organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Methyl-3-phenyl­allyl­­idene)nicotinohydrazide monohydrate

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: athiru@vsnl.net

(Received 12 June 2009; accepted 17 June 2009; online 20 June 2009)

The asymmetric unit of the title compound, C16H15N3O·H2O, contains an N′-(2-methyl-3-phenyl­allyl­idene)nicotino­hydra­zide mol­ecule and a water solvent mol­ecule. The dihedral angle between the pyridine ring and the phenyl ring is 47.26 (5)°. Inter­molecular O—H⋯N, O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds are found in the crystal structure. Furthermore, C—H⋯π inter­actions involving the pyridine and phenyl rings are also found.

Related literature

For a related crystal structure, see: Bao (2008[Bao, F.-Y. (2008). Acta Cryst. E64, o1789.]). For chemical and biological applications of related compounds, see: Moraweck et al. (1997[Moraweck, B., Fréty, R., Pecchi, G., Morale, M. & Reyes, P. (1997). Catal. Lett. 43, 85-89.]); Kwon et al. (1996[Kwon, B. M., Cho, Y. K., Lee, S. H., Nam, J. Y., Bok, S. H., Chun, S. K., Kim, J. A. & Lee, I. R. (1996). Planta Med. 62, 183-184.]); Lee et al. (1999[Lee, C. W., Hong, D. H., Han, S. B., Park, S. H., Kim, H. K., Kwon, B. M. & Kim, H. M. (1999). Planta Med. 65, 263-266.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15N3O·H2O

  • Mr = 283.33

  • Monoclinic, P 21 /c

  • a = 9.6821 (4) Å

  • b = 9.4178 (4) Å

  • c = 16.0958 (6) Å

  • β = 98.250 (4)°

  • V = 1452.49 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 110 K

  • 0.51 × 0.42 × 0.36 mm

Data collection
  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.938, Tmax = 1.000 (expected range = 0.909–0.969)

  • 10476 measured reflections

  • 4824 independent reflections

  • 3467 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.02

  • 4824 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯N1i 0.917 (17) 1.987 (17) 2.9033 (11) 177.3 (16)
O1W—H2W⋯O7 0.851 (17) 2.161 (17) 2.9089 (10) 146.5 (15)
O1W—H2W⋯N9 0.851 (17) 2.507 (17) 3.2233 (11) 142.5 (14)
N8—H8⋯O1Wii 0.882 (14) 2.029 (14) 2.8925 (12) 166.0 (13)
C2—H2⋯O7i 0.95 2.54 3.4021 (12) 151
C10—H10⋯O1Wii 0.95 2.59 3.3781 (13) 140
C13—H13B⋯O1W 0.98 2.55 3.3815 (14) 143
C26—H26⋯O7iii 0.95 2.54 3.4771 (13) 170
C13—H13CCg1iv 0.98 2.72 3.5630 (13) 144
C5—H5⋯Cg2v 0.95 2.57 3.4378 (11) 152
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the pyridine and benzene rings, respectively.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Cinnamaldehyde is of importance in the manufacture of fine chemicals, particularly with regard to fragrances and flavorings (Moraweck et al., 1997). 2'-Hydroxycinnamaldehyde was isolated from the stem bark of Cinnamomum cassia and reported to have an inhibitory effect on farnesyl protein transferase activity; it also inhibited the proliferation of several human cancer cell lines including breast, leukemia, ovarian, lung, and colon tumor cells. Nicotinic hydrazide is used as a medicine for key diseases such as leprosy (Hansen's disease), typhoid and tuberculosis (Kwon et al., 1996; Lee et al., 1999). As part of our research, we have synthesized the title compound and report its crystal structure here. Bao (2008) has reported a related crystal structure, viz. N'-(3-phenylallylidene)isonicotinohydrazide.

The molecular structure of the asymmetric unit is shown in Fig. 1. The dihedral angle between the pyridine ring and the phenyl ring is 47.26 (5)°. Intermolecular O—H···N, O—H···O, N—H···O and C—H···O hydrogen bonds are found in the crystal structure. Furthermore, a C13—H13C···π interaction involving the pyridine (N1—C6) ring and a C5—H5···π interaction involving the phenyl (C21—C26) ring are also found.

Related literature top

For a related crystal structure, see: Bao (2008). For chemical and biological applications, see: Moraweck et al. (1997); Kwon et al. (1996); Lee et al. (1999). Cg1 and Cg2 are the centroids of the pyridine and benzene rings, respectively.

Experimental top

Sodium hydroxide (0.4 g, 0.01 mol) in a stoppered conical flask was kept in an ice-cold environment. Ethanol (40 ml) was added to dissolve it and the mixture was stirred continuously using a magnetic stirrer. An equimolar quantity of nicotinic hydrazide (1.371 g, 0.01 mol) and α-methyl-trans-cinnamaldehyde (1.461 g, 0.01 mol) was added to this mixture. The stirring was continued for 5 h in ice-cold conditions. The mixture was kept overnight in a refrigerator. The mixture was then allowed to stand for four days under normal conditions. A yellow solid was obtained. This was filtered, washed and recrystallized from ethanol. Yield 2.2 g, 48.47%.

Refinement top

H8 attached to N8, and H1W and H2W attached to O1W were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 and 0.98 Å for Csp2 and methyl H atoms, respectively. Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for other C-bound H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the asymmetric unit, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
N'-(2-Methyl-3-phenylallylidene)nicotinohydrazide monohydrate top
Crystal data top
C16H15N3O·H2OF(000) = 600
Mr = 283.33Dx = 1.296 Mg m3
Monoclinic, P21/cMelting point: 400(2) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.6821 (4) ÅCell parameters from 4977 reflections
b = 9.4178 (4) Åθ = 4.6–32.6°
c = 16.0958 (6) ŵ = 0.09 mm1
β = 98.250 (4)°T = 110 K
V = 1452.49 (10) Å3Block, colourless
Z = 40.51 × 0.42 × 0.36 mm
Data collection top
Oxford Diffraction Gemini R
diffractometer
4824 independent reflections
Radiation source: fine-focus sealed tube3467 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.5081 pixels mm-1θmax = 32.8°, θmin = 4.7°
ϕ and ω scansh = 1413
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1214
Tmin = 0.938, Tmax = 1.000l = 1724
10476 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0703P)2]
where P = (Fo2 + 2Fc2)/3
4824 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H15N3O·H2OV = 1452.49 (10) Å3
Mr = 283.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6821 (4) ŵ = 0.09 mm1
b = 9.4178 (4) ÅT = 110 K
c = 16.0958 (6) Å0.51 × 0.42 × 0.36 mm
β = 98.250 (4)°
Data collection top
Oxford Diffraction Gemini R
diffractometer
4824 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
3467 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 1.000Rint = 0.021
10476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.40 e Å3
4824 reflectionsΔρmin = 0.22 e Å3
203 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O70.01746 (7)0.46732 (8)0.12555 (4)0.0228 (2)
N10.32793 (9)0.63377 (9)0.05360 (5)0.0216 (2)
N80.09368 (8)0.60130 (10)0.22771 (5)0.0191 (2)
N90.01977 (8)0.56186 (9)0.28577 (5)0.0201 (2)
C20.22360 (10)0.59151 (11)0.00496 (6)0.0189 (3)
C30.23120 (9)0.59362 (10)0.09091 (6)0.0163 (2)
C40.35482 (10)0.63912 (10)0.11676 (6)0.0186 (3)
C50.46492 (10)0.68046 (11)0.05655 (6)0.0205 (3)
C60.44662 (10)0.67645 (11)0.02681 (6)0.0212 (3)
C70.10495 (10)0.54718 (10)0.14926 (6)0.0173 (2)
C100.02233 (10)0.61992 (11)0.35825 (6)0.0198 (3)
C110.13277 (10)0.58878 (10)0.42696 (6)0.0186 (2)
C120.12207 (10)0.65038 (10)0.50151 (6)0.0201 (3)
C130.24871 (12)0.49192 (13)0.41017 (7)0.0289 (3)
C210.21352 (10)0.63767 (10)0.58181 (6)0.0189 (3)
C220.30403 (11)0.52316 (11)0.60385 (6)0.0246 (3)
C230.39472 (12)0.52335 (13)0.67868 (7)0.0295 (3)
C240.39566 (11)0.63518 (14)0.73431 (6)0.0301 (3)
C250.30184 (11)0.74592 (13)0.71563 (7)0.0290 (3)
C260.21206 (10)0.74683 (12)0.64052 (6)0.0225 (3)
O1W0.23612 (8)0.34636 (8)0.21718 (5)0.0221 (2)
H20.140010.558340.012940.0227*
H40.363890.641910.174720.0223*
H50.550940.710840.072470.0246*
H60.522090.705460.067640.0254*
H80.1500 (15)0.6670 (15)0.2429 (8)0.035 (4)*
H100.049460.684550.367100.0238*
H120.043630.710850.501870.0241*
H13A0.336270.522390.443650.0434*
H13B0.258260.495650.350410.0434*
H13C0.227310.394480.425470.0434*
H220.303110.444360.566930.0295*
H230.456850.445890.691880.0354*
H240.459880.636230.784820.0361*
H250.299220.821390.754540.0348*
H260.148160.823180.628630.0270*
H1W0.2677 (16)0.3540 (16)0.1663 (11)0.054 (5)*
H2W0.1656 (18)0.4012 (18)0.2096 (10)0.055 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.0208 (3)0.0255 (4)0.0221 (4)0.0058 (3)0.0028 (3)0.0028 (3)
N10.0238 (4)0.0249 (4)0.0160 (4)0.0008 (3)0.0024 (3)0.0009 (3)
N80.0159 (4)0.0244 (4)0.0161 (4)0.0031 (3)0.0010 (3)0.0029 (3)
N90.0176 (4)0.0237 (4)0.0179 (4)0.0010 (3)0.0015 (3)0.0020 (3)
C20.0186 (4)0.0214 (5)0.0174 (4)0.0001 (4)0.0048 (3)0.0017 (4)
C30.0158 (4)0.0167 (4)0.0161 (4)0.0016 (3)0.0018 (3)0.0012 (3)
C40.0184 (4)0.0225 (5)0.0154 (4)0.0014 (4)0.0040 (3)0.0026 (3)
C50.0165 (4)0.0239 (5)0.0210 (5)0.0011 (4)0.0021 (3)0.0034 (4)
C60.0196 (5)0.0239 (5)0.0188 (5)0.0014 (4)0.0017 (3)0.0014 (4)
C70.0162 (4)0.0183 (4)0.0173 (4)0.0015 (3)0.0025 (3)0.0005 (3)
C100.0175 (4)0.0213 (5)0.0198 (4)0.0004 (4)0.0003 (3)0.0000 (4)
C110.0178 (4)0.0189 (4)0.0186 (4)0.0009 (3)0.0005 (3)0.0017 (4)
C120.0181 (4)0.0211 (5)0.0200 (4)0.0016 (4)0.0010 (3)0.0008 (4)
C130.0297 (6)0.0374 (6)0.0186 (5)0.0116 (5)0.0001 (4)0.0012 (4)
C210.0170 (4)0.0216 (5)0.0180 (4)0.0021 (4)0.0018 (3)0.0003 (4)
C220.0309 (5)0.0241 (5)0.0182 (5)0.0046 (4)0.0013 (4)0.0002 (4)
C230.0291 (5)0.0381 (6)0.0206 (5)0.0086 (5)0.0012 (4)0.0069 (4)
C240.0252 (5)0.0476 (7)0.0166 (5)0.0022 (5)0.0003 (4)0.0008 (4)
C250.0274 (5)0.0393 (7)0.0205 (5)0.0043 (5)0.0042 (4)0.0087 (4)
C260.0199 (5)0.0272 (5)0.0207 (5)0.0011 (4)0.0040 (4)0.0037 (4)
O1W0.0213 (4)0.0271 (4)0.0182 (3)0.0037 (3)0.0037 (3)0.0042 (3)
Geometric parameters (Å, º) top
O7—C71.2336 (12)C21—C261.3978 (14)
O1W—H1W0.917 (17)C22—C231.3850 (15)
O1W—H2W0.851 (17)C23—C241.3816 (17)
N1—C21.3394 (13)C24—C251.3874 (17)
N1—C61.3455 (13)C25—C261.3841 (15)
N8—C71.3515 (13)C2—H20.9500
N8—N91.3868 (11)C4—H40.9500
N9—C101.2854 (13)C5—H50.9500
N8—H80.882 (14)C6—H60.9500
C2—C31.3960 (14)C10—H100.9500
C3—C71.4960 (13)C12—H120.9500
C3—C41.3901 (13)C13—H13A0.9800
C4—C51.3895 (14)C13—H13C0.9800
C5—C61.3789 (14)C13—H13B0.9800
C10—C111.4537 (14)C22—H220.9500
C11—C121.3501 (14)C23—H230.9500
C11—C131.5008 (15)C24—H240.9500
C12—C211.4630 (14)C25—H250.9500
C21—C221.4027 (14)C26—H260.9500
O1W···C10i3.3781 (13)C23···H4v2.8800
O1W···O72.9089 (10)C24···H4v3.0300
O1W···N93.2233 (11)C24···H5viii3.0900
O1W···C133.3815 (14)C25···H5viii2.9100
O1W···N1ii2.9033 (11)C26···H5viii2.7100
O1W···N8i2.8925 (12)H1W···C6ii3.040 (17)
O1W···C4i3.3753 (12)H1W···N1ii1.987 (17)
O7···O1W2.9089 (10)H1W···C2ii2.776 (17)
O7···C10i3.2830 (13)H2···O72.5200
O7···N92.7031 (10)H2···O7ii2.5400
O7···C2ii3.4021 (12)H2W···C72.994 (17)
O1W···H10i2.5900H2W···N92.507 (17)
O1W···H13B2.5500H2W···O72.161 (17)
O1W···H8i2.029 (14)H2W···H10i2.5600
O1W···H4i2.7700H2W···H13B2.4800
O7···H2ii2.5400H2W···H8i2.35 (2)
O7···H10i2.7400H4···N82.6600
O7···H22.5200H4···H23v2.5800
O7···H2W2.161 (17)H4···C24v3.0300
O7···H26iii2.5400H4···H82.2100
N1···O1Wii2.9033 (11)H4···O1Wiv2.7700
N8···O1Wiv2.8925 (12)H4···C23v2.8800
N9···O1W3.2233 (11)H5···C24ix3.0900
N9···O72.7031 (10)H5···C25ix2.9100
N1···H22iv2.9500H5···C26ix2.7100
N1···H1Wii1.987 (17)H5···C22ix2.9500
N8···H42.6600H5···C21ix2.7100
N9···H13B2.4700H6···H24vii2.4400
N9···H2W2.507 (17)H8···H2Wiv2.35 (2)
C2···O7ii3.4021 (12)H8···H42.2100
C4···C24v3.5844 (15)H8···C42.640 (14)
C4···C13iv3.5229 (15)H8···H102.1000
C4···O1Wiv3.3753 (12)H8···O1Wiv2.029 (14)
C5···C6vi3.4847 (15)H10···H82.1000
C5···C13iv3.5988 (16)H10···H2Wiv2.5600
C6···C5vi3.4847 (15)H10···H122.2400
C10···C21v3.5585 (14)H10···O1Wiv2.5900
C10···O7iv3.2830 (13)H10···O7iv2.7400
C10···O1Wiv3.3781 (13)H12···H262.3900
C10···C22v3.5673 (15)H12···H102.2400
C13···O1W3.3815 (14)H13A···C212.8800
C13···C5i3.5988 (16)H13A···C222.6400
C13···C4i3.5229 (15)H13A···H222.1800
C13···C223.1004 (15)H13B···O1W2.5500
C21···C10v3.5585 (14)H13B···N92.4700
C22···C133.1004 (15)H13B···H25iii2.3800
C22···C10v3.5673 (15)H13B···H2W2.4800
C24···C4v3.5844 (15)H13C···H222.3400
C2···H13Civ3.0700H13C···C2i3.0700
C2···H1Wii2.776 (17)H13C···C5i3.0400
C3···H13Civ2.8500H13C···C3i2.8500
C4···H13Civ2.8300H13C···C4i2.8300
C4···H82.640 (14)H22···H13A2.1800
C5···H13Civ3.0400H22···H13C2.3400
C6···H1Wii3.040 (17)H22···N1i2.9500
C6···H22iv3.0000H22···C6i3.0000
C6···H24vii3.0600H22···C112.9300
C7···H26iii2.8000H22···C132.5400
C7···H2W2.994 (17)H23···H4v2.5800
C11···H222.9300H24···C6x3.0600
C13···H222.5400H24···H6x2.4400
C21···H13A2.8800H25···H13Bxi2.3800
C21···H5viii2.7100H26···O7xi2.5400
C22···H13A2.6400H26···C7xi2.8000
C22···H5viii2.9500H26···H122.3900
H1W—O1W—H2W100.8 (15)C3—C2—H2118.00
C2—N1—C6117.12 (8)N1—C2—H2118.00
N9—N8—C7118.59 (8)C3—C4—H4120.00
N8—N9—C10114.07 (8)C5—C4—H4120.00
N9—N8—H8117.5 (9)C4—C5—H5121.00
C7—N8—H8123.6 (8)C6—C5—H5121.00
N1—C2—C3123.47 (9)C5—C6—H6118.00
C4—C3—C7124.28 (9)N1—C6—H6118.00
C2—C3—C4118.11 (9)N9—C10—H10119.00
C2—C3—C7117.61 (8)C11—C10—H10119.00
C3—C4—C5119.01 (9)C21—C12—H12115.00
C4—C5—C6118.57 (9)C11—C12—H12115.00
N1—C6—C5123.71 (9)C11—C13—H13A109.00
N8—C7—C3115.18 (8)C11—C13—H13C109.00
O7—C7—N8123.51 (9)H13A—C13—H13B109.00
O7—C7—C3121.30 (8)H13A—C13—H13C109.00
N9—C10—C11121.40 (9)H13B—C13—H13C109.00
C10—C11—C12116.59 (9)C11—C13—H13B109.00
C10—C11—C13118.24 (9)C23—C22—H22120.00
C12—C11—C13125.17 (9)C21—C22—H22120.00
C11—C12—C21129.50 (9)C22—C23—H23120.00
C22—C21—C26117.45 (9)C24—C23—H23120.00
C12—C21—C22124.28 (9)C25—C24—H24120.00
C12—C21—C26118.26 (9)C23—C24—H24120.00
C21—C22—C23120.93 (10)C24—C25—H25120.00
C22—C23—C24120.60 (11)C26—C25—H25120.00
C23—C24—C25119.30 (10)C21—C26—H26119.00
C24—C25—C26120.24 (10)C25—C26—H26119.00
C21—C26—C25121.33 (10)
C6—N1—C2—C31.84 (15)C4—C5—C6—N10.42 (16)
C2—N1—C6—C50.88 (15)N9—C10—C11—C12177.04 (9)
C7—N8—N9—C10179.25 (9)N9—C10—C11—C132.96 (15)
N9—N8—C7—O72.13 (15)C10—C11—C12—C21178.57 (9)
N9—N8—C7—C3179.25 (8)C13—C11—C12—C211.43 (17)
N8—N9—C10—C11179.05 (9)C11—C12—C21—C2222.57 (17)
N1—C2—C3—C41.46 (15)C11—C12—C21—C26156.91 (10)
N1—C2—C3—C7178.27 (9)C12—C21—C22—C23175.37 (10)
C2—C3—C4—C50.06 (13)C26—C21—C22—C234.11 (15)
C7—C3—C4—C5179.65 (9)C12—C21—C26—C25176.07 (10)
C2—C3—C7—O723.90 (14)C22—C21—C26—C253.45 (15)
C2—C3—C7—N8154.76 (9)C21—C22—C23—C241.54 (17)
C4—C3—C7—O7156.39 (10)C22—C23—C24—C251.83 (17)
C4—C3—C7—N824.94 (14)C23—C24—C25—C262.50 (17)
C3—C4—C5—C60.81 (15)C24—C25—C26—C210.20 (16)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+3/2, z1/2; (iv) x, y+1/2, z+1/2; (v) x, y+1, z+1; (vi) x1, y+1, z; (vii) x1, y, z1; (viii) x+1, y+3/2, z+1/2; (ix) x1, y+3/2, z1/2; (x) x+1, y, z+1; (xi) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N1ii0.917 (17)1.987 (17)2.9033 (11)177.3 (16)
O1W—H2W···O70.851 (17)2.161 (17)2.9089 (10)146.5 (15)
O1W—H2W···N90.851 (17)2.507 (17)3.2233 (11)142.5 (14)
N8—H8···O1Wiv0.882 (14)2.029 (14)2.8925 (12)166.0 (13)
C2—H2···O7ii0.952.543.4021 (12)151
C10—H10···O1Wiv0.952.593.3781 (13)140
C13—H13B···O1W0.982.553.3815 (14)143
C26—H26···O7xi0.952.543.4771 (13)170
C13—H13C···Cg1i0.982.723.5630 (13)144
C5—H5···Cg2ix0.952.573.4378 (11)152
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z; (iv) x, y+1/2, z+1/2; (ix) x1, y+3/2, z1/2; (xi) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H15N3O·H2O
Mr283.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)9.6821 (4), 9.4178 (4), 16.0958 (6)
β (°) 98.250 (4)
V3)1452.49 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.51 × 0.42 × 0.36
Data collection
DiffractometerOxford Diffraction Gemini R
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.938, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10476, 4824, 3467
Rint0.021
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 1.02
No. of reflections4824
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.22

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N1i0.917 (17)1.987 (17)2.9033 (11)177.3 (16)
O1W—H2W···O70.851 (17)2.161 (17)2.9089 (10)146.5 (15)
O1W—H2W···N90.851 (17)2.507 (17)3.2233 (11)142.5 (14)
N8—H8···O1Wii0.882 (14)2.029 (14)2.8925 (12)166.0 (13)
C2—H2···O7i0.952.543.4021 (12)151
C10—H10···O1Wii0.952.593.3781 (13)140
C13—H13B···O1W0.982.553.3815 (14)143
C26—H26···O7iii0.952.543.4771 (13)170
C13—H13C···Cg1iv0.982.723.5630 (13)144
C5—H5···Cg2v0.952.573.4378 (11)152
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x1, y+3/2, z1/2.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationBao, F.-Y. (2008). Acta Cryst. E64, o1789.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKwon, B. M., Cho, Y. K., Lee, S. H., Nam, J. Y., Bok, S. H., Chun, S. K., Kim, J. A. & Lee, I. R. (1996). Planta Med. 62, 183–184.  CrossRef PubMed CAS Web of Science Google Scholar
First citationLee, C. W., Hong, D. H., Han, S. B., Park, S. H., Kim, H. K., Kwon, B. M. & Kim, H. M. (1999). Planta Med. 65, 263–266.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoraweck, B., Fréty, R., Pecchi, G., Morale, M. & Reyes, P. (1997). Catal. Lett. 43, 85–89.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds