organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Di­nitro-2,5-bis­­[4-(tri­fluoro­meth­yl)phen­yl]thio­phene

aCardinal Tien College of Healthcare and Management, Taipei 231, Taiwan, and bInstitute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
*Correspondence e-mail: pshuang@ctcn.edu.tw

(Received 21 May 2009; accepted 28 May 2009; online 6 June 2009)

The title compound, C18H8F6N2O4S, is a precursor for the production of low-band-gap conjugated polymers. In the crystal structure, the dihedral angles between the thio­phene and benzene rings are 35.90 (8) and 61.94 (8)°, and that between the two benzene rings is 40.18 (8)°. The two nitro groups are twisted with respect to the thio­phene ring, the dihedral angles being 53.66 (10) and 31.63 (10)°. Weak inter­molecular C—H⋯O hydrogen bonding helps to stabilize the crystal structure.

Related literature

For a related structure, see: Bak et al. (1961[Bak, B., Christensen, D., Hansen-Nygaard, L. & Rastrup-Andersen, J. (1961). J. Mol. Spectrosc. 7, 58-63.]).

[Scheme 1]

Experimental

Crystal data
  • C18H8F6N2O4S

  • Mr = 462.32

  • Orthorhombic, P b c a

  • a = 8.1572 (3) Å

  • b = 17.6371 (6) Å

  • c = 24.4150 (8) Å

  • V = 3512.6 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.4 × 0.36 × 0.1 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.895, Tmax = 0.973

  • 22650 measured reflections

  • 3098 independent reflections

  • 1888 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.053

  • S = 0.80

  • 3098 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O4i 0.93 2.52 3.320 (2) 144
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, (I), has been shown to be an excellent precursor for the production of low band gap conjugated polymers and organic light-emitting devices etc. As indicated in Scheme 2, standard procedures were administrated to synthesize in high yield. The molecular structure is shown in Fig. 1. The double bonds and C—C single bond of (I) are slightly shorter than those of the parent thiophene, while the S—C single bond is slightly elongated (Bak et al., 1961). The dihedral angles between the thiophene (S/C1–C4) and benzene rings (C11–C16 and C21–C26) are 35.90 (8) and 61.94 (8)°, respectively, and that between the two benzene rings is 40.18 (8)°. The two nitro groups are oriented at the thiophene ring with the dihedral angles of 53.66 (10) and 31.63 (10)°, respectively. Intermolecular weak C—H···O hydrogen bonding helps to stabilize the crystal structure (Table 1).

Related literature top

For a related structure, see: Bak et al. (1961).

Experimental top

The compound was synthesized by the following procedure. A two-necked round-bottomed flask was charged with Pd(PPh3)4 (280 mg), tributyl(4-(trifluoromethyl)phenyl)stannane (3.26 g, 7.5 mmol), 2,5-dibromo-3,4-dinitrothiophene (1.00 g, 3.0 mmol) and DMF (20 ml), and the reaction mixture stirred under nitrogen and heated at 343 K for 48 h. After cooling, the mixture was diluted with diethyl ether and the organic phase was washed with water and brine. After drying over anhydrous MgSO4 and removing the volatiles, the residue was purified by column chromatography using CH2Cl2/n-hexane as eluent, followed by recrystallization from CH2Cl2 and hexane to yield 0.7 g (50%) of (I) as a white solid. Crystals suitable for X-ray diffraction were grown from a CH2Cl2 solution layered with hexane at room temperature.

Refinement top

H atoms were located geometrically and treated as riding atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A molecular structure of (I) with 30% probability displacement ellipsoids, showing the atom-numbering scheme employed. H atoms are shown as small spheres of the arbitrary radii.
[Figure 2] Fig. 2. The formation of the title compound.
3,4-Dinitro-2,5-bis[4-(trifluoromethyl)phenyl]thiophene top
Crystal data top
C18H8F6N2O4SF(000) = 1856
Mr = 462.32Dx = 1.748 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3689 reflections
a = 8.1572 (3) Åθ = 2.3–21.2°
b = 17.6371 (6) ŵ = 0.28 mm1
c = 24.4150 (8) ÅT = 100 K
V = 3512.6 (2) Å3Plate, colourless
Z = 80.4 × 0.36 × 0.1 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3098 independent reflections
Radiation source: fine-focus sealed tube1888 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω and ϕ scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 89
Tmin = 0.895, Tmax = 0.973k = 2020
22650 measured reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0222P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.80(Δ/σ)max < 0.001
3098 reflectionsΔρmax = 0.29 e Å3
281 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00042 (7)
Crystal data top
C18H8F6N2O4SV = 3512.6 (2) Å3
Mr = 462.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.1572 (3) ŵ = 0.28 mm1
b = 17.6371 (6) ÅT = 100 K
c = 24.4150 (8) Å0.4 × 0.36 × 0.1 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3098 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1888 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.973Rint = 0.058
22650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 0.80Δρmax = 0.29 e Å3
3098 reflectionsΔρmin = 0.28 e Å3
281 parameters
Special details top

Experimental. 1H NMR (CDCl3): 7.77 (d, J = 8.2, 4H), 7.64 (d, J = 8.2, 4H). FAB MS (m/e): 462 (M+). Analysis calculated for C18H8F6N2O4S: C 46.76, H 1.74, N 6.06%; found: C 46.80, H 1.88, N 5.79%.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.49028 (6)0.16607 (3)0.10370 (2)0.01968 (14)
F10.35605 (13)0.58240 (6)0.14011 (4)0.0308 (3)
F20.55441 (13)0.58514 (6)0.08266 (5)0.0355 (3)
F30.31448 (13)0.55311 (6)0.05612 (4)0.0317 (3)
F40.39559 (15)0.25593 (7)0.10705 (5)0.0436 (4)
F50.59498 (14)0.24370 (7)0.05129 (5)0.0414 (4)
F60.35364 (14)0.21365 (7)0.02679 (5)0.0421 (4)
O10.84762 (17)0.29479 (8)0.21049 (6)0.0336 (4)
O20.72134 (16)0.23172 (8)0.27348 (6)0.0327 (4)
O30.89423 (17)0.10570 (8)0.23361 (6)0.0326 (4)
O40.72044 (15)0.01316 (8)0.23007 (5)0.0227 (4)
N20.75230 (19)0.24606 (10)0.22593 (7)0.0206 (4)
N30.7648 (2)0.07741 (10)0.21850 (6)0.0198 (4)
C10.5770 (2)0.23578 (11)0.14335 (7)0.0154 (5)
C20.6654 (2)0.20278 (11)0.18389 (8)0.0152 (5)
C30.6626 (2)0.12295 (11)0.18302 (7)0.0151 (5)
C40.5731 (2)0.09335 (10)0.14100 (7)0.0145 (5)
C110.5395 (2)0.31580 (10)0.13231 (8)0.0153 (5)
C120.5170 (2)0.36726 (11)0.17431 (8)0.0177 (5)
H120.52780.35140.21050.021*
C130.4788 (2)0.44149 (11)0.16326 (8)0.0182 (5)
H130.46540.47580.19180.022*
C140.4601 (2)0.46509 (11)0.10993 (8)0.0169 (5)
C150.4800 (2)0.41410 (11)0.06754 (8)0.0213 (5)
H150.46590.42990.03150.026*
C160.5204 (2)0.34036 (11)0.07853 (8)0.0203 (5)
H160.53530.30640.04980.024*
C170.4211 (2)0.54560 (12)0.09785 (9)0.0225 (5)
C210.5441 (2)0.01459 (11)0.12329 (8)0.0154 (5)
C220.5951 (2)0.00879 (11)0.07186 (8)0.0191 (5)
H220.64850.02520.04880.023*
C230.5672 (2)0.08169 (11)0.05477 (8)0.0204 (5)
H230.60300.09730.02040.024*
C240.4859 (2)0.13201 (11)0.08861 (7)0.0167 (5)
C250.4314 (2)0.10885 (11)0.13930 (8)0.0182 (5)
H250.37490.14240.16180.022*
C260.4607 (2)0.03585 (11)0.15652 (8)0.0171 (5)
H260.42420.02030.19080.021*
C270.4586 (3)0.21090 (12)0.06936 (9)0.0249 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0205 (3)0.0148 (3)0.0238 (3)0.0007 (3)0.0048 (3)0.0006 (2)
F10.0375 (8)0.0209 (7)0.0339 (8)0.0100 (6)0.0032 (6)0.0016 (6)
F20.0225 (7)0.0184 (7)0.0654 (9)0.0028 (6)0.0090 (6)0.0108 (6)
F30.0315 (7)0.0291 (8)0.0345 (8)0.0085 (6)0.0084 (6)0.0057 (6)
F40.0709 (10)0.0208 (7)0.0391 (8)0.0164 (7)0.0180 (7)0.0038 (6)
F50.0265 (8)0.0240 (7)0.0738 (10)0.0025 (6)0.0122 (7)0.0171 (7)
F60.0447 (8)0.0355 (8)0.0462 (9)0.0044 (6)0.0134 (7)0.0163 (7)
O10.0313 (9)0.0344 (10)0.0351 (9)0.0202 (8)0.0052 (8)0.0047 (8)
O20.0415 (10)0.0389 (10)0.0176 (9)0.0115 (8)0.0001 (8)0.0018 (8)
O30.0219 (9)0.0289 (9)0.0469 (10)0.0039 (7)0.0169 (8)0.0003 (7)
O40.0227 (9)0.0182 (8)0.0271 (9)0.0001 (7)0.0004 (7)0.0057 (7)
N20.0183 (11)0.0192 (11)0.0244 (12)0.0025 (9)0.0038 (9)0.0018 (9)
N30.0189 (11)0.0199 (11)0.0206 (10)0.0016 (9)0.0001 (9)0.0022 (9)
C10.0117 (11)0.0178 (12)0.0167 (11)0.0027 (9)0.0006 (9)0.0006 (10)
C20.0112 (11)0.0169 (12)0.0177 (12)0.0046 (10)0.0003 (9)0.0032 (10)
C30.0109 (12)0.0179 (12)0.0166 (12)0.0014 (10)0.0006 (10)0.0029 (10)
C40.0093 (11)0.0180 (12)0.0163 (11)0.0018 (9)0.0024 (9)0.0021 (10)
C110.0083 (11)0.0163 (12)0.0213 (12)0.0042 (9)0.0005 (10)0.0001 (10)
C120.0155 (12)0.0197 (12)0.0179 (11)0.0020 (10)0.0018 (10)0.0029 (10)
C130.0146 (12)0.0175 (12)0.0226 (12)0.0021 (10)0.0025 (10)0.0028 (10)
C140.0101 (11)0.0158 (12)0.0248 (12)0.0031 (9)0.0007 (10)0.0020 (10)
C150.0216 (12)0.0206 (13)0.0217 (12)0.0025 (11)0.0021 (10)0.0030 (10)
C160.0214 (12)0.0175 (12)0.0220 (12)0.0015 (11)0.0013 (10)0.0032 (10)
C170.0189 (13)0.0217 (13)0.0268 (14)0.0010 (11)0.0009 (11)0.0012 (11)
C210.0106 (12)0.0166 (12)0.0190 (12)0.0024 (9)0.0041 (9)0.0000 (9)
C220.0172 (12)0.0196 (13)0.0205 (12)0.0027 (10)0.0001 (10)0.0036 (10)
C230.0193 (12)0.0240 (13)0.0179 (12)0.0014 (10)0.0025 (10)0.0039 (10)
C240.0109 (11)0.0160 (11)0.0233 (12)0.0002 (10)0.0014 (10)0.0021 (9)
C250.0131 (12)0.0182 (12)0.0232 (12)0.0006 (9)0.0016 (10)0.0045 (10)
C260.0151 (12)0.0181 (12)0.0182 (11)0.0039 (10)0.0015 (10)0.0002 (9)
C270.0233 (14)0.0249 (13)0.0266 (13)0.0003 (11)0.0048 (12)0.0020 (11)
Geometric parameters (Å, º) top
S—C41.7119 (19)C12—C131.373 (2)
S—C11.7173 (19)C12—H120.9300
F1—C171.329 (2)C13—C141.375 (2)
F2—C171.344 (2)C13—H130.9300
F3—C171.346 (2)C14—C151.381 (2)
F4—C271.320 (2)C14—C171.485 (3)
F5—C271.330 (2)C15—C161.368 (3)
F6—C271.347 (2)C15—H150.9300
O1—N21.2187 (19)C16—H160.9300
O2—N21.2147 (18)C21—C261.383 (2)
O3—N31.2249 (18)C21—C221.386 (2)
O4—N31.2226 (18)C22—C231.371 (3)
N2—C21.462 (2)C22—H220.9300
N3—C31.446 (2)C23—C241.382 (3)
C1—C21.356 (2)C23—H230.9300
C1—C111.469 (2)C24—C251.377 (2)
C2—C31.408 (2)C24—C271.485 (3)
C3—C41.363 (2)C25—C261.375 (2)
C4—C211.474 (2)C25—H250.9300
C11—C121.382 (2)C26—H260.9300
C11—C161.391 (2)
C4—S—C194.24 (9)C15—C16—C11120.54 (18)
O2—N2—O1125.10 (17)C15—C16—H16119.7
O2—N2—C2117.48 (17)C11—C16—H16119.7
O1—N2—C2117.40 (17)F1—C17—F2106.49 (16)
O4—N3—O3124.26 (17)F1—C17—F3106.33 (16)
O4—N3—C3118.87 (17)F2—C17—F3105.24 (16)
O3—N3—C3116.82 (17)F1—C17—C14113.47 (17)
C2—C1—C11131.07 (18)F2—C17—C14112.20 (16)
C2—C1—S108.86 (14)F3—C17—C14112.51 (17)
C11—C1—S119.92 (14)C26—C21—C22119.21 (18)
C1—C2—C3114.15 (17)C26—C21—C4120.86 (17)
C1—C2—N2123.10 (18)C22—C21—C4119.88 (17)
C3—C2—N2122.72 (18)C23—C22—C21120.34 (19)
C4—C3—C2113.78 (17)C23—C22—H22119.8
C4—C3—N3123.16 (18)C21—C22—H22119.8
C2—C3—N3122.46 (18)C22—C23—C24120.00 (18)
C3—C4—C21131.90 (18)C22—C23—H23120.0
C3—C4—S108.95 (14)C24—C23—H23120.0
C21—C4—S119.11 (14)C25—C24—C23120.11 (18)
C12—C11—C16118.74 (18)C25—C24—C27120.92 (18)
C12—C11—C1121.51 (17)C23—C24—C27118.97 (18)
C16—C11—C1119.71 (17)C26—C25—C24119.76 (18)
C13—C12—C11120.72 (17)C26—C25—H25120.1
C13—C12—H12119.6C24—C25—H25120.1
C11—C12—H12119.6C25—C26—C21120.55 (18)
C12—C13—C14119.99 (18)C25—C26—H26119.7
C12—C13—H13120.0C21—C26—H26119.7
C14—C13—H13120.0F4—C27—F5107.18 (18)
C13—C14—C15119.97 (19)F4—C27—F6105.61 (16)
C13—C14—C17120.08 (18)F5—C27—F6105.08 (16)
C15—C14—C17119.94 (18)F4—C27—C24113.67 (17)
C16—C15—C14120.02 (18)F5—C27—C24112.76 (17)
C16—C15—H15120.0F6—C27—C24111.91 (18)
C14—C15—H15120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O4i0.932.523.320 (2)144
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H8F6N2O4S
Mr462.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)8.1572 (3), 17.6371 (6), 24.4150 (8)
V3)3512.6 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.4 × 0.36 × 0.1
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.895, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
22650, 3098, 1888
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.053, 0.80
No. of reflections3098
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.28

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT (Bruker, 2001, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O4i0.932.523.320 (2)144
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was partially supported by the Institute of Chemistry, Academia Sinica, and Cardinal Tien College of Healthcare and Management.

References

First citationBak, B., Christensen, D., Hansen-Nygaard, L. & Rastrup-Andersen, J. (1961). J. Mol. Spectrosc. 7, 58–63.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds