metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis(4-chloro­benzyl-κC)(1,10-phenanthroline-κ2N,N′)tin(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 21 May 2009; accepted 25 May 2009; online 6 June 2009)

In the crystal structure of the title compound, [Sn(C7H6Cl)2Cl2(C12H8N2)], the SnIV atom is chelated by the N-heterocycle and the metal atom exists in a trans-C2SnCl2N2 distorted octa­hedral coordination environment.

Related literature

Several diorganotin dichloride adducts of 2,2′-bipyridine have been reported. For the diethyl­tin dichloride, dibutyl­tin dichoride and dibenzyl­tin dichloride adducts; see Chadha et al. (1980[Chadha, S. L., Harrison, P. G. & Molloy, K. C. (1980). J. Organomet. Chem. 202, 247-256.]); Gill et al.(1999[Gill, J., Parge, H., Cardin, C. J., Tsiamis, C. & Kavounis, C. (1999). Acta Cryst. C55, 875-876.]); Tiekink et al. (2000[Tiekink, E. R. T., Hall, V. J., Buntine, M. A. & Hook, J. (2000). Z. Kristallogr. 215, 23-33.]). For the structure of di(4-chloro­benzyl­tin) dichloride, see: Kuang & Feng (2000[Kuang, D.-Z. & Feng, Y.-L. (2000). Chin. J. Inorg. Chem. 16, 603-606.]). For the direct synthesis of di(chloro­benz­yl)tin dichlorides, see: Sisido et al. (1961[Sisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538-541.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C7H6Cl)2Cl2(C12H8N2)]

  • Mr = 620.93

  • Monoclinic, P 21 /c

  • a = 8.9252 (1) Å

  • b = 17.9987 (3) Å

  • c = 15.6862 (3) Å

  • β = 98.686 (1)°

  • V = 2490.96 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 119 K

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.590, Tmax = 0.867

  • 16905 measured reflections

  • 5681 independent reflections

  • 4826 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.062

  • S = 1.05

  • 5681 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—C1 2.160 (2)
Sn1—C8 2.162 (2)
Sn1—N1 2.3712 (18)
Sn1—N2 2.3515 (18)
Sn1—Cl3 2.5287 (6)
Sn1—Cl4 2.4973 (6)
C1—Sn1—C8 172.84 (8)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

Several diorganotin dichloride adducts of 2,2'-bipyridine have been reported. For the diethyltin dichloride, dibutyltin dichoride and dibenzyltin dichloride adducts; see Chadha et al. (1980); Gill et al.(1999); Tiekink et al. (2000). For the structure of di(4-chlorobenzyltin) dichloride, see: Kuang & Feng (2000). For the direct synthesis of di(chlorobenzyl)tin dichlorides, see: Sisido et al. (1961).

Experimental top

Di(p-chlorobenzyl)tin dichloride was synthesized by the reaction of p-chlorobenzyl chloride and metallic tin (Sisido et al., 1961). The reactant (0.5 g, 1.1 mmol) and 1,10-phenanthroline (0.2 g, 1.1 mmol) were heated in chloroform (50 ml) for 1 hour. Faint-yellow crystals separated from the cool solution after a day.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.95–0.99 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 70% displacement probability ellipsoids. Hydrogen atoms are drawn as spheres of arbitrary radius.
Dichloridobis(4-chlorobenzyl-κC)(1,10-phenanthroline- κ2N,N')tin(IV) top
Crystal data top
[Sn(C7H6Cl)2Cl2(C12H8N2)]F(000) = 1232
Mr = 620.93Dx = 1.656 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8381 reflections
a = 8.9252 (1) Åθ = 2.3–28.2°
b = 17.9987 (3) ŵ = 1.47 mm1
c = 15.6862 (3) ÅT = 119 K
β = 98.686 (1)°Prism, yellow
V = 2490.96 (7) Å30.40 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
5681 independent reflections
Radiation source: fine-focus sealed tube4826 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.590, Tmax = 0.867k = 2223
16905 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0286P)2 + 1.4291P]
where P = (Fo2 + 2Fc2)/3
5681 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Sn(C7H6Cl)2Cl2(C12H8N2)]V = 2490.96 (7) Å3
Mr = 620.93Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9252 (1) ŵ = 1.47 mm1
b = 17.9987 (3) ÅT = 119 K
c = 15.6862 (3) Å0.40 × 0.10 × 0.10 mm
β = 98.686 (1)°
Data collection top
Bruker SMART APEX
diffractometer
5681 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4826 reflections with I > 2σ(I)
Tmin = 0.590, Tmax = 0.867Rint = 0.021
16905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.05Δρmax = 0.53 e Å3
5681 reflectionsΔρmin = 0.44 e Å3
298 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.668417 (16)0.554696 (8)0.795225 (9)0.02121 (5)
Cl10.84702 (8)0.57955 (4)0.35794 (4)0.04106 (15)
Cl21.35725 (11)0.75339 (6)0.97376 (6)0.0765 (3)
Cl30.42667 (7)0.52254 (3)0.85279 (4)0.03635 (14)
Cl40.82575 (7)0.43941 (3)0.81282 (4)0.03295 (13)
N10.5902 (2)0.67771 (10)0.75699 (12)0.0231 (4)
N20.8592 (2)0.61534 (10)0.73338 (12)0.0232 (4)
C10.7565 (3)0.59581 (14)0.92228 (15)0.0302 (5)
H1A0.68110.63040.94050.036*
H1B0.76630.55330.96280.036*
C20.9049 (3)0.63463 (13)0.93108 (14)0.0291 (5)
C31.0409 (3)0.59536 (13)0.94752 (15)0.0313 (5)
H3A1.03820.54270.95030.038*
C41.1800 (3)0.63119 (16)0.95997 (17)0.0399 (6)
H4A1.27160.60370.97250.048*
C51.1823 (4)0.70741 (17)0.95385 (17)0.0444 (7)
C61.0518 (4)0.74826 (15)0.93470 (18)0.0499 (8)
H6A1.05600.80070.92920.060*
C70.9140 (3)0.71175 (14)0.92356 (16)0.0399 (6)
H7A0.82320.73980.91050.048*
C80.5528 (2)0.51792 (13)0.67136 (15)0.0259 (5)
H8A0.53660.46360.67460.031*
H8B0.45160.54160.66150.031*
C90.6284 (2)0.53300 (12)0.59490 (14)0.0236 (4)
C100.7343 (3)0.48429 (13)0.56968 (15)0.0281 (5)
H10A0.76040.44060.60250.034*
C110.8025 (3)0.49820 (13)0.49766 (15)0.0294 (5)
H11A0.87380.46410.48080.035*
C120.7655 (3)0.56232 (13)0.45046 (15)0.0290 (5)
C130.6620 (3)0.61251 (13)0.47410 (15)0.0301 (5)
H13A0.63780.65660.44160.036*
C140.5942 (3)0.59752 (13)0.54598 (15)0.0281 (5)
H14A0.52280.63180.56250.034*
C150.6868 (2)0.71888 (11)0.71740 (14)0.0221 (4)
C160.4601 (3)0.70774 (13)0.77128 (15)0.0277 (5)
H16A0.39330.67900.79980.033*
C170.4182 (3)0.78056 (13)0.74554 (17)0.0334 (5)
H17A0.32490.80070.75690.040*
C180.5130 (3)0.82184 (13)0.70422 (16)0.0325 (5)
H18A0.48460.87070.68520.039*
C190.6528 (3)0.79239 (12)0.68953 (15)0.0281 (5)
C200.7614 (3)0.83310 (13)0.64909 (15)0.0346 (6)
H20A0.73880.88250.62990.041*
C210.8942 (3)0.80256 (14)0.63798 (15)0.0337 (6)
H21A0.96430.83080.61140.040*
C220.9325 (3)0.72786 (13)0.66552 (14)0.0282 (5)
C231.0714 (3)0.69379 (16)0.65643 (16)0.0348 (6)
H23A1.14430.71990.62970.042*
C241.1010 (3)0.62301 (15)0.68614 (16)0.0356 (6)
H24A1.19480.59980.68100.043*
C250.9913 (3)0.58531 (14)0.72420 (15)0.0288 (5)
H25A1.01240.53610.74430.035*
C260.8288 (2)0.68613 (12)0.70487 (14)0.0231 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02126 (8)0.01781 (8)0.02478 (8)0.00048 (6)0.00414 (6)0.00034 (6)
Cl10.0462 (4)0.0487 (4)0.0299 (3)0.0001 (3)0.0111 (3)0.0010 (3)
Cl20.0833 (6)0.0975 (7)0.0515 (5)0.0638 (6)0.0192 (5)0.0244 (5)
Cl30.0361 (3)0.0285 (3)0.0493 (4)0.0040 (2)0.0220 (3)0.0024 (3)
Cl40.0322 (3)0.0230 (3)0.0424 (3)0.0073 (2)0.0017 (3)0.0020 (2)
N10.0221 (9)0.0201 (9)0.0271 (10)0.0018 (7)0.0033 (8)0.0027 (7)
N20.0204 (9)0.0261 (10)0.0226 (9)0.0026 (7)0.0019 (7)0.0039 (7)
C10.0345 (13)0.0315 (12)0.0244 (11)0.0055 (10)0.0041 (10)0.0019 (10)
C20.0420 (14)0.0268 (12)0.0179 (11)0.0005 (10)0.0033 (10)0.0027 (9)
C30.0388 (13)0.0265 (12)0.0287 (12)0.0032 (10)0.0053 (10)0.0051 (10)
C40.0391 (14)0.0490 (16)0.0327 (14)0.0081 (12)0.0083 (12)0.0129 (12)
C50.0597 (19)0.0497 (17)0.0246 (13)0.0293 (15)0.0090 (13)0.0113 (12)
C60.087 (2)0.0287 (14)0.0304 (14)0.0172 (15)0.0030 (15)0.0025 (11)
C70.0597 (18)0.0270 (13)0.0296 (13)0.0023 (12)0.0038 (12)0.0051 (10)
C80.0195 (10)0.0280 (12)0.0296 (12)0.0026 (9)0.0018 (9)0.0041 (9)
C90.0186 (10)0.0264 (11)0.0237 (11)0.0024 (8)0.0037 (9)0.0047 (9)
C100.0253 (11)0.0274 (12)0.0298 (12)0.0006 (9)0.0015 (10)0.0026 (9)
C110.0244 (11)0.0325 (12)0.0304 (12)0.0031 (9)0.0015 (10)0.0047 (10)
C120.0266 (11)0.0369 (13)0.0227 (11)0.0023 (10)0.0004 (9)0.0024 (10)
C130.0303 (12)0.0295 (12)0.0275 (12)0.0033 (10)0.0052 (10)0.0006 (10)
C140.0263 (11)0.0272 (12)0.0290 (12)0.0049 (9)0.0019 (9)0.0043 (9)
C150.0269 (11)0.0198 (10)0.0186 (10)0.0044 (8)0.0004 (8)0.0030 (8)
C160.0256 (11)0.0242 (11)0.0336 (13)0.0000 (9)0.0053 (10)0.0026 (9)
C170.0349 (13)0.0254 (12)0.0396 (14)0.0061 (10)0.0042 (11)0.0042 (10)
C180.0448 (14)0.0188 (11)0.0326 (13)0.0041 (10)0.0016 (11)0.0003 (9)
C190.0387 (13)0.0200 (11)0.0247 (11)0.0039 (9)0.0018 (10)0.0028 (9)
C200.0540 (16)0.0229 (12)0.0271 (12)0.0084 (11)0.0072 (11)0.0010 (9)
C210.0447 (15)0.0321 (13)0.0248 (12)0.0179 (11)0.0072 (11)0.0028 (10)
C220.0311 (12)0.0347 (13)0.0186 (11)0.0118 (10)0.0030 (9)0.0041 (9)
C230.0262 (12)0.0531 (16)0.0260 (12)0.0147 (11)0.0066 (10)0.0045 (11)
C240.0233 (11)0.0501 (16)0.0341 (13)0.0029 (11)0.0070 (10)0.0070 (12)
C250.0233 (11)0.0351 (12)0.0280 (12)0.0001 (10)0.0036 (9)0.0055 (10)
C260.0250 (11)0.0245 (11)0.0190 (10)0.0059 (9)0.0011 (8)0.0045 (8)
Geometric parameters (Å, º) top
Sn1—C12.160 (2)C9—C141.400 (3)
Sn1—C82.162 (2)C10—C111.385 (3)
Sn1—N12.3712 (18)C10—H10A0.9500
Sn1—N22.3515 (18)C11—C121.384 (3)
Sn1—Cl32.5287 (6)C11—H11A0.9500
Sn1—Cl42.4973 (6)C12—C131.382 (3)
Cl1—C121.747 (2)C13—C141.385 (3)
Cl2—C51.753 (3)C13—H13A0.9500
N1—C161.330 (3)C14—H14A0.9500
N1—C151.356 (3)C15—C191.412 (3)
N2—C251.325 (3)C15—C261.438 (3)
N2—C261.364 (3)C16—C171.405 (3)
C1—C21.486 (3)C16—H16A0.9500
C1—H1A0.9900C17—C181.361 (4)
C1—H1B0.9900C17—H17A0.9500
C2—C31.394 (3)C18—C191.406 (3)
C2—C71.397 (3)C18—H18A0.9500
C3—C41.386 (4)C19—C201.437 (3)
C3—H3A0.9500C20—C211.342 (4)
C4—C51.376 (4)C20—H20A0.9500
C4—H4A0.9500C21—C221.437 (4)
C5—C61.372 (4)C21—H21A0.9500
C6—C71.382 (4)C22—C261.405 (3)
C6—H6A0.9500C22—C231.410 (3)
C7—H7A0.9500C23—C241.368 (4)
C8—C91.487 (3)C23—H23A0.9500
C8—H8A0.9900C24—C251.397 (3)
C8—H8B0.9900C24—H24A0.9500
C9—C101.390 (3)C25—H25A0.9500
C1—Sn1—C8172.84 (8)C14—C9—C8120.4 (2)
C8—Sn1—N292.78 (7)C11—C10—C9121.3 (2)
C1—Sn1—N292.08 (8)C11—C10—H10A119.3
C8—Sn1—N188.64 (8)C9—C10—H10A119.3
C1—Sn1—N188.03 (8)C10—C11—C12119.3 (2)
N2—Sn1—N170.49 (6)C10—C11—H11A120.4
C8—Sn1—Cl491.67 (6)C12—C11—H11A120.4
C1—Sn1—Cl493.58 (7)C13—C12—C11121.1 (2)
N2—Sn1—Cl490.07 (5)C13—C12—Cl1119.07 (19)
N1—Sn1—Cl4160.55 (5)C11—C12—Cl1119.81 (18)
C8—Sn1—Cl386.19 (6)C14—C13—C12118.9 (2)
C1—Sn1—Cl387.72 (7)C14—C13—H13A120.6
N2—Sn1—Cl3164.47 (5)C12—C13—H13A120.6
N1—Sn1—Cl393.99 (5)C13—C14—C9121.5 (2)
Cl4—Sn1—Cl3105.44 (2)C13—C14—H14A119.3
C16—N1—C15119.11 (19)C9—C14—H14A119.3
C16—N1—Sn1124.61 (15)N1—C15—C19122.1 (2)
C15—N1—Sn1116.28 (14)N1—C15—C26118.23 (19)
C25—N2—C26118.79 (19)C19—C15—C26119.6 (2)
C25—N2—Sn1124.56 (16)N1—C16—C17122.1 (2)
C26—N2—Sn1116.65 (14)N1—C16—H16A118.9
C2—C1—Sn1116.24 (15)C17—C16—H16A118.9
C2—C1—H1A108.2C18—C17—C16119.3 (2)
Sn1—C1—H1A108.2C18—C17—H17A120.4
C2—C1—H1B108.2C16—C17—H17A120.4
Sn1—C1—H1B108.2C17—C18—C19120.2 (2)
H1A—C1—H1B107.4C17—C18—H18A119.9
C3—C2—C7117.4 (2)C19—C18—H18A119.9
C3—C2—C1121.2 (2)C18—C19—C15117.2 (2)
C7—C2—C1121.4 (2)C18—C19—C20123.7 (2)
C4—C3—C2121.7 (2)C15—C19—C20119.1 (2)
C4—C3—H3A119.1C21—C20—C19121.1 (2)
C2—C3—H3A119.1C21—C20—H20A119.4
C5—C4—C3118.5 (3)C19—C20—H20A119.4
C5—C4—H4A120.8C20—C21—C22121.2 (2)
C3—C4—H4A120.8C20—C21—H21A119.4
C6—C5—C4121.9 (3)C22—C21—H21A119.4
C6—C5—Cl2119.3 (2)C26—C22—C23117.4 (2)
C4—C5—Cl2118.7 (3)C26—C22—C21119.3 (2)
C5—C6—C7118.9 (3)C23—C22—C21123.3 (2)
C5—C6—H6A120.6C24—C23—C22119.9 (2)
C7—C6—H6A120.6C24—C23—H23A120.1
C6—C7—C2121.6 (3)C22—C23—H23A120.1
C6—C7—H7A119.2C23—C24—C25119.1 (2)
C2—C7—H7A119.2C23—C24—H24A120.5
C9—C8—Sn1117.12 (14)C25—C24—H24A120.5
C9—C8—H8A108.0N2—C25—C24122.7 (2)
Sn1—C8—H8A108.0N2—C25—H25A118.6
C9—C8—H8B108.0C24—C25—H25A118.6
Sn1—C8—H8B108.0N2—C26—C22122.1 (2)
H8A—C8—H8B107.3N2—C26—C15118.27 (19)
C10—C9—C14118.0 (2)C22—C26—C15119.6 (2)
C10—C9—C8121.7 (2)
C8—Sn1—N1—C1688.53 (19)C10—C11—C12—C130.0 (4)
C1—Sn1—N1—C1685.14 (19)C10—C11—C12—Cl1178.41 (18)
N2—Sn1—N1—C16178.0 (2)C11—C12—C13—C140.4 (3)
Cl4—Sn1—N1—C16179.68 (13)Cl1—C12—C13—C14178.03 (18)
Cl3—Sn1—N1—C162.44 (18)C12—C13—C14—C90.1 (3)
C8—Sn1—N1—C1591.05 (16)C10—C9—C14—C130.6 (3)
C1—Sn1—N1—C1595.29 (16)C8—C9—C14—C13179.4 (2)
N2—Sn1—N1—C152.38 (14)C16—N1—C15—C191.0 (3)
Cl4—Sn1—N1—C150.1 (3)Sn1—N1—C15—C19178.60 (16)
Cl3—Sn1—N1—C15177.13 (15)C16—N1—C15—C26178.2 (2)
C8—Sn1—N2—C2594.31 (18)Sn1—N1—C15—C262.2 (2)
C1—Sn1—N2—C2590.94 (18)C15—N1—C16—C170.9 (3)
N1—Sn1—N2—C25178.12 (19)Sn1—N1—C16—C17178.64 (17)
Cl4—Sn1—N2—C252.64 (17)N1—C16—C17—C180.4 (4)
Cl3—Sn1—N2—C25179.92 (14)C16—C17—C18—C191.6 (4)
C8—Sn1—N2—C2685.20 (16)C17—C18—C19—C151.5 (3)
C1—Sn1—N2—C2689.54 (16)C17—C18—C19—C20177.8 (2)
N1—Sn1—N2—C262.37 (14)N1—C15—C19—C180.2 (3)
Cl4—Sn1—N2—C26176.87 (15)C26—C15—C19—C18179.4 (2)
Cl3—Sn1—N2—C260.6 (3)N1—C15—C19—C20179.1 (2)
N2—Sn1—C1—C28.28 (18)C26—C15—C19—C200.0 (3)
N1—Sn1—C1—C278.67 (18)C18—C19—C20—C21178.9 (2)
Cl4—Sn1—C1—C281.92 (17)C15—C19—C20—C210.4 (4)
Cl3—Sn1—C1—C2172.74 (18)C19—C20—C21—C220.4 (4)
Sn1—C1—C2—C386.5 (2)C20—C21—C22—C260.0 (3)
Sn1—C1—C2—C793.7 (2)C20—C21—C22—C23179.0 (2)
C7—C2—C3—C42.9 (4)C26—C22—C23—C240.5 (3)
C1—C2—C3—C4176.9 (2)C21—C22—C23—C24178.4 (2)
C2—C3—C4—C51.5 (4)C22—C23—C24—C250.8 (4)
C3—C4—C5—C60.9 (4)C26—N2—C25—C240.3 (3)
C3—C4—C5—Cl2177.49 (19)Sn1—N2—C25—C24179.23 (17)
C4—C5—C6—C71.8 (4)C23—C24—C25—N20.4 (4)
Cl2—C5—C6—C7176.7 (2)C25—N2—C26—C220.5 (3)
C5—C6—C7—C20.2 (4)Sn1—N2—C26—C22179.00 (16)
C3—C2—C7—C62.1 (4)C25—N2—C26—C15178.26 (19)
C1—C2—C7—C6177.7 (2)Sn1—N2—C26—C152.2 (2)
N2—Sn1—C8—C95.87 (17)C23—C22—C26—N20.1 (3)
N1—Sn1—C8—C976.26 (17)C21—C22—C26—N2179.2 (2)
Cl4—Sn1—C8—C984.29 (17)C23—C22—C26—C15178.7 (2)
Cl3—Sn1—C8—C9170.35 (17)C21—C22—C26—C150.4 (3)
Sn1—C8—C9—C1086.7 (2)N1—C15—C26—N20.0 (3)
Sn1—C8—C9—C1493.2 (2)C19—C15—C26—N2179.24 (19)
C14—C9—C10—C111.0 (3)N1—C15—C26—C22178.8 (2)
C8—C9—C10—C11179.0 (2)C19—C15—C26—C220.4 (3)
C9—C10—C11—C120.7 (3)

Experimental details

Crystal data
Chemical formula[Sn(C7H6Cl)2Cl2(C12H8N2)]
Mr620.93
Crystal system, space groupMonoclinic, P21/c
Temperature (K)119
a, b, c (Å)8.9252 (1), 17.9987 (3), 15.6862 (3)
β (°) 98.686 (1)
V3)2490.96 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.590, 0.867
No. of measured, independent and
observed [I > 2σ(I)] reflections
16905, 5681, 4826
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.062, 1.05
No. of reflections5681
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.44

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
Sn1—C12.160 (2)Sn1—N22.3515 (18)
Sn1—C82.162 (2)Sn1—Cl32.5287 (6)
Sn1—N12.3712 (18)Sn1—Cl42.4973 (6)
C1—Sn1—C8172.84 (8)
 

Acknowledgements

We thank the University of Malaya (RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChadha, S. L., Harrison, P. G. & Molloy, K. C. (1980). J. Organomet. Chem. 202, 247–256.  CSD CrossRef CAS Web of Science Google Scholar
First citationGill, J., Parge, H., Cardin, C. J., Tsiamis, C. & Kavounis, C. (1999). Acta Cryst. C55, 875–876.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKuang, D.-Z. & Feng, Y.-L. (2000). Chin. J. Inorg. Chem. 16, 603–606.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538–541.  CrossRef Web of Science Google Scholar
First citationTiekink, E. R. T., Hall, V. J., Buntine, M. A. & Hook, J. (2000). Z. Kristallogr. 215, 23–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds