organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1631-o1632

N′-(3,5-Di­bromo-2-hy­droxy­benzyl­­idene)-3,4-methyl­ene­dioxy­benzohydrazide

aDepartment of Chemistry, Chifeng University, Chifeng 024001, People's Republic of China
*Correspondence e-mail: sangyali0814@126.com

(Received 8 June 2009; accepted 13 June 2009; online 20 June 2009)

In the asymmetric unit of the title hydrazone compound, C15H10Br2N2O4, there are two independent mol­ecules. In each mol­ecule, the five-membered ring adopts a flattened envelope conformation; the flap atoms are displaced by 0.114 (2) and 0.219 (2) Å from the planes of the other four atoms. In one mol­ecule the dihedral angle between the two benzene rings is 22.8 (2)°, while in the other it is 40.8 (2)°. Each mol­ecule displays an E configuration with respect to the C=N bond. In both mol­ecules, intra­molecular O—H⋯N hydrogen bonds are observed. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains along the a axis.

Related literature

For the biological properties of hydrazones, see: Khattab et al. (2005[Khattab, S. N. (2005). Molecules, 10, 1218-1228.]); Küçükgüzel et al. (2003[Küçükgüzel, S. G., Mazi, A., Sahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005-1013.]); Cukurovali et al. (2006[Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201-207.]). For their coordination chemistry, see: Iskander et al. (2001[Iskander, M. F., Khalil, T. E., Haase, W., Werner, R., Svoboda, I. & Fuess, H. (2001). Polyhedron, 20, 2787-2798.]); Bernhardt et al. (2004[Bernhardt, P. V., Chin, P. & Richardson, D. R. (2004). Dalton Trans. pp. 3342-3346.]); Aggarwal et al. (1981[Aggarwal, R. C., Singh, N. K. & Singh, R. P. (1981). Inorg. Chem. 20, 2794-2798.]); Thomas et al. (1979[Thomas, J. E., Palenik, R. C. & Palenik, G. J. (1979). Inorg. Chim. Acta, 37, L459-L460.]). For the crystal structures of other reported hydrazones, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Wei et al. (2009[Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o688.]); Khaledi et al. (2008[Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481.]); Yang et al. (2008[Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10Br2N2O4

  • Mr = 442.07

  • Triclinic, [P \overline 1]

  • a = 9.793 (1) Å

  • b = 13.188 (2) Å

  • c = 13.342 (2) Å

  • α = 76.282 (2)°

  • β = 78.350 (2)°

  • γ = 75.911 (2)°

  • V = 1604.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.07 mm−1

  • T = 298 K

  • 0.23 × 0.21 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.388, Tmax = 0.416 (expected range = 0.322–0.345)

  • 9190 measured reflections

  • 6633 independent reflections

  • 4090 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.141

  • S = 0.98

  • 6633 reflections

  • 423 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.55 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 2.00 2.654 (4) 137
O5—H5⋯N3 0.82 1.86 2.582 (4) 146
N2—H2⋯O6i 0.91 (4) 1.99 (3) 2.833 (5) 155 (6)
N4—H4A⋯O2ii 0.90 (3) 2.04 (3) 2.888 (5) 158 (6)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazone compounds have been widely investigated due to their interesting biological properties, such as antibacterial and antitumor activities (Khattab et al., 2005; Küçükgüzel et al., 2003; Cukurovali et al., 2006). Furthermore, hydrazones are excellent ligands in coordination chemistry, forming a large number of metal complexes (Iskander et al., 2001; Bernhardt et al., 2004; Aggarwal et al., 1981; Thomas et al., 1979). Recently, the crystal structures of a large number of hydrazone derivatives have been reported (Fun et al., 2008; Wei et al., 2009; Khaledi et al., 2008; Yang et al., 2008). In this paper, the crystal structure of the new title hydrazone compound is reported.

In the asymmetric unit there are two independent molecules (Fig. 1), which assume E configurations with respect to the CN bonds. In each molecule the five-membered ring adopts a flattened envelope conformation; the flap atoms C15 and C30 are displaced by 0.114 (2) and 0.219 (2) Å, respectively, from the planes of the other four atoms. In one molecule the dihedral angle between the two benzene rings is 22.8 (2)°; in the other it is 40.8 (2)°. All bond lengths are within normal values (Allen et al., 1987). In both molecules, intramolecular O—H···N hydrogen bonds (Table 1) are observed. In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the a axis, as shown in Fig. 2.

Related literature top

For the biological properties of hydrazones, see: Khattab et al. (2005); Küçükgüzel et al. (2003); Cukurovali et al. (2006). For their coordination chemistry, see: Iskander et al. (2001); Bernhardt et al. (2004); Aggarwal et al. (1981); Thomas et al. (1979). For the crystal structures of other reported hydrazones, see: Fun et al. (2008); Wei et al. (2009); Khaledi et al. (2008); Yang et al. (2008). For reference structural data, see: Allen et al. (1987).

Experimental top

3,4-(Methylenedioxy)benzohydrazide (1.0 mmol, 180.2 mg) and 3,5-dibromo-2-hydroxybenzaldehyde (1.0 mmol, 280.0 mg) were mixed and refluxed in aqueous ethanol (95% ethanol : 5% water; 50 ml). The mixture was stirred for 1 h to give a clear colorless solution. Colorless crystals of the title compound were formed by slow evaporation of the solution in air.

Refinement top

H2 attached to N2 and H4A attached to N4 were located in a difference map and refined with an N—H distance restraint of 0.90 (1) Å. The other H atoms were positioned geometrically [d(C—H) = 0.93–0.97 Å, d(O—H) = 0.82 Å], and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). The structure contains solvent accessible voids of 79.0 Å3, which might accommodate a disordered water molecule. The maximum residual electron density peak is located 3.28 Å from H21.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the asymmetric unit, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius. The intramolecular O—H···N hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.
N'-(3,5-Dibromo-2-hydroxybenzylidene)-3,4-methylenedioxybenzohydrazide top
Crystal data top
C15H10Br2N2O4Z = 4
Mr = 442.07F(000) = 864
Triclinic, P1Dx = 1.830 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.793 (1) ÅCell parameters from 2697 reflections
b = 13.188 (2) Åθ = 2.8–25.0°
c = 13.342 (2) ŵ = 5.07 mm1
α = 76.282 (2)°T = 298 K
β = 78.350 (2)°Block, colorless
γ = 75.911 (2)°0.23 × 0.21 × 0.21 mm
V = 1604.5 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
6633 independent reflections
Radiation source: fine-focus sealed tube4090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.0°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.388, Tmax = 0.416k = 1615
9190 measured reflectionsl = 1711
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0781P)2]
where P = (Fo2 + 2Fc2)/3
6633 reflections(Δ/σ)max < 0.001
423 parametersΔρmax = 1.55 e Å3
2 restraintsΔρmin = 0.66 e Å3
Crystal data top
C15H10Br2N2O4γ = 75.911 (2)°
Mr = 442.07V = 1604.5 (4) Å3
Triclinic, P1Z = 4
a = 9.793 (1) ÅMo Kα radiation
b = 13.188 (2) ŵ = 5.07 mm1
c = 13.342 (2) ÅT = 298 K
α = 76.282 (2)°0.23 × 0.21 × 0.21 mm
β = 78.350 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6633 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4090 reflections with I > 2σ(I)
Tmin = 0.388, Tmax = 0.416Rint = 0.026
9190 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0492 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 1.55 e Å3
6633 reflectionsΔρmin = 0.66 e Å3
423 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.88068 (7)0.00513 (5)0.23288 (6)0.0870 (3)
Br20.34278 (8)0.02682 (5)0.11846 (5)0.0719 (2)
Br30.32989 (6)0.72142 (5)1.11784 (4)0.0662 (2)
Br40.22028 (8)0.81059 (6)1.05222 (5)0.0793 (2)
O10.7359 (3)0.2022 (3)0.2943 (3)0.0472 (8)
H10.69140.24990.32520.071*
O20.6613 (3)0.4996 (2)0.3674 (3)0.0436 (8)
O30.2556 (4)0.9420 (3)0.4051 (3)0.0590 (10)
O40.4456 (4)0.8602 (3)0.4941 (3)0.0544 (9)
O50.2006 (3)0.6068 (3)0.9410 (3)0.0479 (8)
H50.16400.57400.89390.072*
O60.1740 (3)0.4855 (3)0.7024 (3)0.0524 (9)
O70.1423 (4)0.1701 (3)0.4070 (3)0.0612 (10)
O80.0796 (3)0.2781 (3)0.3989 (2)0.0488 (8)
N10.5281 (4)0.3734 (3)0.3031 (3)0.0369 (8)
N20.4637 (4)0.4735 (3)0.3238 (3)0.0380 (9)
N30.0003 (4)0.5372 (3)0.8002 (3)0.0347 (8)
N40.0506 (4)0.4792 (3)0.7230 (3)0.0350 (8)
C10.5062 (5)0.2213 (3)0.2451 (3)0.0380 (10)
C20.6449 (5)0.1653 (3)0.2556 (3)0.0379 (10)
C30.6891 (6)0.0677 (4)0.2253 (4)0.0510 (13)
C40.6019 (6)0.0259 (4)0.1848 (4)0.0532 (13)
H40.63470.03970.16440.064*
C50.4658 (6)0.0817 (4)0.1746 (4)0.0469 (12)
C60.4184 (5)0.1777 (4)0.2045 (4)0.0426 (11)
H60.32580.21470.19770.051*
C70.4504 (5)0.3269 (4)0.2715 (4)0.0406 (11)
H70.35640.36040.26510.049*
C80.5382 (4)0.5336 (3)0.3505 (3)0.0317 (9)
C90.4569 (4)0.6426 (3)0.3609 (3)0.0317 (9)
C100.3485 (5)0.6950 (3)0.3049 (3)0.0384 (10)
H100.32390.66110.25950.046*
C110.2739 (5)0.7982 (4)0.3140 (4)0.0419 (11)
H110.20020.83320.27610.050*
C120.3136 (5)0.8447 (3)0.3803 (4)0.0396 (10)
C130.4260 (5)0.7940 (3)0.4349 (3)0.0358 (10)
C140.4984 (5)0.6931 (4)0.4290 (3)0.0366 (10)
H140.57150.65900.46780.044*
C150.3443 (6)0.9581 (4)0.4691 (4)0.0577 (14)
H15A0.28740.97810.53260.069*
H15B0.39361.01490.43260.069*
C160.0381 (5)0.6371 (3)0.9138 (3)0.0367 (10)
C170.1030 (5)0.6495 (3)0.9648 (3)0.0366 (10)
C180.1420 (5)0.7085 (4)1.0440 (3)0.0440 (11)
C190.0483 (6)0.7567 (4)1.0706 (3)0.0521 (13)
H190.07740.79721.12240.062*
C200.0896 (6)0.7436 (4)1.0186 (4)0.0506 (12)
C210.1344 (5)0.6834 (4)0.9426 (3)0.0424 (11)
H210.22890.67340.91030.051*
C220.0877 (5)0.5754 (3)0.8309 (3)0.0364 (10)
H220.18310.56420.80070.044*
C230.0460 (4)0.4517 (3)0.6800 (3)0.0336 (9)
C240.0118 (4)0.3775 (3)0.6071 (3)0.0317 (9)
C250.1441 (5)0.3100 (4)0.6128 (4)0.0473 (12)
H250.19900.31450.66030.057*
C260.1955 (5)0.2359 (4)0.5486 (5)0.0587 (15)
H260.28350.18960.55270.070*
C270.1127 (5)0.2339 (4)0.4800 (4)0.0415 (11)
C280.0185 (4)0.2998 (3)0.4727 (3)0.0334 (9)
C290.0732 (4)0.3735 (3)0.5354 (3)0.0342 (9)
H290.16190.41850.53070.041*
C300.0117 (6)0.1849 (4)0.3679 (4)0.0559 (14)
H30A0.02910.19410.29240.067*
H30B0.03180.12340.39670.067*
H20.377 (3)0.505 (5)0.305 (5)0.080*
H4A0.1436 (19)0.467 (5)0.697 (4)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0757 (4)0.0627 (4)0.1261 (6)0.0277 (3)0.0345 (4)0.0524 (4)
Br20.1068 (5)0.0619 (4)0.0702 (4)0.0450 (3)0.0267 (3)0.0179 (3)
Br30.0642 (4)0.0676 (4)0.0628 (4)0.0100 (3)0.0140 (3)0.0288 (3)
Br40.1044 (5)0.0985 (5)0.0648 (4)0.0527 (4)0.0215 (3)0.0338 (3)
O10.0423 (18)0.040 (2)0.066 (2)0.0011 (15)0.0170 (16)0.0261 (16)
O20.0331 (17)0.0389 (18)0.064 (2)0.0039 (14)0.0126 (15)0.0191 (15)
O30.065 (2)0.0368 (19)0.082 (3)0.0148 (17)0.0351 (19)0.0318 (18)
O40.063 (2)0.045 (2)0.065 (2)0.0106 (17)0.0285 (18)0.0352 (17)
O50.0418 (17)0.053 (2)0.056 (2)0.0102 (16)0.0053 (15)0.0247 (16)
O60.0313 (17)0.062 (2)0.076 (2)0.0016 (15)0.0097 (15)0.0445 (19)
O70.052 (2)0.059 (2)0.088 (3)0.0105 (17)0.0254 (19)0.053 (2)
O80.0481 (18)0.051 (2)0.056 (2)0.0064 (15)0.0226 (16)0.0316 (16)
N10.040 (2)0.0268 (19)0.045 (2)0.0009 (16)0.0092 (16)0.0143 (16)
N20.0318 (19)0.0283 (19)0.059 (2)0.0029 (15)0.0149 (17)0.0211 (17)
N30.0373 (19)0.036 (2)0.0343 (19)0.0067 (16)0.0067 (15)0.0141 (16)
N40.0303 (18)0.038 (2)0.042 (2)0.0048 (16)0.0051 (16)0.0200 (16)
C10.043 (3)0.031 (2)0.045 (3)0.004 (2)0.011 (2)0.0160 (19)
C20.047 (3)0.030 (2)0.039 (2)0.006 (2)0.008 (2)0.0133 (19)
C30.060 (3)0.035 (3)0.055 (3)0.005 (2)0.012 (2)0.014 (2)
C40.077 (4)0.032 (3)0.055 (3)0.006 (3)0.012 (3)0.020 (2)
C50.069 (3)0.038 (3)0.043 (3)0.026 (3)0.012 (2)0.008 (2)
C60.047 (3)0.037 (3)0.047 (3)0.014 (2)0.006 (2)0.009 (2)
C70.037 (2)0.034 (2)0.055 (3)0.003 (2)0.012 (2)0.017 (2)
C80.028 (2)0.032 (2)0.037 (2)0.0064 (18)0.0020 (17)0.0125 (18)
C90.031 (2)0.031 (2)0.035 (2)0.0070 (18)0.0026 (17)0.0096 (18)
C100.042 (2)0.031 (2)0.048 (3)0.0060 (19)0.016 (2)0.012 (2)
C110.046 (3)0.031 (2)0.051 (3)0.002 (2)0.024 (2)0.011 (2)
C120.046 (3)0.026 (2)0.045 (3)0.0014 (19)0.008 (2)0.0113 (19)
C130.040 (2)0.035 (2)0.036 (2)0.0028 (19)0.0084 (19)0.0186 (19)
C140.036 (2)0.037 (2)0.039 (2)0.0025 (19)0.0119 (18)0.0128 (19)
C150.067 (3)0.045 (3)0.066 (3)0.009 (3)0.023 (3)0.033 (3)
C160.047 (3)0.032 (2)0.035 (2)0.006 (2)0.0144 (19)0.0099 (18)
C170.041 (2)0.031 (2)0.038 (2)0.0076 (19)0.0064 (19)0.0072 (19)
C180.054 (3)0.035 (3)0.040 (3)0.005 (2)0.005 (2)0.006 (2)
C190.076 (4)0.050 (3)0.033 (3)0.013 (3)0.005 (2)0.016 (2)
C200.071 (3)0.054 (3)0.039 (3)0.024 (3)0.016 (2)0.015 (2)
C210.047 (3)0.049 (3)0.038 (2)0.017 (2)0.008 (2)0.013 (2)
C220.035 (2)0.039 (3)0.037 (2)0.0048 (19)0.0068 (18)0.012 (2)
C230.030 (2)0.035 (2)0.039 (2)0.0068 (18)0.0081 (18)0.0116 (19)
C240.029 (2)0.024 (2)0.044 (2)0.0033 (17)0.0066 (18)0.0111 (18)
C250.042 (3)0.047 (3)0.064 (3)0.003 (2)0.024 (2)0.025 (2)
C260.041 (3)0.050 (3)0.097 (4)0.015 (2)0.028 (3)0.048 (3)
C270.035 (2)0.034 (2)0.063 (3)0.0030 (19)0.010 (2)0.027 (2)
C280.036 (2)0.031 (2)0.035 (2)0.0048 (18)0.0124 (18)0.0071 (18)
C290.030 (2)0.033 (2)0.042 (2)0.0013 (18)0.0088 (18)0.0134 (19)
C300.058 (3)0.051 (3)0.068 (3)0.004 (3)0.021 (3)0.037 (3)
Geometric parameters (Å, º) top
Br1—C31.899 (5)C7—H70.9300
Br2—C51.893 (5)C8—C91.488 (6)
Br3—C181.892 (5)C9—C101.372 (6)
Br4—C201.895 (5)C9—C141.415 (6)
O1—C21.347 (5)C10—C111.399 (6)
O1—H10.8200C10—H100.9300
O2—C81.226 (5)C11—C121.348 (6)
O3—C121.361 (5)C11—H110.9300
O3—C151.415 (6)C12—C131.387 (6)
O4—C131.377 (5)C13—C141.358 (6)
O4—C151.437 (6)C14—H140.9300
O5—C171.343 (5)C15—H15A0.9700
O5—H50.8200C15—H15B0.9700
O6—C231.225 (5)C16—C211.396 (6)
O7—C271.377 (5)C16—C171.400 (6)
O7—C301.430 (6)C16—C221.463 (6)
O8—C281.366 (5)C17—C181.396 (6)
O8—C301.428 (5)C18—C191.377 (7)
N1—C71.269 (6)C19—C201.378 (7)
N1—N21.384 (5)C19—H190.9300
N2—C81.345 (5)C20—C211.372 (6)
N2—H20.91 (4)C21—H210.9300
N3—C221.271 (5)C22—H220.9300
N3—N41.370 (5)C23—C241.477 (5)
N4—C231.357 (5)C24—C251.386 (6)
N4—H4A0.90 (3)C24—C291.406 (6)
C1—C61.393 (6)C25—C261.388 (6)
C1—C21.396 (6)C25—H250.9300
C1—C71.465 (6)C26—C271.348 (6)
C2—C31.384 (6)C26—H260.9300
C3—C41.371 (7)C27—C281.373 (6)
C4—C51.373 (7)C28—C291.371 (6)
C4—H40.9300C29—H290.9300
C5—C61.362 (6)C30—H30A0.9700
C6—H60.9300C30—H30B0.9700
C2—O1—H1109.5C9—C14—H14121.7
C12—O3—C15106.3 (3)O3—C15—O4108.3 (4)
C13—O4—C15105.3 (3)O3—C15—H15A110.0
C17—O5—H5109.5O4—C15—H15A110.0
C27—O7—C30105.6 (3)O3—C15—H15B110.0
C28—O8—C30105.7 (3)O4—C15—H15B110.0
C7—N1—N2115.5 (3)H15A—C15—H15B108.4
C8—N2—N1120.9 (3)C21—C16—C17119.9 (4)
C8—N2—H2118 (4)C21—C16—C22118.8 (4)
N1—N2—H2120 (4)C17—C16—C22121.3 (4)
C22—N3—N4117.8 (3)O5—C17—C18119.3 (4)
C23—N4—N3117.6 (3)O5—C17—C16122.7 (4)
C23—N4—H4A121 (4)C18—C17—C16118.0 (4)
N3—N4—H4A121 (4)C19—C18—C17122.3 (4)
C6—C1—C2119.3 (4)C19—C18—Br3119.0 (4)
C6—C1—C7118.2 (4)C17—C18—Br3118.7 (4)
C2—C1—C7122.4 (4)C18—C19—C20118.4 (4)
O1—C2—C3119.3 (4)C18—C19—H19120.8
O1—C2—C1122.7 (4)C20—C19—H19120.8
C3—C2—C1118.0 (4)C21—C20—C19121.5 (5)
C4—C3—C2122.1 (4)C21—C20—Br4119.1 (4)
C4—C3—Br1119.7 (4)C19—C20—Br4119.3 (4)
C2—C3—Br1118.0 (4)C20—C21—C16119.9 (4)
C3—C4—C5119.4 (4)C20—C21—H21120.1
C3—C4—H4120.3C16—C21—H21120.1
C5—C4—H4120.3N3—C22—C16119.6 (4)
C6—C5—C4120.1 (5)N3—C22—H22120.2
C6—C5—Br2119.4 (4)C16—C22—H22120.2
C4—C5—Br2120.5 (4)O6—C23—N4121.2 (4)
C5—C6—C1121.1 (4)O6—C23—C24122.4 (4)
C5—C6—H6119.4N4—C23—C24116.4 (3)
C1—C6—H6119.4C25—C24—C29120.9 (4)
N1—C7—C1121.1 (4)C25—C24—C23120.5 (4)
N1—C7—H7119.5C29—C24—C23118.5 (3)
C1—C7—H7119.5C24—C25—C26120.8 (4)
O2—C8—N2122.4 (4)C24—C25—H25119.6
O2—C8—C9123.4 (4)C26—C25—H25119.6
N2—C8—C9114.2 (3)C27—C26—C25117.3 (4)
C10—C9—C14120.3 (4)C27—C26—H26121.4
C10—C9—C8122.2 (4)C25—C26—H26121.4
C14—C9—C8117.5 (4)C26—C27—C28123.0 (4)
C9—C10—C11121.8 (4)C26—C27—O7127.8 (4)
C9—C10—H10119.1C28—C27—O7109.1 (4)
C11—C10—H10119.1O8—C28—C29128.4 (4)
C12—C11—C10117.1 (4)O8—C28—C27110.3 (4)
C12—C11—H11121.4C29—C28—C27121.3 (4)
C10—C11—H11121.4C28—C29—C24116.6 (4)
C11—C12—O3128.3 (4)C28—C29—H29121.7
C11—C12—C13121.7 (4)C24—C29—H29121.7
O3—C12—C13110.0 (4)O8—C30—O7107.0 (3)
C14—C13—O4128.2 (4)O8—C30—H30A110.3
C14—C13—C12122.4 (4)O7—C30—H30A110.3
O4—C13—C12109.4 (4)O8—C30—H30B110.3
C13—C14—C9116.6 (4)O7—C30—H30B110.3
C13—C14—H14121.7H30A—C30—H30B108.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.002.654 (4)137
O5—H5···N30.821.862.582 (4)146
N2—H2···O6i0.91 (4)1.99 (3)2.833 (5)155 (6)
N4—H4A···O2ii0.90 (3)2.04 (3)2.888 (5)158 (6)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H10Br2N2O4
Mr442.07
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.793 (1), 13.188 (2), 13.342 (2)
α, β, γ (°)76.282 (2), 78.350 (2), 75.911 (2)
V3)1604.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)5.07
Crystal size (mm)0.23 × 0.21 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.388, 0.416
No. of measured, independent and
observed [I > 2σ(I)] reflections
9190, 6633, 4090
Rint0.026
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.141, 0.98
No. of reflections6633
No. of parameters423
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.55, 0.66

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.002.654 (4)137
O5—H5···N30.821.862.582 (4)146
N2—H2···O6i0.91 (4)1.99 (3)2.833 (5)155 (6)
N4—H4A···O2ii0.90 (3)2.04 (3)2.888 (5)158 (6)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

We are very grateful to Chifeng University for research funding.

References

First citationAggarwal, R. C., Singh, N. K. & Singh, R. P. (1981). Inorg. Chem. 20, 2794–2798.  CSD CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernhardt, P. V., Chin, P. & Richardson, D. R. (2004). Dalton Trans. pp. 3342–3346.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201–207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIskander, M. F., Khalil, T. E., Haase, W., Werner, R., Svoboda, I. & Fuess, H. (2001). Polyhedron, 20, 2787–2798.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhattab, S. N. (2005). Molecules, 10, 1218–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKüçükgüzel, S. G., Mazi, A., Sahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005–1013.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, J. E., Palenik, R. C. & Palenik, G. J. (1979). Inorg. Chim. Acta, 37, L459–L460.  CSD CrossRef CAS Web of Science Google Scholar
First citationWei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o688.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1631-o1632
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds