metal-organic compounds
Diaquabis(2-bromobenzoato-κO)bis(nicotinamide-κN1)nickel(II)
aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dKafkas University, Department of Chemistry, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
The title NiII complex, [Ni(C7H4BrO2)2(C6H6N2O)2(H2O)2], is centrosymmetric. It contains two 2-bromobenzoate (BB) ligands, two nicotinamide (NA) ligands and two water molecules, all of them being monodentate. The four O atoms in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxylate group and the adjacent benzene ring is 30.81 (17)°, while the pyridine and benzene rings are oriented at a dihedral angle of 84.66 (6)°. In the O—H⋯O and N—H⋯O hydrogen bonds link the molecules into a supramolecular structure. A weak C—H⋯π interaction is also found.
Related literature
For general background, see: Antolini et al. (1982); Bigoli et al. (1972); Krishnamachari (1974); Nadzhafov et al. (1981); Shnulin et al. (1981). For related structures, see: Hökelek et al. (2009a,b,c); Özbek et al. (2009); Sertçelik et al. (2009a,b,c); Tercan et al. (2009).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809021710/xu2538sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809021710/xu2538Isup2.hkl
The title compound was prepared by the reaction of Ni(SO4).6(H2O) (1.31 g, 5 mmol) in H2O (20 ml) and NA (1.22 g, 10 mmol) in H2O (20 ml) with sodium 2-bromobenzoate (2.23 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for 2 d, giving blue single crystals.
H atoms of water molecule and NH2 group were located in difference Fourier maps and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.93 Å, for aromatic H atoms and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by the symmetry operator (1 - x, 1-y, 1-z). |
[Ni(C7H4BrO2)2(C6H6N2O)2(H2O)2] | F(000) = 740 |
Mr = 739.02 | Dx = 1.820 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5380 reflections |
a = 7.8851 (2) Å | θ = 2.5–28.4° |
b = 18.2865 (4) Å | µ = 3.74 mm−1 |
c = 9.7574 (3) Å | T = 100 K |
β = 106.609 (2)° | Block, blue |
V = 1348.23 (6) Å3 | 0.52 × 0.27 × 0.22 mm |
Z = 2 |
Bruker Kappa APEXII CCD area-detector diffractometer | 3368 independent reflections |
Radiation source: fine-focus sealed tube | 2899 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ϕ and ω scans | θmax = 28.4°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −10→10 |
Tmin = 0.306, Tmax = 0.436 | k = −24→21 |
12686 measured reflections | l = −12→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0538P)2 + 0.96P] where P = (Fo2 + 2Fc2)/3 |
3368 reflections | (Δ/σ)max < 0.001 |
203 parameters | Δρmax = 1.48 e Å−3 |
0 restraints | Δρmin = −0.55 e Å−3 |
[Ni(C7H4BrO2)2(C6H6N2O)2(H2O)2] | V = 1348.23 (6) Å3 |
Mr = 739.02 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.8851 (2) Å | µ = 3.74 mm−1 |
b = 18.2865 (4) Å | T = 100 K |
c = 9.7574 (3) Å | 0.52 × 0.27 × 0.22 mm |
β = 106.609 (2)° |
Bruker Kappa APEXII CCD area-detector diffractometer | 3368 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2899 reflections with I > 2σ(I) |
Tmin = 0.306, Tmax = 0.436 | Rint = 0.029 |
12686 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 1.48 e Å−3 |
3368 reflections | Δρmin = −0.55 e Å−3 |
203 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.40260 (3) | 0.212024 (14) | 0.17902 (3) | 0.02187 (10) | |
Ni1 | 0.5000 | 0.5000 | 0.5000 | 0.01048 (11) | |
O1 | 0.6201 (2) | 0.40537 (9) | 0.45455 (18) | 0.0137 (3) | |
O2 | 0.3946 (2) | 0.36790 (10) | 0.27275 (19) | 0.0162 (4) | |
O3 | 0.9542 (2) | 0.51033 (10) | 0.17931 (19) | 0.0184 (4) | |
O4 | 0.7554 (2) | 0.54252 (10) | 0.58888 (19) | 0.0149 (4) | |
H41 | 0.724 (6) | 0.574 (2) | 0.643 (4) | 0.045 (11)* | |
H42 | 0.838 (5) | 0.5193 (19) | 0.643 (4) | 0.024 (8)* | |
N1 | 0.5076 (3) | 0.54372 (11) | 0.3063 (2) | 0.0129 (4) | |
N2 | 0.8578 (3) | 0.57987 (14) | −0.0186 (2) | 0.0194 (5) | |
H21 | 0.776 (5) | 0.6019 (19) | −0.074 (4) | 0.034 (10)* | |
H22 | 0.935 (5) | 0.5647 (18) | −0.048 (4) | 0.023 (8)* | |
C1 | 0.5546 (3) | 0.36682 (13) | 0.3452 (2) | 0.0126 (4) | |
C2 | 0.6793 (3) | 0.31957 (13) | 0.2910 (3) | 0.0130 (4) | |
C3 | 0.6274 (3) | 0.25649 (14) | 0.2082 (3) | 0.0138 (5) | |
C4 | 0.7416 (3) | 0.22059 (13) | 0.1454 (3) | 0.0160 (5) | |
H4 | 0.7036 | 0.1793 | 0.0893 | 0.019* | |
C5 | 0.9119 (3) | 0.24655 (15) | 0.1666 (3) | 0.0176 (5) | |
H5 | 0.9876 | 0.2235 | 0.1227 | 0.021* | |
C6 | 0.9699 (3) | 0.30671 (14) | 0.2531 (3) | 0.0175 (5) | |
H6 | 1.0859 | 0.3230 | 0.2705 | 0.021* | |
C7 | 0.8537 (3) | 0.34266 (13) | 0.3137 (3) | 0.0143 (5) | |
H7 | 0.8934 | 0.3833 | 0.3711 | 0.017* | |
C8 | 0.3703 (3) | 0.58033 (13) | 0.2194 (3) | 0.0143 (5) | |
H8 | 0.2668 | 0.5848 | 0.2464 | 0.017* | |
C9 | 0.3762 (3) | 0.61133 (14) | 0.0923 (3) | 0.0167 (5) | |
H9 | 0.2792 | 0.6367 | 0.0354 | 0.020* | |
C10 | 0.5299 (3) | 0.60410 (14) | 0.0504 (3) | 0.0159 (5) | |
H10 | 0.5376 | 0.6246 | −0.0348 | 0.019* | |
C11 | 0.6709 (3) | 0.56580 (13) | 0.1378 (3) | 0.0131 (5) | |
C12 | 0.6545 (3) | 0.53690 (13) | 0.2651 (3) | 0.0134 (5) | |
H12 | 0.7500 | 0.5117 | 0.3243 | 0.016* | |
C13 | 0.8401 (3) | 0.55041 (14) | 0.1008 (3) | 0.0152 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01372 (14) | 0.01967 (16) | 0.03198 (17) | −0.00559 (9) | 0.00611 (11) | −0.00455 (10) |
Ni1 | 0.00719 (19) | 0.0141 (2) | 0.0102 (2) | 0.00053 (14) | 0.00254 (15) | 0.00033 (15) |
O1 | 0.0115 (8) | 0.0168 (9) | 0.0122 (8) | 0.0021 (6) | 0.0022 (6) | −0.0009 (6) |
O2 | 0.0082 (7) | 0.0226 (10) | 0.0164 (8) | 0.0018 (6) | 0.0015 (6) | −0.0023 (7) |
O3 | 0.0133 (8) | 0.0269 (10) | 0.0156 (9) | 0.0064 (7) | 0.0049 (7) | 0.0048 (7) |
O4 | 0.0083 (8) | 0.0191 (10) | 0.0166 (9) | 0.0012 (7) | 0.0024 (7) | −0.0005 (7) |
N1 | 0.0108 (9) | 0.0138 (10) | 0.0142 (10) | 0.0004 (7) | 0.0036 (8) | −0.0001 (8) |
N2 | 0.0131 (10) | 0.0324 (13) | 0.0143 (10) | 0.0074 (9) | 0.0063 (9) | 0.0062 (9) |
C1 | 0.0105 (10) | 0.0152 (12) | 0.0126 (11) | 0.0013 (8) | 0.0043 (9) | 0.0026 (9) |
C2 | 0.0103 (10) | 0.0143 (12) | 0.0143 (11) | 0.0018 (8) | 0.0034 (9) | 0.0015 (9) |
C3 | 0.0102 (10) | 0.0162 (12) | 0.0137 (11) | −0.0005 (8) | 0.0013 (9) | 0.0018 (9) |
C4 | 0.0166 (11) | 0.0127 (12) | 0.0172 (12) | 0.0027 (9) | 0.0025 (9) | −0.0012 (9) |
C5 | 0.0165 (12) | 0.0207 (14) | 0.0166 (12) | 0.0065 (9) | 0.0064 (10) | 0.0025 (10) |
C6 | 0.0113 (11) | 0.0205 (13) | 0.0209 (12) | −0.0004 (9) | 0.0051 (10) | 0.0010 (10) |
C7 | 0.0110 (10) | 0.0149 (12) | 0.0165 (11) | 0.0010 (8) | 0.0031 (9) | 0.0005 (9) |
C8 | 0.0095 (10) | 0.0163 (12) | 0.0167 (11) | 0.0020 (8) | 0.0029 (9) | 0.0001 (9) |
C9 | 0.0093 (10) | 0.0211 (13) | 0.0175 (12) | 0.0051 (9) | 0.0002 (9) | 0.0043 (10) |
C10 | 0.0132 (11) | 0.0224 (13) | 0.0130 (11) | 0.0022 (9) | 0.0052 (9) | 0.0032 (9) |
C11 | 0.0117 (11) | 0.0146 (12) | 0.0139 (11) | 0.0007 (8) | 0.0051 (9) | −0.0004 (9) |
C12 | 0.0117 (10) | 0.0135 (12) | 0.0155 (11) | 0.0011 (8) | 0.0046 (9) | 0.0000 (9) |
C13 | 0.0113 (11) | 0.0203 (13) | 0.0145 (11) | 0.0005 (9) | 0.0044 (9) | −0.0019 (9) |
Br1—C3 | 1.896 (2) | C3—C4 | 1.390 (3) |
Ni1—O1i | 2.0806 (16) | C4—C5 | 1.383 (4) |
Ni1—O1 | 2.0806 (16) | C4—H4 | 0.9300 |
Ni1—O4 | 2.1012 (17) | C5—C6 | 1.382 (4) |
Ni1—O4i | 2.1012 (17) | C5—H5 | 0.9300 |
Ni1—N1 | 2.068 (2) | C6—C7 | 1.390 (3) |
Ni1—N1i | 2.068 (2) | C6—H6 | 0.9300 |
O1—C1 | 1.260 (3) | C7—H7 | 0.9300 |
O2—C1 | 1.258 (3) | C8—H8 | 0.9300 |
O3—C13 | 1.241 (3) | C9—C8 | 1.377 (3) |
O4—H41 | 0.86 (4) | C9—H9 | 0.9300 |
O4—H42 | 0.83 (4) | C10—C9 | 1.391 (3) |
N1—C8 | 1.347 (3) | C10—H10 | 0.9300 |
N1—C12 | 1.337 (3) | C11—C10 | 1.383 (3) |
N2—H21 | 0.82 (4) | C11—C12 | 1.390 (3) |
N2—H22 | 0.79 (4) | C12—H12 | 0.9300 |
C1—C2 | 1.513 (3) | C13—N2 | 1.327 (3) |
C2—C7 | 1.394 (3) | C13—C11 | 1.505 (3) |
C3—C2 | 1.400 (4) | ||
O1i—Ni1—O1 | 180.000 (1) | C4—C3—Br1 | 115.24 (18) |
O1—Ni1—O4 | 87.40 (7) | C4—C3—C2 | 121.6 (2) |
O1i—Ni1—O4 | 92.60 (7) | C3—C4—H4 | 120.2 |
O1i—Ni1—O4i | 87.40 (7) | C5—C4—C3 | 119.7 (2) |
O1—Ni1—O4i | 92.60 (7) | C5—C4—H4 | 120.2 |
O4—Ni1—O4i | 180.00 (10) | C4—C5—H5 | 119.9 |
N1—Ni1—O1 | 89.60 (7) | C6—C5—C4 | 120.2 (2) |
N1i—Ni1—O1 | 90.40 (7) | C6—C5—H5 | 119.9 |
N1—Ni1—O1i | 90.40 (7) | C5—C6—C7 | 119.5 (2) |
N1i—Ni1—O1i | 89.60 (7) | C5—C6—H6 | 120.3 |
N1—Ni1—O4 | 87.68 (7) | C7—C6—H6 | 120.3 |
N1i—Ni1—O4 | 92.32 (7) | C2—C7—H7 | 119.0 |
N1—Ni1—O4i | 92.32 (7) | C6—C7—C2 | 122.0 (2) |
N1i—Ni1—O4i | 87.68 (7) | C6—C7—H7 | 119.0 |
N1—Ni1—N1i | 180.00 (10) | N1—C8—C9 | 123.0 (2) |
C1—O1—Ni1 | 122.99 (15) | N1—C8—H8 | 118.5 |
Ni1—O4—H41 | 95 (3) | C9—C8—H8 | 118.5 |
Ni1—O4—H42 | 124 (2) | C8—C9—C10 | 118.8 (2) |
H42—O4—H41 | 105 (4) | C8—C9—H9 | 120.6 |
C8—N1—Ni1 | 122.66 (15) | C10—C9—H9 | 120.6 |
C12—N1—Ni1 | 119.53 (16) | C9—C10—H10 | 120.6 |
C12—N1—C8 | 117.8 (2) | C11—C10—C9 | 118.8 (2) |
C13—N2—H21 | 121 (3) | C11—C10—H10 | 120.6 |
C13—N2—H22 | 118 (2) | C10—C11—C12 | 118.7 (2) |
H21—N2—H22 | 118 (3) | C10—C11—C13 | 124.0 (2) |
O1—C1—C2 | 117.8 (2) | C12—C11—C13 | 117.3 (2) |
O2—C1—O1 | 124.7 (2) | N1—C12—C11 | 123.0 (2) |
O2—C1—C2 | 117.4 (2) | N1—C12—H12 | 118.5 |
C3—C2—C1 | 124.1 (2) | C11—C12—H12 | 118.5 |
C7—C2—C1 | 118.8 (2) | O3—C13—N2 | 122.8 (2) |
C7—C2—C3 | 117.0 (2) | O3—C13—C11 | 119.9 (2) |
C2—C3—Br1 | 123.11 (17) | N2—C13—C11 | 117.2 (2) |
O4—Ni1—O1—C1 | −145.89 (18) | C1—C2—C7—C6 | −172.5 (2) |
O4i—Ni1—O1—C1 | 34.11 (18) | C3—C2—C7—C6 | 2.3 (4) |
N1—Ni1—O1—C1 | −58.20 (18) | Br1—C3—C2—C1 | −10.9 (3) |
N1i—Ni1—O1—C1 | 121.80 (18) | Br1—C3—C2—C7 | 174.53 (17) |
O1—Ni1—N1—C8 | 137.00 (19) | C4—C3—C2—C1 | 171.3 (2) |
O1i—Ni1—N1—C8 | −43.00 (19) | C4—C3—C2—C7 | −3.2 (4) |
O1—Ni1—N1—C12 | −44.08 (18) | Br1—C3—C4—C5 | −176.67 (19) |
O1i—Ni1—N1—C12 | 135.92 (18) | C2—C3—C4—C5 | 1.2 (4) |
O4—Ni1—N1—C12 | 43.33 (18) | C3—C4—C5—C6 | 1.7 (4) |
O4i—Ni1—N1—C12 | −136.67 (18) | C4—C5—C6—C7 | −2.6 (4) |
O4—Ni1—N1—C8 | −135.59 (19) | C5—C6—C7—C2 | 0.5 (4) |
O4i—Ni1—N1—C8 | 44.41 (19) | C10—C9—C8—N1 | 0.7 (4) |
Ni1—O1—C1—O2 | −19.9 (3) | C11—C10—C9—C8 | 0.2 (4) |
Ni1—O1—C1—C2 | 155.74 (16) | C12—C11—C10—C9 | −0.9 (4) |
Ni1—N1—C8—C9 | 178.11 (19) | C13—C11—C10—C9 | 176.4 (2) |
C12—N1—C8—C9 | −0.8 (4) | C10—C11—C12—N1 | 0.8 (4) |
Ni1—N1—C12—C11 | −178.89 (18) | C13—C11—C12—N1 | −176.7 (2) |
C8—N1—C12—C11 | 0.1 (4) | O3—C13—C11—C10 | −173.8 (2) |
O1—C1—C2—C3 | 156.0 (2) | O3—C13—C11—C12 | 3.5 (4) |
O1—C1—C2—C7 | −29.6 (3) | N2—C13—C11—C10 | 4.7 (4) |
O2—C1—C2—C3 | −28.0 (4) | N2—C13—C11—C12 | −178.0 (2) |
O2—C1—C2—C7 | 146.4 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H21···O2ii | 0.82 (4) | 2.09 (4) | 2.864 (3) | 156 (4) |
N2—H22···O3iii | 0.79 (4) | 2.22 (4) | 2.951 (3) | 153 (4) |
O4—H41···O2i | 0.86 (4) | 1.77 (4) | 2.612 (2) | 165 (5) |
O4—H42···O3iv | 0.83 (4) | 2.09 (4) | 2.886 (2) | 162 (3) |
C9—H9···Cg1v | 0.93 | 2.89 | 3.617 (3) | 136 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) −x+2, −y+1, −z; (iv) −x+2, −y+1, −z+1; (v) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C7H4BrO2)2(C6H6N2O)2(H2O)2] |
Mr | 739.02 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 7.8851 (2), 18.2865 (4), 9.7574 (3) |
β (°) | 106.609 (2) |
V (Å3) | 1348.23 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.74 |
Crystal size (mm) | 0.52 × 0.27 × 0.22 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.306, 0.436 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12686, 3368, 2899 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.670 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.090, 1.06 |
No. of reflections | 3368 |
No. of parameters | 203 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.48, −0.55 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H21···O2i | 0.82 (4) | 2.09 (4) | 2.864 (3) | 156 (4) |
N2—H22···O3ii | 0.79 (4) | 2.22 (4) | 2.951 (3) | 153 (4) |
O4—H41···O2iii | 0.86 (4) | 1.77 (4) | 2.612 (2) | 165 (5) |
O4—H42···O3iv | 0.83 (4) | 2.09 (4) | 2.886 (2) | 162 (3) |
C9—H9···Cg1v | 0.93 | 2.89 | 3.617 (3) | 136 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z; (iii) −x+1, −y+1, −z+1; (iv) −x+2, −y+1, −z+1; (v) −x, −y, −z+1. |
Acknowledgements
The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.
References
Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395. CSD CrossRef CAS Web of Science Google Scholar
Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m481–m482. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m533–m534. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111. CAS PubMed Web of Science Google Scholar
Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128. CAS Google Scholar
Özbek, F. E., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m341–m342. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009a). Acta Cryst. E65, m324–m325. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009b). Acta Cryst. E65, m326–m327. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009c). Acta Cryst. E65, m389–m390. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416. CAS Google Scholar
Tercan, B., Hökelek, T., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m109–m110. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Transition metal complexes with biochemically active ligands frequently show interesting physical and/or chemical properties, as a result they may find applications in biological systems (Antolini et al., 1982). The structural functions and coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981). Nicotinamide (NA) is one form of niacin and a deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974). On the other hand, the nicotinic acid derivative N,N-diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972).
The structure determination of the title compound, (I), a nickel complex with two 2-bromobenzoate (BB), two nicotinamide (NA) ligands and two water molecules, was undertaken in order to determine the properties of the ligands and also to compare the results obtained with those reported previously.
Compound (I) is a monomeric complex, with the Ni atom on a centre of symmetry. It contains two BB, two NA ligands and two water molecules (Fig. 1). All ligands are monodentate. The four O atoms (O1, O4, and the symmetry-related atoms, O1', O4') in the equatorial plane around the Ni atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the NA ligands (N1, N1') in the axial positions (Table 1 and Fig. 1).
The near equality of the C1—O1 [1.260 (3) Å] and C1—O2 [1.258 (3) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, and may be compared with the corresponding distances: 1.262 (3) and 1.249 (3) Å in [Mn(DENA)2(C8H5O3)2(H2O)2], (II) (Sertçelik et al., 2009a), 1.263 (4) and 1.249 (4) Å in [Ni(DENA)2(C8H5O3)2(H2O)2], (III) (Sertçelik et al., 2009b), 1.262 (5) and 1.257 (5) Å in [Co(DENA)2(C8H5O3)2(H2O)2], (IV) (Sertçelik et al., 2009c), 1.244 (4) and 1.270 (4) Å in [Co(NA)2(H2O)4](C7H4FO2)2, (V) (Özbek et al., 2009), 1.284 (2), 1.248 (2) and 1.278 (2), 1.241 (2) Å in [Zn(NA)2(C8H8NO2)2], (VI) (Tercan et al., 2009), 1.267 (3) and 1.258 (3) Å in [Ni(NA)2(C7H4ClO2)2(H2O)2], (VII) (Hökelek et al., 2009a), 1.263 (2) and 1.240 (2) Å in [Zn(DENA)2(C7H4BrO2)2(H2O)2], (VIII) (Hökelek et al., 2009b), and 1.2611 (17) and 1.2396 (19) Å in [Mn(DENA)2(C7H4BrO2)2(H2O)2], (IX) (Hökelek et al., 2009c). In (I), the average Ni—O bond length is 2.0909 (17) Å and the Ni atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by -0.595 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring A (C2—C7) is 30.81 (17)°, while that between rings A and B (N1/C8—C12) is 84.66 (6)°.
In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds (Table 2) link the molecules into a supramolecular structure, in which they may be effective in the stabilization of the structure. A weak C—H···π interaction (Table 2) is also found.