organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1515-o1516

Ethyl 4-hydr­­oxy-9-tosyl-9H-carbazole-3-carboxyl­ate

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050, Karabük, Turkey, and dDepartment of Chemistry, Faculty of Arts and Sciences, Dokuz Eylül University, Tınaztepe, 35160 Buca-Izmir, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 27 May 2009; accepted 3 June 2009; online 6 June 2009)

In the title compound, C22H19NO5S, the carbazole skeleton is nearly planar [maximum deviation = 0.043 (1) Å] with the pyrrole ring oriented at dihedral angles of 2.32 (6) and 1.77 (6)° with respect to the adjacent benzene rings. The dihedral angle between the benzene ring of the tosyl group and the carbazole skeleton is 82.25 (5)°. Intra­molecular O—H⋯O hydrogen bonding results in the formation of a planar six-membered ring, which is oriented at a dihedral angle of 3.06 (4)° with respect to the adjacent carbazole skeleton. In the crystal structure, weak inter­molecular C—H⋯O inter­actions link the mol­ecules into infinite chains and ππ contacts between the benzene rings and between the pyrrole and benzene rings [centroid–centroid distances = 3.374 (1) and 3.730 (1) Å, respectively] may further stabilize the structure. A weak C—H⋯π inter­action is also present.

Related literature

For the use of tetra­hydro­carbazolone derivatives in the synthesis of Ondansetron, an anti­emetic drug inhibiting the serotonin 5-HT3 receptor, see: Coates et al. (1987[Coates, I. H., Bell, J. A., Humber, D. C. & Evan, G. B. (1987). US Patent No. 4 695 578.]); Gutman & Cyjon (2006[Gutman, D. & Cyjon, C. (2006). US Patent Appl. No. US2006/0041004 A1.]); Molnar et al. (2006[Molnar, S., Szabo, C., Sos, E. M., Salyi, S. & Tamas, T. (2006). US Patent. US 7 098 345 B2.]). Tetra­hydro­carbazolone ester derivatives can also be considered to be synthetic precursors of tetra­cyclic aspidosperma alkaloids, see: Ergün (2007[Ergün, Y. (2007). J. Heterocycl. Chem. 44, 539-541.]); For related structures, see: Patır et al. (1997[Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239-1242.]); Hökelek et al. (1994[Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450-453.], 1998[Hökelek, T., Gündüz, H., Patır, S. & Uludağ, N. (1998). Acta Cryst. C54, 1297-1299.], 1999[Hökelek, T., Patır, S. & Uludağ, N. (1999). Acta Cryst. C55, 114-116.], 2004[Hökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, o25-o27.], 2006[Hökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, o791-o793.]); Hökelek & Patır (1999[Hökelek, T. & Patır, S. (1999). Acta Cryst. C55, 675-677.], 2002[Hökelek, T. & Patır, S. (2002). Acta Cryst. E58, o374-o376.]); Çaylak et al. (2007[Çaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913-o3914.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19NO5S

  • Mr = 409.44

  • Monoclinic, C 2/c

  • a = 23.2155 (12) Å

  • b = 12.3581 (7) Å

  • c = 15.1001 (8) Å

  • β = 119.656 (1)°

  • V = 3764.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.40 × 0.25 × 0.17 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.937, Tmax = 0.962

  • 15402 measured reflections

  • 4658 independent reflections

  • 3276 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.092

  • S = 0.94

  • 4658 reflections

  • 292 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4 0.90 (3) 1.73 (2) 2.5746 (18) 156 (2)
C12—H12⋯O1i 0.93 2.55 3.410 (2) 154
C16—H16BCg4ii 0.96 2.91 3.559 (2) 126
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]. Cg4 is centroid of the C10–C15 ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Biologically active compounds, which have tetrahydrocarbazole substructure, have been shown to be useful for the treatment of a variety of medicinal conditions. Tetrahydrocarbazolone derivatives were used in the synthesis of Ondansetron, which is an excellent antiemetic drug inhibiting serotonin 5-HT3 receptor (Coates et al., 1987; Gutman & Cyjon, 2006; Molnar et al., 2006). Tetrahydrocarbazolone ester derivatives can also be considered to be synthetic precursors of tetracyclic aspidosperma alkaloids (Ergün, 2007). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been the subject of much interest in our laboratory. These include 1,2,3,4-tetrahydrocarbazole-1-spiro-2'-[1,3]dithiolane, (II) (Hökelek et al., 1994), N-(2-methoxyethyl)-N-{2,3,4,9-tetrahydrospiro[1H-carbazole-1, 2-(1,3)dithiolane]-4-yl}benzene-sulfonamide, (III) (Patır et al., 1997), spiro[carbazole-1(2H),2'-[1,3]-dithiolan]-4(3H)-one, (IV) (Hökelek et al., 1998), 9-acetonyl-3-ethylidene-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3] dithiolan]-4-one, (V) (Hökelek et al., 1999), N-(2,2-dimethoxyethyl)-N -{9-methoxymethyl-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3]dithiolan] -4-yl}benzamide, (VI) (Hökelek & Patır, 1999), 3a,4,10,10b-tetrahydro-2H -furo[2,3-a]carbazol-5(3H)-one, (VII) (Çaylak et al., 2007); also the pentacyclic compounds 6-ethyl-4-(2-methoxyethyl)-2,6-methano-5-oxo-hexahydro- pyrrolo(2,3 - d)carbazole-1-spiro-2'-(1,3)dithiolane, (VIII) (Hökelek & Patır, 2002), N-(2-benzyloxyethyl)-4,7-dimethyl-6-(1,3-dithiolan-2-yl)-1,2, 3,4,5,6-hexahydro-1,5-methano-2-azocino[4,3-b]indol-2-one, (IX) (Hökelek et al., 2004) and 4-ethyl-6,6-ethylenedithio-2-(2-methoxyethyl)-7-methoxy- methylene-2,3,4,5,6,7-hexahydro-1,5-methano-1H-azocino[4,3-b]indol-3-one, (X) (Hökelek et al., 2006). The title compound, (I), may be considered as a synthetic precursor of tetracyclic indole alkaloids of biological interests. The present study was undertaken to ascertain its crystal structure.

The molecule of the title compound (Fig. 1) contains a carbazole skeleton with a tosyl group, where the bond lengths (Allen et al., 1987) and angles are within normal ranges, and generally agree with those in compounds (II)-(X). In all structures atom N9 is substituted.

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C1—C4/C4a/C9a), B (C4a/C5a/C8a/N9/C9a), C (C5a/C5—C8/C8a) and D (C10—C15) are planar. The carbazole skeleton, containing the rings A, B and C, is also nearly coplanar [with a maximum deviation of -0.043 (1) Å for atom C4a] with dihedral angles of A/B = 2.32 (6), A/C = 2.94 (5) and B/C = 1.77 (6) °. Ring D is oriented with respect to the planar carbazole skeleton at a dihedral angle of 82.25 (5)°. Intramolecular O—H···O hydrogen bond (Table 1) results in the formation of a planar six-membered ring, E (O1/O4/C3/C4/C17/H1A), which is oriented with respect to the adjacent planar carbazole skeleton at a dihedral angle of 3.06 (4)°. So, they are almost coplanar.

In the crystal structure, intermolecular C—H···O interactions (Table 1) link the molecules into infinite chains (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contacts between the benzene rings and between the pyrrole and benzene rings, Cg1—Cg1i and Cg2—Cg1i, [symmetry code:(i) -x, 1 - y, -z, where Cg1 and Cg2 are centroids of the rings A (C1—C4/C4a/C9a) and B (C4a/C5a/C8a/N9/C9a), respectively] may further stabilize the structure, with centroid-centroid distances of 3.374 (1) and 3.730 (1) Å, respectively. There also exists a weak C—H···π interaction (Table 1).

Related literature top

For the use of tetrahydrocarbazolone derivatives in the synthesis of Ondansetron, an antiemetic drug inhibiting the serotonin 5-HT~3~ receptor, see: Coates et al. (1987); Gutman & Cyjon (2006); Molnar et al. (2006). Tetrahydrocarbazolone ester derivatives can also be

considered to be synthetic precursors of tetracyclic aspidosperma alkaloids, see: Ergün (2007); For related structures, see: Patır et al. (1997); Hökelek et al. (1994, 1998, 1999, 2004, 2006); Hökelek & Patır (1999, 2002); Çaylak et al. (2007). For bond-length data, see: Allen et al. (1987). Cg4 is centroid of the C10–C15 ring.

Experimental top

For the preparation of the title compound, (I), a solution of ethyl-4-oxo-1,2,3,4-tetrahydro-9H-carbazole-3-carboxylate (1.25 g, 4.9 mmol) in dichloromethane (25 ml) was cooled to 273 K, and then sodium hydroxide (40%, 5 ml), tetrabutylammonium hydrogen sulfate (0.10 g) and p-toluene sulfonyl chloride (0.95 g, 5 mmol) were added. The mixture was stirred for 1 h, and then washed with hydrochloric acid solution (10%, 50 ml), and the organic layer was dried with anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure and the resulting residue was chromatographed using silica gel and ethyl acetate-hexane (1:1). The product was recrystallized from ether (yield; 1.40 g, 71%, m.p. 459 K).

Refinement top

Atoms H1A (for OH), H1, H2, H5, H6, H7 and H8 were located in difference syntheses and refined isotropically. The remaining H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram for (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
Ethyl 4-hydroxy-9-tosyl-9H-carbazole-3-carboxylate top
Crystal data top
C22H19NO5SF(000) = 1712
Mr = 409.44Dx = 1.445 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4061 reflections
a = 23.2155 (12) Åθ = 2.8–28.2°
b = 12.3581 (7) ŵ = 0.21 mm1
c = 15.1001 (8) ÅT = 100 K
β = 119.656 (1)°Block, colorless
V = 3764.7 (4) Å30.40 × 0.25 × 0.17 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4658 independent reflections
Radiation source: fine-focus sealed tube3276 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3027
Tmin = 0.937, Tmax = 0.962k = 1616
15402 measured reflectionsl = 1520
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0454P)2]
where P = (Fo2 + 2Fc2)/3
4658 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C22H19NO5SV = 3764.7 (4) Å3
Mr = 409.44Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.2155 (12) ŵ = 0.21 mm1
b = 12.3581 (7) ÅT = 100 K
c = 15.1001 (8) Å0.40 × 0.25 × 0.17 mm
β = 119.656 (1)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4658 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3276 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.962Rint = 0.048
15402 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.47 e Å3
4658 reflectionsΔρmin = 0.47 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.212099 (19)0.58317 (3)0.16682 (3)0.01509 (11)
O10.06829 (6)0.61107 (10)0.11936 (9)0.0201 (3)
H1A0.0974 (11)0.5606 (17)0.1153 (16)0.048 (7)*
O20.23596 (5)0.66022 (9)0.12235 (8)0.0199 (3)
O30.21467 (5)0.47046 (9)0.14899 (9)0.0195 (3)
O40.12557 (5)0.43127 (10)0.11530 (9)0.0208 (3)
O50.07141 (5)0.27539 (9)0.13393 (9)0.0193 (3)
C10.08618 (8)0.42675 (13)0.13014 (12)0.0144 (3)
H10.1207 (8)0.3866 (13)0.1312 (12)0.018 (4)*
C20.03301 (8)0.37694 (14)0.12958 (12)0.0149 (3)
H20.0310 (8)0.2986 (14)0.1300 (13)0.018 (5)*
C30.01988 (7)0.43566 (13)0.12663 (11)0.0141 (3)
C40.01892 (7)0.54881 (14)0.12407 (11)0.0149 (3)
C4A0.03495 (7)0.60124 (13)0.12560 (11)0.0138 (3)
C50.01396 (8)0.80917 (14)0.11276 (13)0.0193 (4)
H50.0270 (9)0.8081 (15)0.1138 (14)0.027 (5)*
C5A0.04860 (8)0.71408 (13)0.12014 (12)0.0150 (3)
C60.04061 (9)0.90650 (14)0.10672 (13)0.0230 (4)
H60.0177 (8)0.9736 (14)0.1024 (12)0.016 (4)*
C70.10079 (9)0.91078 (15)0.10819 (14)0.0233 (4)
H70.1175 (9)0.9779 (15)0.1057 (14)0.031 (5)*
C80.13612 (9)0.81785 (14)0.11499 (13)0.0198 (4)
H80.1773 (9)0.8231 (14)0.1173 (14)0.029 (5)*
C8A0.10910 (8)0.71993 (13)0.12027 (12)0.0156 (3)
C9A0.08633 (7)0.53939 (13)0.12851 (11)0.0135 (3)
N90.13218 (6)0.61218 (10)0.12305 (10)0.0141 (3)
C100.25002 (7)0.60690 (13)0.29814 (12)0.0142 (3)
C110.28921 (8)0.69829 (13)0.33915 (13)0.0183 (4)
H110.29620.74600.29770.022*
C120.31773 (8)0.71715 (14)0.44291 (13)0.0193 (4)
H120.34480.77730.47110.023*
C130.30678 (8)0.64815 (13)0.50581 (12)0.0161 (4)
C140.26657 (8)0.55758 (13)0.46226 (13)0.0175 (4)
H140.25850.51090.50320.021*
C150.23858 (8)0.53610 (13)0.35925 (12)0.0171 (3)
H150.21240.47500.33120.020*
C160.33734 (8)0.67164 (14)0.61810 (12)0.0203 (4)
H16A0.31250.63540.64460.030*
H16B0.33670.74820.62820.030*
H16C0.38230.64630.65300.030*
C170.07694 (8)0.38237 (14)0.12438 (12)0.0160 (3)
C180.12612 (8)0.21883 (14)0.13567 (14)0.0220 (4)
H18A0.16490.21810.06820.026*
H18B0.13760.25430.18210.026*
C190.10271 (10)0.10619 (15)0.17057 (17)0.0345 (5)
H19A0.13680.06640.17470.052*
H1B0.06360.10830.23650.052*
H19C0.09270.07150.12300.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01240 (19)0.0197 (2)0.0141 (2)0.00144 (17)0.00723 (16)0.00225 (17)
O10.0172 (6)0.0204 (7)0.0258 (7)0.0053 (5)0.0130 (6)0.0031 (5)
O20.0179 (6)0.0270 (7)0.0175 (6)0.0049 (5)0.0107 (5)0.0004 (5)
O30.0167 (6)0.0212 (6)0.0223 (6)0.0009 (5)0.0109 (5)0.0066 (5)
O40.0151 (6)0.0263 (7)0.0215 (6)0.0020 (5)0.0094 (5)0.0029 (5)
O50.0166 (6)0.0196 (6)0.0237 (6)0.0042 (5)0.0115 (5)0.0002 (5)
C10.0131 (8)0.0174 (9)0.0119 (8)0.0020 (7)0.0055 (7)0.0004 (7)
C20.0173 (8)0.0151 (9)0.0110 (8)0.0009 (7)0.0060 (7)0.0003 (7)
C30.0127 (7)0.0194 (9)0.0094 (7)0.0011 (7)0.0048 (6)0.0008 (6)
C40.0128 (8)0.0211 (9)0.0099 (8)0.0026 (7)0.0048 (6)0.0012 (6)
C4A0.0136 (7)0.0157 (8)0.0101 (7)0.0016 (6)0.0044 (6)0.0009 (6)
C50.0188 (9)0.0192 (9)0.0188 (9)0.0034 (7)0.0084 (7)0.0007 (7)
C5A0.0156 (8)0.0172 (9)0.0102 (8)0.0004 (7)0.0048 (7)0.0001 (6)
C60.0257 (9)0.0161 (9)0.0228 (9)0.0039 (8)0.0086 (8)0.0004 (8)
C70.0292 (10)0.0153 (9)0.0225 (9)0.0042 (8)0.0106 (8)0.0001 (8)
C80.0190 (9)0.0216 (9)0.0180 (9)0.0033 (8)0.0084 (7)0.0005 (7)
C8A0.0156 (8)0.0168 (9)0.0113 (8)0.0014 (7)0.0044 (7)0.0009 (7)
C9A0.0115 (7)0.0185 (9)0.0099 (7)0.0017 (6)0.0049 (6)0.0017 (6)
N90.0115 (6)0.0153 (7)0.0148 (7)0.0009 (5)0.0060 (6)0.0007 (6)
C100.0113 (7)0.0186 (9)0.0121 (8)0.0008 (6)0.0052 (6)0.0013 (6)
C110.0182 (8)0.0190 (9)0.0181 (8)0.0030 (7)0.0093 (7)0.0019 (7)
C120.0179 (8)0.0175 (9)0.0195 (9)0.0059 (7)0.0070 (7)0.0024 (7)
C130.0146 (8)0.0181 (9)0.0160 (8)0.0020 (7)0.0079 (7)0.0006 (7)
C140.0164 (8)0.0195 (9)0.0182 (9)0.0016 (7)0.0097 (7)0.0025 (7)
C150.0145 (8)0.0150 (8)0.0200 (9)0.0034 (7)0.0072 (7)0.0023 (7)
C160.0208 (9)0.0221 (10)0.0159 (9)0.0022 (7)0.0075 (7)0.0000 (7)
C170.0158 (8)0.0208 (9)0.0091 (7)0.0001 (7)0.0045 (7)0.0010 (7)
C180.0173 (8)0.0254 (10)0.0244 (9)0.0073 (8)0.0111 (8)0.0009 (8)
C190.0290 (10)0.0273 (11)0.0485 (13)0.0055 (9)0.0202 (10)0.0059 (10)
Geometric parameters (Å, º) top
S1—O21.4257 (11)C8—H80.942 (18)
S1—O31.4255 (12)C8A—C81.383 (2)
S1—N91.6715 (13)C9A—C11.392 (2)
S1—C101.7508 (16)N9—C9A1.4268 (19)
O1—C41.3527 (18)N9—C8A1.428 (2)
O1—H1A0.90 (2)C10—C111.389 (2)
O4—C171.2269 (18)C10—C151.389 (2)
O5—C171.3293 (19)C11—H110.9300
O5—C181.4613 (19)C12—C111.386 (2)
C1—C21.376 (2)C12—C131.390 (2)
C1—H10.937 (16)C12—H120.9300
C2—H20.970 (17)C14—C131.396 (2)
C3—C21.408 (2)C14—H140.9300
C3—C41.399 (2)C15—C141.383 (2)
C3—C171.465 (2)C15—H150.9300
C4A—C41.398 (2)C16—C131.507 (2)
C4A—C9A1.399 (2)C16—H16A0.9600
C4A—C5A1.441 (2)C16—H16B0.9600
C5—H50.959 (17)C16—H16C0.9600
C5A—C51.397 (2)C18—C191.492 (2)
C5A—C8A1.405 (2)C18—H18A0.9700
C6—C51.376 (2)C18—H18B0.9700
C6—C71.387 (2)C19—H19A0.9600
C6—H60.970 (17)C19—H1B0.9600
C7—H70.925 (19)C19—H19C0.9600
C8—C71.385 (2)
O2—S1—N9106.52 (7)C4A—C9A—N9107.62 (14)
O2—S1—C10109.07 (7)C8A—N9—S1122.58 (10)
O3—S1—O2120.09 (7)C9A—N9—S1123.76 (11)
O3—S1—N9106.08 (7)C9A—N9—C8A108.04 (12)
O3—S1—C10109.45 (7)C11—C10—S1119.51 (12)
N9—S1—C10104.46 (7)C11—C10—C15120.95 (15)
C4—O1—H1A101.4 (14)C15—C10—S1119.51 (12)
C17—O5—C18116.08 (13)C10—C11—H11120.6
C2—C1—C9A117.22 (15)C12—C11—C10118.81 (15)
C2—C1—H1121.4 (10)C12—C11—H11120.6
C9A—C1—H1121.4 (10)C11—C12—C13121.51 (15)
C1—C2—C3122.37 (16)C11—C12—H12119.2
C1—C2—H2119.6 (10)C13—C12—H12119.2
C3—C2—H2118.1 (10)C12—C13—C14118.40 (15)
C2—C3—C17122.25 (15)C12—C13—C16120.46 (15)
C4—C3—C2119.37 (15)C14—C13—C16121.14 (14)
C4—C3—C17118.37 (14)C13—C14—H14119.5
O1—C4—C3123.04 (14)C15—C14—C13121.08 (15)
O1—C4—C4A117.70 (15)C15—C14—H14119.5
C4A—C4—C3119.26 (14)C10—C15—H15120.4
C4—C4A—C5A131.87 (15)C14—C15—C10119.24 (15)
C4—C4A—C9A119.28 (15)C14—C15—H15120.4
C9A—C4A—C5A108.78 (14)C13—C16—H16A109.5
C5A—C5—H5121.5 (11)C13—C16—H16B109.5
C6—C5—C5A118.72 (16)C13—C16—H16C109.5
C6—C5—H5119.7 (11)H16A—C16—H16B109.5
C5—C5A—C4A133.16 (15)H16A—C16—H16C109.5
C5—C5A—C8A119.49 (15)H16B—C16—H16C109.5
C8A—C5A—C4A107.32 (14)O4—C17—O5122.42 (15)
C5—C6—C7120.98 (17)O4—C17—C3123.56 (16)
C5—C6—H6120.1 (9)O5—C17—C3114.02 (14)
C7—C6—H6118.9 (9)O5—C18—C19106.54 (14)
C6—C7—H7118.2 (12)O5—C18—H18A110.4
C8—C7—C6121.62 (17)O5—C18—H18B110.4
C8—C7—H7120.2 (12)C19—C18—H18A110.4
C7—C8—H8119.9 (11)C19—C18—H18B110.4
C8A—C8—C7117.43 (16)H18A—C18—H18B108.6
C8A—C8—H8122.6 (11)C18—C19—H19A109.5
C5A—C8A—N9108.19 (13)C18—C19—H1B109.5
C8—C8A—C5A121.76 (15)C18—C19—H19C109.5
C8—C8A—N9130.01 (15)H19A—C19—H1B109.5
C1—C9A—N9129.78 (14)H19A—C19—H19C109.5
C1—C9A—C4A122.49 (14)H1B—C19—H19C109.5
O2—S1—N9—C8A45.91 (13)C5A—C4A—C9A—C1177.57 (14)
O2—S1—N9—C9A163.72 (12)C4—C4A—C9A—N9176.41 (13)
O3—S1—N9—C8A174.93 (11)C5A—C4A—C9A—N91.04 (17)
O3—S1—N9—C9A34.70 (14)C4A—C5A—C5—C6178.59 (16)
C10—S1—N9—C8A69.46 (13)C8A—C5A—C5—C60.6 (2)
C10—S1—N9—C9A80.91 (13)C5—C5A—C8A—C81.1 (2)
O2—S1—C10—C117.52 (15)C4A—C5A—C8A—C8179.59 (14)
O2—S1—C10—C15174.74 (12)C5—C5A—C8A—N9176.99 (14)
O3—S1—C10—C11140.73 (13)C4A—C5A—C8A—N91.49 (17)
O3—S1—C10—C1541.54 (14)C7—C6—C5—C5A0.2 (3)
N9—S1—C10—C11106.05 (13)C5—C6—C7—C80.5 (3)
N9—S1—C10—C1571.69 (14)C8A—C8—C7—C60.0 (3)
C18—O5—C17—O41.5 (2)N9—C8A—C8—C7176.83 (15)
C18—O5—C17—C3177.97 (13)C5A—C8A—C8—C70.8 (2)
C17—O5—C18—C19167.19 (14)N9—C9A—C1—C2176.19 (15)
C9A—C1—C2—C30.5 (2)C4A—C9A—C1—C20.5 (2)
C4—C3—C2—C10.1 (2)S1—N9—C8A—C5A156.54 (11)
C17—C3—C2—C1179.00 (15)S1—N9—C8A—C825.6 (2)
C2—C3—C4—O1178.80 (14)C9A—N9—C8A—C5A2.15 (16)
C2—C3—C4—C4A0.7 (2)C9A—N9—C8A—C8179.97 (16)
C17—C3—C4—O10.2 (2)S1—N9—C9A—C127.8 (2)
C17—C3—C4—C4A179.66 (14)S1—N9—C9A—C4A155.97 (11)
C2—C3—C17—O4175.21 (15)C8A—N9—C9A—C1178.15 (15)
C2—C3—C17—O55.3 (2)C8A—N9—C9A—C4A1.96 (16)
C4—C3—C17—O43.7 (2)S1—C10—C15—C14177.47 (12)
C4—C3—C17—O5175.75 (13)C11—C10—C15—C140.2 (2)
C9A—C4A—C4—O1178.80 (14)S1—C10—C11—C12178.63 (12)
C5A—C4A—C4—O12.0 (3)C15—C10—C11—C120.9 (2)
C9A—C4A—C4—C30.7 (2)C13—C12—C11—C101.4 (3)
C5A—C4A—C4—C3177.46 (16)C11—C12—C13—C140.7 (2)
C4—C4A—C5A—C50.9 (3)C11—C12—C13—C16178.83 (15)
C4—C4A—C5A—C8A177.30 (16)C15—C14—C13—C120.5 (2)
C9A—C4A—C5A—C5177.91 (17)C15—C14—C13—C16179.98 (15)
C9A—C4A—C5A—C8A0.28 (17)C10—C15—C14—C131.0 (2)
C4—C4A—C9A—C10.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.90 (3)1.73 (2)2.5746 (18)156 (2)
C12—H12···O1i0.932.553.410 (2)154
C16—H16B···Cg4ii0.962.913.559 (2)126
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC22H19NO5S
Mr409.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)23.2155 (12), 12.3581 (7), 15.1001 (8)
β (°) 119.656 (1)
V3)3764.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.40 × 0.25 × 0.17
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.937, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
15402, 4658, 3276
Rint0.048
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.092, 0.94
No. of reflections4658
No. of parameters292
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.47

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.90 (3)1.73 (2)2.5746 (18)156 (2)
C12—H12···O1i0.932.553.410 (2)154
C16—H16B···Cg4ii0.962.913.559 (2)126
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+3/2, z+1.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913–o3914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCoates, I. H., Bell, J. A., Humber, D. C. & Evan, G. B. (1987). US Patent No. 4 695 578.  Google Scholar
First citationErgün, Y. (2007). J. Heterocycl. Chem. 44, 539–541.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGutman, D. & Cyjon, C. (2006). US Patent Appl. No. US2006/0041004 A1.  Google Scholar
First citationHökelek, T., Gündüz, H., Patır, S. & Uludağ, N. (1998). Acta Cryst. C54, 1297-1299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Patır, S. (1999). Acta Cryst. C55, 675–677.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Patır, S. (2002). Acta Cryst. E58, o374–o376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450–453.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Patır, S. & Uludağ, N. (1999). Acta Cryst. C55, 114–116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, o25–o27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, o791–o793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMolnar, S., Szabo, C., Sos, E. M., Salyi, S. & Tamas, T. (2006). US Patent. US 7 098 345 B2.  Google Scholar
First citationPatır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239–1242.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1515-o1516
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds