organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(2-hy­droxy­ethyl)ammonium 1,3-benzo­thia­zole-2-thiol­ate

aSchool of Chemistry and the Environment, South China Normal University, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: ypcai8@yahoo.com

(Received 21 May 2009; accepted 12 June 2009; online 20 June 2009)

In the title compound, C6H16NO3+·C7H4NS2, the cations and anions are connected by O—H⋯N and O—H⋯S hydrogen bonding. Weak C—H⋯O hydrogen bonding between adjacent cations helps to stabilize the crystal structure.

Related literature

For related structures, see Bethge et al. (2008[Bethge, L., Jarikote, D. V. & Seitz, O. (2008). Bioorg. Med. Chem. 16, 114-125.]); Siracusa et al. (2008[Siracusa, M. A., Salerno, L., Modica, M. N., Pittala, V., Romeo, G., Amato, M. E., Nowak, M., Bojarski, A. J., Mereghetti, I., Cagnotto, A. & Mennini, T. (2008). J. Med. Chem. 51, 4529-4538.]); Solar et al. (2008[Solar, M., del Ghosh, A. K. & Zajc, B. (2008). J. Org. Chem. 73, 8206-8211.]); Varlamov et al. (2005[Varlamov, V. T., Ferreri, C. & Chatgilialoglu, C. (2005). J. Organomet. Chem. 690, 1756-1762.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16NO3+·C7H4NS2

  • Mr = 316.43

  • Monoclinic, P 21 /c

  • a = 16.496 (2) Å

  • b = 5.7184 (8) Å

  • c = 17.462 (3) Å

  • β = 111.524 (2)°

  • V = 1532.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 296 K

  • 0.56 × 0.38 × 0.23 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.803, Tmax = 0.921

  • 7572 measured reflections

  • 2827 independent reflections

  • 2185 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.04

  • 2827 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.96 2.770 (2) 168
O2—H2⋯S2i 0.82 2.43 3.2258 (17) 165
O3—H3⋯S2 0.82 2.35 3.1621 (16) 169
C8—H8A⋯O1ii 0.97 2.50 3.385 (3) 151
C10—H10B⋯O3iii 0.97 2.47 3.425 (3) 167
Symmetry codes: (i) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Some related compounds involving the 2-mercaptobenzothiazole and its derivatives has reported previously (Varlamov et al., 2005; Solar et al., 2008; Siracusa et al. 2008; Bethge et al., 2008). The crystal structure of the title compound consists of tris(2-hydroxyethyl)ammonium cations and benzothiazole-2-thiolate anions (Fig. 1). The cations and anions are connected by O—H···N and O—H···S hydrogen bonding (Table 1).

Related literature top

For related structures, see Bethge et al. (2008); Siracusa et al. (2008); Solar et al. (2008); Varlamov et al. (2005).

Experimental top

A mixture of benzothiazole (335 mg, 2 mmol), triethanolamine (0.4 ml and 3 mmol) in ethyl acetate (20 ml) was refluxed for 20 h. The resultant yellow solution was delaminated into two layers at room temperature and then filtered. Single crystals suitable for X-ray diffraction were obtained in two day by slow diffusion of diethyl ether into a dilute solution of the title complex in ethyl acetate. The elemental analysis; calculated for C13H20N2O3S2: C 49.37, H 6.33, N 8.86%; found: C 49.31, H 6.38, N 8.82%.

Refinement top

H atoms were placed in idealized positions with C—H = 0.93 or 0.97 Å, O—H = 0.82 Å, N—H = 0.91 Å, and refined in riding-model approximation. Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N,C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with 50% probability displacement ellipsoids.
Tris(2-hydroxyethyl)ammonium 1,3-benzothiazole-2-thiolate top
Crystal data top
C6H16NO3+·C7H4NS2F(000) = 672
Mr = 316.43Dx = 1.372 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 236 reflections
a = 16.496 (2) Åθ = 2.4–25.5°
b = 5.7184 (8) ŵ = 0.36 mm1
c = 17.462 (3) ÅT = 296 K
β = 111.524 (2)°Block, colorless
V = 1532.3 (4) Å30.56 × 0.38 × 0.23 mm
Z = 4
Data collection top
Bruker SMART area-detector
diffractometer
2827 independent reflections
Radiation source: fine-focus sealed tube2185 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.803, Tmax = 0.921k = 66
7572 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.2793P]
where P = (Fo2 + 2Fc2)/3
2827 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C6H16NO3+·C7H4NS2V = 1532.3 (4) Å3
Mr = 316.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.496 (2) ŵ = 0.36 mm1
b = 5.7184 (8) ÅT = 296 K
c = 17.462 (3) Å0.56 × 0.38 × 0.23 mm
β = 111.524 (2)°
Data collection top
Bruker SMART area-detector
diffractometer
2827 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2185 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.921Rint = 0.034
7572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
2827 reflectionsΔρmin = 0.16 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.26675 (13)1.1324 (4)0.12815 (11)0.0361 (5)
C20.39268 (13)0.8624 (4)0.15930 (11)0.0347 (5)
C30.39516 (12)1.0658 (3)0.11586 (11)0.0347 (5)
C40.46629 (14)1.1048 (4)0.09259 (13)0.0459 (5)
H40.46921.23820.06320.055*
C50.53229 (15)0.9413 (5)0.11398 (14)0.0521 (6)
H50.58030.96670.09920.062*
C60.52890 (15)0.7410 (4)0.15671 (13)0.0498 (6)
H60.57430.63350.16990.060*
C70.45902 (14)0.6983 (4)0.18000 (12)0.0445 (5)
H70.45650.56340.20880.053*
C80.25776 (13)0.6974 (4)0.44442 (12)0.0412 (5)
H8A0.28200.54720.43830.049*
H8B0.25410.70250.49860.049*
C90.31648 (14)0.8890 (4)0.43727 (13)0.0451 (5)
H9A0.37260.87600.48190.054*
H9B0.32570.87270.38580.054*
C100.09961 (15)0.6154 (4)0.40603 (14)0.0501 (6)
H10A0.11750.45930.42720.060*
H10B0.04580.60190.35850.060*
C110.08354 (14)0.7592 (4)0.47092 (14)0.0485 (6)
H11A0.03230.70220.47980.058*
H11B0.13300.74790.52240.058*
C120.16366 (15)0.6302 (4)0.29797 (12)0.0477 (6)
H12A0.15240.46330.29510.057*
H12B0.21900.65560.29160.057*
C130.09228 (15)0.7522 (5)0.22968 (13)0.0537 (6)
H13A0.09690.71550.17720.064*
H13B0.03590.69840.22820.064*
N10.32350 (11)1.2134 (3)0.09787 (10)0.0371 (4)
N20.16844 (9)0.7219 (3)0.38008 (9)0.0318 (4)
H2A0.15690.87780.37360.038*
O10.28024 (11)1.1097 (3)0.44019 (9)0.0515 (4)
H10.28981.14490.48820.077*
O20.07100 (11)0.9936 (3)0.44415 (9)0.0581 (4)
H20.09271.08080.48370.087*
O30.09930 (10)0.9968 (3)0.24292 (9)0.0533 (4)
H30.12441.05510.21480.080*
S10.29720 (3)0.86166 (10)0.17920 (3)0.04177 (18)
S20.16918 (4)1.25406 (11)0.11908 (4)0.04881 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0443 (12)0.0320 (12)0.0297 (10)0.0048 (9)0.0107 (9)0.0028 (9)
C20.0382 (11)0.0340 (12)0.0270 (9)0.0052 (9)0.0063 (8)0.0007 (9)
C30.0405 (11)0.0326 (11)0.0289 (9)0.0054 (9)0.0103 (8)0.0021 (9)
C40.0496 (13)0.0463 (15)0.0453 (12)0.0018 (11)0.0215 (10)0.0073 (11)
C50.0451 (13)0.0620 (17)0.0543 (14)0.0008 (11)0.0245 (11)0.0012 (12)
C60.0465 (13)0.0513 (16)0.0478 (13)0.0115 (11)0.0128 (11)0.0004 (11)
C70.0509 (13)0.0388 (13)0.0379 (11)0.0017 (10)0.0094 (10)0.0031 (10)
C80.0392 (12)0.0404 (13)0.0411 (11)0.0054 (9)0.0114 (9)0.0034 (10)
C90.0449 (12)0.0458 (14)0.0457 (12)0.0063 (10)0.0181 (10)0.0091 (11)
C100.0506 (13)0.0500 (15)0.0526 (13)0.0124 (11)0.0225 (11)0.0010 (11)
C110.0449 (13)0.0574 (16)0.0485 (13)0.0021 (11)0.0234 (11)0.0049 (12)
C120.0649 (15)0.0422 (14)0.0375 (11)0.0001 (11)0.0204 (11)0.0070 (10)
C130.0533 (14)0.0671 (18)0.0342 (11)0.0093 (12)0.0082 (10)0.0001 (11)
N10.0436 (10)0.0307 (10)0.0375 (9)0.0019 (8)0.0154 (8)0.0030 (7)
N20.0351 (9)0.0275 (9)0.0319 (8)0.0001 (7)0.0110 (7)0.0011 (7)
O10.0690 (10)0.0380 (10)0.0454 (8)0.0041 (8)0.0186 (8)0.0074 (7)
O20.0705 (11)0.0570 (12)0.0490 (9)0.0164 (9)0.0244 (8)0.0038 (8)
O30.0591 (10)0.0590 (12)0.0462 (9)0.0122 (8)0.0244 (7)0.0144 (8)
S10.0457 (3)0.0401 (3)0.0402 (3)0.0032 (2)0.0166 (2)0.0092 (2)
S20.0518 (4)0.0470 (4)0.0536 (4)0.0074 (3)0.0263 (3)0.0074 (3)
Geometric parameters (Å, º) top
C1—N11.317 (2)C9—H9A0.9700
C1—S21.707 (2)C9—H9B0.9700
C1—S11.765 (2)C10—N21.497 (2)
C2—C71.385 (3)C10—C111.500 (3)
C2—C31.398 (3)C10—H10A0.9700
C2—S11.733 (2)C10—H10B0.9700
C3—N11.391 (2)C11—O21.410 (3)
C3—C41.393 (3)C11—H11A0.9700
C4—C51.379 (3)C11—H11B0.9700
C4—H40.9300C12—N21.501 (2)
C5—C61.379 (3)C12—C131.505 (3)
C5—H50.9300C12—H12A0.9700
C6—C71.378 (3)C12—H12B0.9700
C6—H60.9300C13—O31.415 (3)
C7—H70.9300C13—H13A0.9700
C8—N21.496 (2)C13—H13B0.9700
C8—C91.497 (3)N2—H2A0.9100
C8—H8A0.9700O1—H10.8200
C8—H8B0.9700O2—H20.8200
C9—O11.405 (3)O3—H30.8200
N1—C1—S2127.19 (16)N2—C10—H10A109.3
N1—C1—S1113.51 (15)C11—C10—H10A109.3
S2—C1—S1119.24 (11)N2—C10—H10B109.3
C7—C2—C3121.86 (19)C11—C10—H10B109.3
C7—C2—S1129.44 (16)H10A—C10—H10B107.9
C3—C2—S1108.70 (15)O2—C11—C10108.40 (17)
N1—C3—C4125.02 (18)O2—C11—H11A110.0
N1—C3—C2115.84 (17)C10—C11—H11A110.0
C4—C3—C2119.13 (19)O2—C11—H11B110.0
C5—C4—C3118.6 (2)C10—C11—H11B110.0
C5—C4—H4120.7H11A—C11—H11B108.4
C3—C4—H4120.7N2—C12—C13110.28 (18)
C4—C5—C6121.7 (2)N2—C12—H12A109.6
C4—C5—H5119.2C13—C12—H12A109.6
C6—C5—H5119.2N2—C12—H12B109.6
C7—C6—C5120.7 (2)C13—C12—H12B109.6
C7—C6—H6119.6H12A—C12—H12B108.1
C5—C6—H6119.6O3—C13—C12109.59 (18)
C6—C7—C2118.0 (2)O3—C13—H13A109.8
C6—C7—H7121.0C12—C13—H13A109.8
C2—C7—H7121.0O3—C13—H13B109.8
N2—C8—C9110.98 (17)C12—C13—H13B109.8
N2—C8—H8A109.4H13A—C13—H13B108.2
C9—C8—H8A109.4C1—N1—C3111.49 (17)
N2—C8—H8B109.4C8—N2—C10112.46 (15)
C9—C8—H8B109.4C8—N2—C12112.13 (15)
H8A—C8—H8B108.0C10—N2—C12111.54 (16)
O1—C9—C8110.92 (17)C8—N2—H2A106.8
O1—C9—H9A109.5C10—N2—H2A106.8
C8—C9—H9A109.5C12—N2—H2A106.8
O1—C9—H9B109.5C9—O1—H1109.5
C8—C9—H9B109.5C11—O2—H2109.5
H9A—C9—H9B108.0C13—O3—H3109.5
N2—C10—C11111.68 (18)C2—S1—C190.44 (9)
C7—C2—C3—N1178.88 (18)S2—C1—N1—C3178.71 (15)
S1—C2—C3—N11.0 (2)S1—C1—N1—C31.5 (2)
C7—C2—C3—C40.1 (3)C4—C3—N1—C1179.62 (19)
S1—C2—C3—C4179.79 (15)C2—C3—N1—C11.7 (2)
N1—C3—C4—C5179.2 (2)C9—C8—N2—C10153.34 (17)
C2—C3—C4—C50.5 (3)C9—C8—N2—C1280.0 (2)
C3—C4—C5—C60.7 (3)C11—C10—N2—C872.5 (2)
C4—C5—C6—C70.4 (3)C11—C10—N2—C12160.57 (18)
C5—C6—C7—C20.1 (3)C13—C12—N2—C8153.34 (18)
C3—C2—C7—C60.2 (3)C13—C12—N2—C1079.5 (2)
S1—C2—C7—C6179.94 (16)C7—C2—S1—C1179.76 (19)
N2—C8—C9—O155.1 (2)C3—C2—S1—C10.09 (14)
N2—C10—C11—O249.9 (2)N1—C1—S1—C20.85 (15)
N2—C12—C13—O348.2 (2)S2—C1—S1—C2178.27 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.962.770 (2)168
O2—H2···S2i0.822.433.2258 (17)165
O3—H3···S20.822.353.1621 (16)169
C8—H8A···O1ii0.972.503.385 (3)151
C10—H10B···O3iii0.972.473.425 (3)167
Symmetry codes: (i) x, y+5/2, z+1/2; (ii) x, y1, z; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H16NO3+·C7H4NS2
Mr316.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.496 (2), 5.7184 (8), 17.462 (3)
β (°) 111.524 (2)
V3)1532.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.56 × 0.38 × 0.23
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.803, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
7572, 2827, 2185
Rint0.034
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.04
No. of reflections2827
No. of parameters185
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.16

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.962.770 (2)168.3
O2—H2···S2i0.822.433.2258 (17)165.4
O3—H3···S20.822.353.1621 (16)168.7
C8—H8A···O1ii0.972.503.385 (3)151
C10—H10B···O3iii0.972.473.425 (3)167
Symmetry codes: (i) x, y+5/2, z+1/2; (ii) x, y1, z; (iii) x, y1/2, z+1/2.
 

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 20772037) and the NSF of Guangdong Province, China (No. 06025033).

References

First citationBethge, L., Jarikote, D. V. & Seitz, O. (2008). Bioorg. Med. Chem. 16, 114–125.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiracusa, M. A., Salerno, L., Modica, M. N., Pittala, V., Romeo, G., Amato, M. E., Nowak, M., Bojarski, A. J., Mereghetti, I., Cagnotto, A. & Mennini, T. (2008). J. Med. Chem. 51, 4529–4538.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSolar, M., del Ghosh, A. K. & Zajc, B. (2008). J. Org. Chem. 73, 8206–8211.  Web of Science PubMed Google Scholar
First citationVarlamov, V. T., Ferreri, C. & Chatgilialoglu, C. (2005). J. Organomet. Chem. 690, 1756–1762.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds