 (1)
V3)1410.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.971, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
8435, 3064, 2382
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.118, 1.06
No. of reflections3064
No. of parameters197
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.17

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.902.6877 (14)159.5
O1—H1···N1i0.822.613.1521 (16)125.2
O3—H3···O1ii0.821.902.7156 (15)172.4
O4—H4···O20.821.952.7629 (15)173.4
N2—H2A···O4iii0.892 (9)2.100 (11)2.9695 (16)164.6 (19)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x, y+1/2, z1/2.
 

Acknowledgements

Financial support of this work was provided by the Research Foundation of Liaoning Province (grant No. 2008470).

References

First citationBan, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBan, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEjsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677–1683.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009a). Acta Cryst. E65, o876.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009b). Acta Cryst. E65, o883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774–3777.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds