organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Bromo-2-methyl­quinoline

aCollege of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
*Correspondence e-mail: axhu0731@yahoo.com.cn

(Received 26 May 2009; accepted 30 May 2009; online 6 June 2009)

In the crystal structure of the title compound, C10H8BrN, the dihedral angle between the two six-membered rings of the quinoline system is 0.49 (16)°. The mol­ecules are packed in a face-to-face arrangement fashion, with a centroid–centroid distance of 3.76 Å between the benzene and pyridine rings of adjacent mol­ecules. No hydrogen bonding is found in the crystal structure.

Related literature

The title compound is an important inter­mediate in the pharmaceutical industry, see: Shen & Hartwig (2006[Shen, Q.-L. & Hartwig, F. (2006). J. Am Chem Soc. 128, 10028-10029.]); Ranu et al. (2000[Ranu, B. C., Hajra, A. & Jana, U. (2000). Tetrahedron Lett. 41, 531-533.]); Lee & Hartwig (2005[Lee, D.-Y. & Hartwig, J.-F. (2005). Org. Lett. 7, 1169-1172.]). For related structures, see: Amini et al. (2008[Amini, M. M., Mohammadnezhad Sh., G. & Khavasi, H. R. (2008). Acta Cryst. E64, o203.]); Faza­eli et al. (2008[Fazaeli, Y., Amini, M. M., Gao, S. & Ng, S. W. (2008). Acta Cryst. E64, o97.]); Sattarzadeh et al. (2009[Sattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m553.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8BrN

  • Mr = 222.08

  • Monoclinic, P 21 /c

  • a = 5.0440 (17) Å

  • b = 13.467 (4) Å

  • c = 13.391 (4) Å

  • β = 97.678 (4)°

  • V = 901.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.50 mm−1

  • T = 291 K

  • 0.36 × 0.31 × 0.28 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.235, Tmax = 0.286

  • 4668 measured reflections

  • 1765 independent reflections

  • 1039 reflections with I > 2σ(I)

  • Rint = 0.156

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.195

  • S = 1.01

  • 1765 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.91 e Å−3

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, 8-bromo-2-methylquinoline, is an important intermediate of medcine industry (Shen & Hartwig, 2006; Ranu et al., 2000; Lee & Hartwig, 2005). The unit-cell of the title compound contains four molecules, and the corresponding bond lengths and angles of these molecules are agree with each other. The molecules are stablizated by π-π stacking (centroids distance is 3.76 Å). Herein we report the synthesis and crystal structure of 8-bromo-2-methylquinoline. For more related structures, see: Amini et al.(2008), Fazaeli et al. (2008), Sattarzadeh et al. (2009).

Related literature top

The title compound is an important intermediate in the pharmaceutical industry, see: Shen & Hartwig (2006); Ranu et al. (2000); Lee & Hartwig (2005). For related structures, see: Amini et al. (2008); Fazaeli et al. (2008); Sattarzadeh et al. (2009).

Experimental top

A solution of 2-bromoaniline (0.05 mol), boric acid (3.10 g) and 18% HCl (50 ml) was heated to reflux. Then a mixture of crotonaldehyde (0.06 mol) and 2-bromonitrobenzene (0.01 mol) was slowly added with stirring in 1 h. The reaction mixture was subsequently stirred at 373 K for another 2.5 h, and then an equimolar amount of anhydrous ZnCl2 was added with vigorous stirring for 0.5 h. After the reaction was completed, the reaction solution was cooled in an ice bath and the crude brown solid was filtered, washed with 2-propanol, dissolved in the water, and neutralized with concentrated NH3.H2O solution to pH of 8. After cool immersed, filtrated and air dried, the product was obtained as a grey solid. Yield: 52.0%. m.p. 342–343 K. Crystals suitable for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

The H-atoms were positioned geometrically, with C—H = 0.93 Å for aromatic, 0.96 Å for methyl, and refined as riding with Uiso(H) = 1.2 or 1.5 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 30% probability displacement ellipsoids.
8-bromo-2-methylquinoline top
Crystal data top
C10H8BrNF(000) = 440
Mr = 222.08Dx = 1.636 Mg m3
Monoclinic, P21/cMelting point: 343 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.0440 (17) ÅCell parameters from 1765 reflections
b = 13.467 (4) Åθ = 2.2–26.0°
c = 13.391 (4) ŵ = 4.50 mm1
β = 97.678 (4)°T = 291 K
V = 901.4 (5) Å3Block, colourless
Z = 40.36 × 0.31 × 0.28 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1765 independent reflections
Radiation source: fine-focus sealed tube1039 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.156
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 66
Tmin = 0.235, Tmax = 0.286k = 1316
4668 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0989P)2]
where P = (Fo2 + 2Fc2)/3
1765 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
C10H8BrNV = 901.4 (5) Å3
Mr = 222.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.0440 (17) ŵ = 4.50 mm1
b = 13.467 (4) ÅT = 291 K
c = 13.391 (4) Å0.36 × 0.31 × 0.28 mm
β = 97.678 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1765 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1039 reflections with I > 2σ(I)
Tmin = 0.235, Tmax = 0.286Rint = 0.156
4668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.195H-atom parameters constrained
S = 1.01Δρmax = 0.88 e Å3
1765 reflectionsΔρmin = 0.91 e Å3
110 parameters
Special details top

Experimental. 1H NMR (CDCl3, 400 MHz) δ: 2.82 (s, 3H, CH3), 7.33(m, 2H, quinoline 3,6-H), 7.73 (dd, J=8.0 Hz, J=1.2 Hz, 1H, quinoline 7-H), 8.02 (m, 2H, quinoline 4,5-H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.04425 (17)0.41478 (5)0.40291 (5)0.0783 (4)
N10.6713 (11)0.2556 (3)0.2991 (3)0.0507 (12)
C10.9974 (14)0.3782 (4)0.2655 (4)0.0536 (16)
C80.8122 (12)0.3021 (4)0.2325 (4)0.0429 (13)
C90.7845 (13)0.2775 (4)0.1287 (4)0.0517 (15)
C70.5039 (14)0.1846 (4)0.2646 (5)0.0568 (16)
C21.1397 (14)0.4256 (4)0.2022 (6)0.0586 (16)
H21.25780.47570.22660.070*
C50.6014 (14)0.2003 (5)0.0957 (5)0.0643 (18)
H50.57780.18070.02850.077*
C31.1122 (15)0.4004 (5)0.0989 (5)0.0621 (18)
H31.21560.43210.05610.074*
C60.4624 (16)0.1559 (5)0.1622 (5)0.070 (2)
H60.33940.10640.14080.084*
C40.9318 (15)0.3287 (5)0.0624 (5)0.068 (2)
H40.90660.31380.00610.082*
C100.3468 (14)0.1364 (5)0.3370 (6)0.0694 (19)
H10A0.39690.06770.34440.104*
H10B0.15960.14120.31230.104*
H10C0.38210.16900.40110.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1139 (9)0.0735 (6)0.0436 (4)0.0082 (4)0.0042 (4)0.0114 (3)
N10.059 (3)0.050 (3)0.042 (3)0.011 (3)0.004 (2)0.005 (2)
C10.074 (5)0.044 (3)0.040 (3)0.005 (3)0.001 (3)0.001 (2)
C80.037 (3)0.050 (3)0.040 (3)0.012 (3)0.001 (2)0.001 (2)
C90.054 (4)0.063 (3)0.037 (3)0.009 (3)0.002 (3)0.001 (3)
C70.059 (4)0.053 (3)0.059 (4)0.011 (3)0.009 (3)0.007 (3)
C20.051 (4)0.055 (3)0.070 (4)0.002 (3)0.010 (3)0.004 (3)
C50.057 (5)0.083 (4)0.050 (4)0.003 (4)0.006 (3)0.015 (3)
C30.054 (5)0.073 (4)0.063 (4)0.004 (4)0.021 (3)0.013 (3)
C60.080 (6)0.063 (4)0.062 (4)0.002 (4)0.008 (4)0.007 (3)
C40.081 (6)0.085 (5)0.039 (3)0.013 (4)0.012 (3)0.004 (3)
C100.054 (4)0.068 (4)0.088 (5)0.002 (4)0.015 (4)0.007 (4)
Geometric parameters (Å, º) top
Br1—C11.889 (6)C2—H20.9300
N1—C71.318 (8)C5—C61.344 (10)
N1—C81.365 (7)C5—H50.9300
C1—C21.344 (9)C3—C41.371 (10)
C1—C81.416 (8)C3—H30.9300
C8—C91.418 (7)C6—H60.9300
C9—C41.411 (9)C4—H40.9300
C9—C51.422 (9)C10—H10A0.9600
C7—C61.414 (8)C10—H10B0.9600
C7—C101.481 (9)C10—H10C0.9600
C2—C31.412 (10)
C7—N1—C8118.0 (5)C6—C5—H5120.2
C2—C1—C8122.1 (6)C9—C5—H5120.2
C2—C1—Br1118.9 (5)C4—C3—C2119.5 (6)
C8—C1—Br1119.0 (4)C4—C3—H3120.2
N1—C8—C1120.5 (5)C2—C3—H3120.2
N1—C8—C9122.8 (5)C5—C6—C7119.9 (7)
C1—C8—C9116.7 (5)C5—C6—H6120.1
C4—C9—C8120.8 (6)C7—C6—H6120.1
C4—C9—C5122.4 (6)C3—C4—C9119.9 (6)
C8—C9—C5116.8 (5)C3—C4—H4120.1
N1—C7—C6122.9 (6)C9—C4—H4120.1
N1—C7—C10117.6 (6)C7—C10—H10A109.5
C6—C7—C10119.5 (7)C7—C10—H10B109.5
C1—C2—C3120.9 (6)H10A—C10—H10B109.5
C1—C2—H2119.6C7—C10—H10C109.5
C3—C2—H2119.6H10A—C10—H10C109.5
C6—C5—C9119.6 (6)H10B—C10—H10C109.5

Experimental details

Crystal data
Chemical formulaC10H8BrN
Mr222.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)5.0440 (17), 13.467 (4), 13.391 (4)
β (°) 97.678 (4)
V3)901.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)4.50
Crystal size (mm)0.36 × 0.31 × 0.28
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.235, 0.286
No. of measured, independent and
observed [I > 2σ(I)] reflections
4668, 1765, 1039
Rint0.156
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.195, 1.01
No. of reflections1765
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.91

Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was funded by the SIT program of Hunan University, China (2008).

References

First citationAmini, M. M., Mohammadnezhad Sh., G. & Khavasi, H. R. (2008). Acta Cryst. E64, o203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFazaeli, Y., Amini, M. M., Gao, S. & Ng, S. W. (2008). Acta Cryst. E64, o97.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, D.-Y. & Hartwig, J.-F. (2005). Org. Lett. 7, 1169–1172.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRanu, B. C., Hajra, A. & Jana, U. (2000). Tetrahedron Lett. 41, 531–533.  Web of Science CrossRef CAS Google Scholar
First citationSattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Q.-L. & Hartwig, F. (2006). J. Am Chem Soc. 128, 10028–10029.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds