organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-hydr­­oxy-3-nitro­benzoate

aDepartment of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China
*Correspondence e-mail: liuyanzhu2001@yahoo.com.cn

(Received 22 May 2009; accepted 24 June 2009; online 27 June 2009)

The title compound, C8H7NO5, assumes an approximately planar mol­ecular structure with an intra­molecular O—H⋯O hydrogen bond between the hydr­oxy and carboxyl­ate groups. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For the properties of 2-hydroxy­benzoyl compounds, see: Konopacka et al. (2005[Konopacka, A., Filarowski, A. & Pawelka, Z. (2005). J. Solution Chem. 34, 929-945.]); Sonar et al. (2007[Sonar, V. N., Venkatraj, M., Parkin, S. & Crooks, P. A. (2007). Acta Cryst. E63, o3227.]); Willian & Layne (2001[Willian, L. M. & Layne, A. M. (2001). Tetrahedron, 57, 2957-2964.]); Huang et al. (1996[Huang, K.-S., Britton, D. & Etter, M. C. (1996). Acta Cryst. C52, 2868-2871.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7NO5

  • Mr = 197.15

  • Monoclinic, P 21 /c

  • a = 7.6120 (10) Å

  • b = 11.716 (2) Å

  • c = 9.656 (2) Å

  • β = 101.830 (10)°

  • V = 842.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 291 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 4045 measured reflections

  • 1473 independent reflections

  • 965 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.110

  • S = 1.02

  • 1655 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4 0.96 1.70 2.554 (2) 146
C4—H4A⋯O2i 0.93 2.57 3.321 (3) 138
C6—H6A⋯O4ii 0.93 2.49 3.336 (3) 151
C8—H8B⋯O1ii 0.96 2.59 3.305 (3) 131
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Methyl salicylate and its analogues are useful intermediates in organic synthesis and show potential applications for functional materials and drugs (Konopacka et al., 2005; Sonar et al., 2007; Willian & Layne, 2001; Huang et al., 1996). In this paper, the structure of the title compound is reported.

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987). There is an intramolecular hydrogen bond between the hydroxy group and the carboxyl group, and the whole molecule is planar except for the methyl H atoms. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonding (Table 1).

Related literature top

For the properties of 2-hydroxybenzoyl compounds, see: Konopacka et al. (2005); Sonar et al. (2007); Willian & Layne (2001); Huang et al. (1996). For bond-length data, see: Allen et al. (1987).

Experimental top

The methyl salicylate (3 ml) and Fe(NO3)3.9(H2O) (3 g) were dissolved in ethyl acetate (50 ml), and the solution was refluxed for 1 h. The resulting mixture was cooled and filtered. The yellow single crystals were obtained from the filtrate by slowly evaporating ethyl acetate.

Refinement top

H atoms were located geometrically and treated as riding atoms with C—H = 0.93 (aromatic), 0.96 Å (methyl) and O—H = 0.96 Å, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C,O) for the others.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 30% probability level. The dashed line indicates hydrogen bonding.
Methyl 2-hydroxy-3-nitrobenzoate top
Crystal data top
C8H7NO5F(000) = 408
Mr = 197.15Dx = 1.554 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1211 reflections
a = 7.612 (1) Åθ = 2.7–22.6°
b = 11.716 (2) ŵ = 0.13 mm1
c = 9.656 (2) ÅT = 291 K
β = 101.83 (1)°Block, yellow
V = 842.9 (3) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
965 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 26.0°, θmin = 2.7°
ϕ and ω scansh = 89
4045 measured reflectionsk = 1313
1473 independent reflectionsl = 116
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.02P)2 + 0.55P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1655 reflectionsΔρmax = 0.48 e Å3
129 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (3)
Crystal data top
C8H7NO5V = 842.9 (3) Å3
Mr = 197.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.612 (1) ŵ = 0.13 mm1
b = 11.716 (2) ÅT = 291 K
c = 9.656 (2) Å0.30 × 0.20 × 0.20 mm
β = 101.83 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
965 reflections with I > 2σ(I)
4045 measured reflectionsRint = 0.046
1473 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.02Δρmax = 0.48 e Å3
1655 reflectionsΔρmin = 0.40 e Å3
129 parameters
Special details top

Experimental. 1H-NMR (CDCl3, 500 MHz): δ4.03 (s, 3 H), 7.20(s, 1 H), 8.15-8.19 (d, 2 H), 12.02 (s, 1 H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.6545 (3)0.9162 (2)0.0890 (2)0.0465 (6)
C40.6080 (3)0.8030 (2)0.1125 (3)0.0541 (7)
H4A0.52480.78220.19310.065*
C50.6836 (4)0.7212 (2)0.0176 (3)0.0581 (8)
H5A0.65230.64480.03370.070*
C60.8059 (3)0.7525 (2)0.1011 (3)0.0504 (7)
H6A0.85770.69660.16490.060*
C10.8541 (3)0.8654 (2)0.1281 (2)0.0433 (6)
C20.7769 (3)0.9507 (2)0.0320 (2)0.0449 (6)
C70.9867 (3)0.8997 (2)0.2543 (3)0.0499 (7)
C81.1859 (4)0.8424 (2)0.4632 (3)0.0654 (9)
H8C1.28560.88190.43840.098*
H8B1.22770.77400.51400.098*
H8A1.12970.89070.52170.098*
N10.5694 (4)0.9981 (2)0.1954 (3)0.0726 (8)
O20.6026 (3)1.09798 (19)0.1803 (2)0.0830 (7)
O30.4677 (4)0.96270 (19)0.2983 (2)0.1045 (9)
O10.8187 (3)1.06068 (13)0.05425 (19)0.0651 (6)
H1A0.90731.06760.14020.098*
O41.0286 (3)0.99828 (15)0.2831 (2)0.0692 (6)
O51.0566 (2)0.81316 (14)0.33514 (18)0.0564 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0456 (15)0.0474 (15)0.0452 (15)0.0024 (12)0.0064 (12)0.0044 (12)
C40.0541 (17)0.0566 (18)0.0479 (16)0.0064 (14)0.0016 (13)0.0055 (13)
C50.0686 (19)0.0408 (15)0.0602 (17)0.0089 (14)0.0021 (15)0.0062 (13)
C60.0570 (17)0.0389 (14)0.0523 (16)0.0003 (12)0.0043 (13)0.0024 (12)
C10.0445 (14)0.0380 (14)0.0454 (14)0.0009 (11)0.0047 (11)0.0006 (11)
C20.0461 (15)0.0383 (14)0.0490 (15)0.0006 (12)0.0064 (12)0.0027 (12)
C70.0510 (16)0.0417 (15)0.0537 (16)0.0010 (13)0.0032 (12)0.0006 (13)
C80.0645 (19)0.0666 (18)0.0539 (17)0.0020 (15)0.0143 (14)0.0017 (14)
N10.088 (2)0.0614 (17)0.0573 (16)0.0015 (15)0.0116 (14)0.0065 (14)
O20.1039 (18)0.0617 (14)0.0704 (14)0.0079 (13)0.0123 (12)0.0118 (11)
O30.130 (2)0.0832 (17)0.0741 (16)0.0058 (15)0.0405 (15)0.0098 (13)
O10.0776 (14)0.0355 (10)0.0703 (13)0.0033 (9)0.0130 (10)0.0026 (9)
O40.0805 (14)0.0404 (11)0.0720 (13)0.0043 (10)0.0188 (11)0.0055 (9)
O50.0603 (12)0.0469 (11)0.0532 (11)0.0018 (9)0.0089 (9)0.0030 (9)
Geometric parameters (Å, º) top
C3—C41.380 (3)C2—O11.334 (3)
C3—C21.396 (3)C7—O41.215 (3)
C3—N11.457 (3)C7—O51.323 (3)
C4—C51.369 (3)C8—O51.455 (3)
C4—H4A0.9300C8—H8C0.9600
C5—C61.371 (3)C8—H8B0.9600
C5—H5A0.9300C8—H8A0.9600
C6—C11.383 (3)N1—O21.200 (3)
C6—H6A0.9300N1—O31.201 (3)
C1—C21.408 (3)O1—H1A0.9600
C1—C71.470 (3)
C4—C3—C2121.4 (2)O1—C2—C1121.7 (2)
C4—C3—N1117.0 (2)C3—C2—C1117.6 (2)
C2—C3—N1121.6 (2)O4—C7—O5122.6 (2)
C5—C4—C3120.3 (2)O4—C7—C1123.6 (2)
C5—C4—H4A119.8O5—C7—C1113.8 (2)
C3—C4—H4A119.8O5—C8—H8C109.5
C4—C5—C6119.5 (2)O5—C8—H8B109.5
C4—C5—H5A120.3H8C—C8—H8B109.5
C6—C5—H5A120.3O5—C8—H8A109.5
C5—C6—C1121.5 (2)H8C—C8—H8A109.5
C5—C6—H6A119.2H8B—C8—H8A109.5
C1—C6—H6A119.2O2—N1—O3121.4 (2)
C6—C1—C2119.7 (2)O2—N1—C3120.2 (2)
C6—C1—C7121.9 (2)O3—N1—C3118.3 (3)
C2—C1—C7118.4 (2)C2—O1—H1A108.9
O1—C2—C3120.7 (2)C7—O5—C8116.16 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.961.702.554 (2)146
C4—H4A···O2i0.932.573.321 (3)138
C6—H6A···O4ii0.932.493.336 (3)151
C8—H8B···O1ii0.962.593.305 (3)131
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H7NO5
Mr197.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)7.612 (1), 11.716 (2), 9.656 (2)
β (°) 101.83 (1)
V3)842.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4045, 1473, 965
Rint0.046
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.110, 1.02
No. of reflections1655
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.40

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.961.702.554 (2)146
C4—H4A···O2i0.932.573.321 (3)138
C6—H6A···O4ii0.932.493.336 (3)151
C8—H8B···O1ii0.962.593.305 (3)131
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x+2, y1/2, z+1/2.
 

Acknowledgements

This work is supported by the Program for Innovative Research Team of Nanchang University, the Open Foundation of CAS Key Laboratory of Organic Solids and the Natural Science Foundation of Education Department of Jiangxi Province, China.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHuang, K.-S., Britton, D. & Etter, M. C. (1996). Acta Cryst. C52, 2868–2871.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKonopacka, A., Filarowski, A. & Pawelka, Z. (2005). J. Solution Chem. 34, 929–945.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonar, V. N., Venkatraj, M., Parkin, S. & Crooks, P. A. (2007). Acta Cryst. E63, o3227.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWillian, L. M. & Layne, A. M. (2001). Tetrahedron, 57, 2957–2964.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds