organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1621-o1622

2-(1H-Benzimidazol-1-yl)-1-(2-fur­yl)ethanone O-ethyl­oxime

aZonguldak Karaelmas University, Department of Chemistry, 67100 Zonguldak, Turkey, bSargodha University, Department of Physics, Sargodha, Pakistan, and cHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 11 June 2009; accepted 15 June 2009; online 20 June 2009)

In the mol­ecule of the title compound, C15H15N3O2, the planar benzimidazole ring system [maximum deviation = 0.023 (2) Å] is oriented at a dihedral angle of 74.21 (5)° with respect to the furan ring. In the crystal structure, inter­molecular C—H⋯N inter­actions link the mol­ecules into centrosymmetric R22(18) dimers. In addition, the structure is stabilized by ππ contacts between parallel imidazole rings [centroid–centroid distance = 3.726 (1) Å] and a weak C—H⋯π inter­action.

Related literature

For general background to oximes and oxime ethers and their biological activity, see: Baji et al. (1995[Baji, H., Flammang, M., Kimny, T., Gasquez, F., Compagnon, P. L. & Delcourt, A. (1995). Eur. J. Med. Chem. 30, 617-626.]); Bhandari et al. (2009[Bhandari, K., Srinivas, N., Shiva Keshava, G. B. & Shukla, P. K. (2009). Eur. J. Med. Chem. 44, 437-447.]); Emami et al. (2002[Emami, S., Falahatti, M., Banifatemi, A., Moshiri, K. & Shafiee, A. (2002). Arch. Pharm. 335, 318-324.], 2004[Emami, S., Falahatti, M., Banifatemi, A., Moshiri, K. & Shafiee, A. (2004). Bioorg. Med. Chem. 12, 5881-5889.]); Milanese et al. (2007[Milanese, L., Giacche, N., Schiaffella, F., Vecchiarelli, A., Macchiarulo, A. & Fringuelli, R. (2007). ChemMedChem, 2, 1208-1213.]); Polak (1982[Polak, A. (1982). Arzneim. Forsch. Drug. Res. 32, 17-24.]); Porretta et al. (1993[Porretta, G. C., Fioravanti, R., Biava, M., Cirilli, R., Simonetti, N., Villa, A., Bello, U., Faccendini, P. & Tita, B. (1993). Eur. J. Med. Chem. 28, 749-760.]); Ramalingan et al. (2006[Ramalingan, C., Park, Y. T. & Kabilan, S. (2006). Eur. J. Med. Chem. 41, 683-696.]); Rossello et al. (2002[Rossello, A., Bertini, S., Lapucci, A., Macchia, M., Martinelli, A., Rapposelli, S., Herreros, E. & Macchia, B. (2002). J. Med. Chem. 45, 4903-4912.]). For related structures, see: Özel Güven et al. (2007a[Özel Güven, Ö., Erdoğan, T., Çaylak, N. & Hökelek, T. (2007a). Acta Cryst. E63, o4090-o4091.],b[Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731-734.], 2009a[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2009a). Acta Cryst. E65, o1517-o1518.],b[Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2009b). Acta Cryst. E65, o1604-o1605.]). For ring-motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N3O2

  • Mr = 269.30

  • Monoclinic, P 21 /c

  • a = 8.4448 (5) Å

  • b = 17.6345 (11) Å

  • c = 10.3147 (6) Å

  • β = 110.755 (2)°

  • V = 1436.38 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.40 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.979

  • 16676 measured reflections

  • 3742 independent reflections

  • 2291 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.140

  • S = 1.03

  • 3742 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N2i 0.93 2.54 3.328 (2) 143
C14—H14ACg2ii 0.97 2.88 3.768 (2) 153
Symmetry codes: (i) -x, -y+1, -z+2; (ii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].Cg2 is the centroid of the C2–C7 ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Oximes and oxime ethers show very important antifungal and antibacterial activities. Oxiconazole is a well established drug for treatment of many mycotic infections, having an oxime group (Polak, 1982). Several compounds containing an oxime or an oxime ether function have been reported to exhibit antimicrobial activity (Porretta et al., 1993; Baji et al., 1995; Rossello et al., 2002; Emami et al., 2002; Emami et al., 2004; Ramalingan et al., 2006; Milanese et al., 2007; Bhandari et al., 2009). In our earlier studies, we reported X-ray structures of benzimidazole substituted oxiconazole derivatives (Özel Güven et al., 2007a; Özel Güven et al., 2009a; Özel Güven et al., 2009b). Now, we report herein the crystal structure of the title alkyl oxime ether.

In the molecule of the title compound (Fig. 1), the bond lengths and angles are generally within normal ranges. The planar benzimidazole ring system [with a maximum deviation of 0.023 (2) Å for atom C5] is oriented with respect to the furan ring at a dihedral angle of 74.21 (5)°. Atoms C8, C9 and N3 are -0.066 (2), 0.001 (1) and 0.055 (1) Å away from the furan ring plane, respectively, while atom C8 is at a distance of 0.006 (2) Å to the benzimidazole ring plane. So, they are coplanar with the adjacent rings. The N1—C1—N2 [114.46 (16)°], N2—C2—C7 [110.10 (15)°], C2—C7—C6 [122.57 (15)°], C3—C4—C5 [121.26 (18)°] and C4—C5—C6 [121.86 (18)°] bond angles are enlarged, while C5—C6—C7 [116.19 (17)°] and C2—C3—C4 [118.29 (17)°] bond angles are narrowed.

In the crystal structure, intermolecular C—H···N interactions (Table 1) link the molecules into centrosymmetric dimers through R22(18) ring motifs (Bernstein et al., 1995) (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contact between the imidazole rings, Cg1—Cg1i, [symmetry code: (i) 1 - x, -y, 1 - z, where Cg1 is centroid of the ring (N1/N2/C1/C2/C7)] may further stabilize the structure, with centroid-centroid distance of 3.726 (1) Å. A weak C—H···π interaction (Table 1) is also found.

Related literature top

For general background to oximes and oxime ethers and their biological activity, see: Baji et al. (1995); Bhandari et al. (2009); Emami et al. (2002, 2004); Milanese et al. (2007); Polak (1982); Porretta et al. (1993); Ramalingan et al. (2006); Rossello et al. (2002). For related structures, see: Özel Güven et al. (2007a,b, 2009a,b). For ring-motifs, see: Bernstein et al. (1995). Cg2 is the centroid of the C2–C7 ring.

Experimental top

The title compound was synthesized by the reaction of 2-(1H-benzimidazol-1-yl)-1-(furan-2-yl)ethanone oxime obtained from 2-(1H-benzimidazol-1-yl)-1-(furan-2-yl)ethanone (Özel Güven et al., 2007b) with ethyl iodide and NaH. To a solution of 2-(1H-benzimidazol-1-yl)-1-(furan-2-yl)ethanone oxime (400 mg, 1.658 mmol) in DMF (5 ml) was added NaH (66 mg, 1.658 mmol) in small fractions. Then, ethyl iodide (259 mg, 1.658 mmol) was added dropwise. The mixture was stirred at room temperature for 3 h and the excess of hydride was decomposed with a small amount of methyl alcohol. After evaporation to dryness under reduced pressure, the crude residue was suspended with water and extracted with methylene chloride. The organic layer was dried over anhydrous sodium sulfate and then evaporated to dryness. The crude residue was purified by chromatography on a silica-gel column using chloroform and recrystallized from hexane-ethyl acetate (1:3) mixture to obtain yellow crystals (yield; 270 mg, 61%).

Refinement top

H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
2-(1H-Benzimidazol-1-yl)-1-(2-furyl)ethanone O-ethyloxime top
Crystal data top
C15H15N3O2F(000) = 568
Mr = 269.30Dx = 1.245 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1232 reflections
a = 8.4448 (5) Åθ = 2.3–28.8°
b = 17.6345 (11) ŵ = 0.09 mm1
c = 10.3147 (6) ÅT = 296 K
β = 110.755 (2)°Block, yellow
V = 1436.38 (15) Å30.40 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3742 independent reflections
Radiation source: fine-focus sealed tube2291 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 28.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 117
Tmin = 0.967, Tmax = 0.979k = 2319
16676 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.249P]
where P = (Fo2 + 2Fc2)/3
3742 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C15H15N3O2V = 1436.38 (15) Å3
Mr = 269.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4448 (5) ŵ = 0.09 mm1
b = 17.6345 (11) ÅT = 296 K
c = 10.3147 (6) Å0.40 × 0.25 × 0.20 mm
β = 110.755 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3742 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2291 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.979Rint = 0.027
16676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
3742 reflectionsΔρmin = 0.18 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07624 (14)0.47405 (6)0.69126 (11)0.0587 (3)
O20.12331 (14)0.34870 (6)0.45867 (12)0.0620 (3)
N10.30309 (17)0.45287 (7)0.87568 (13)0.0525 (3)
N20.2926 (2)0.43475 (9)1.08660 (15)0.0735 (5)
N30.23041 (17)0.39663 (8)0.55862 (13)0.0544 (3)
C10.2331 (2)0.47207 (11)0.97034 (18)0.0672 (5)
H10.14940.50890.95380.081*
C20.4123 (2)0.38660 (10)1.06784 (16)0.0561 (4)
C30.5178 (2)0.33399 (11)1.15764 (18)0.0691 (5)
H30.51260.32571.24510.083*
C40.6289 (3)0.29490 (12)1.1144 (2)0.0752 (5)
H40.70020.25941.17320.090*
C50.6378 (2)0.30710 (12)0.9839 (2)0.0756 (5)
H50.71680.28020.95830.091*
C60.5329 (2)0.35802 (10)0.89142 (19)0.0629 (4)
H60.53730.36550.80350.076*
C70.42077 (19)0.39732 (8)0.93684 (15)0.0489 (4)
C80.2629 (2)0.48404 (9)0.73688 (16)0.0545 (4)
H8A0.36720.49310.72000.065*
H8B0.20600.53240.73130.065*
C90.15179 (19)0.43200 (8)0.62662 (14)0.0461 (3)
C100.02592 (19)0.42668 (8)0.60758 (15)0.0460 (3)
C110.1609 (2)0.38634 (9)0.52731 (17)0.0564 (4)
H110.16160.35010.46160.068*
C120.3007 (2)0.40962 (11)0.5621 (2)0.0674 (5)
H120.41120.39180.52370.081*
C130.2438 (2)0.46193 (11)0.6602 (2)0.0679 (5)
H130.31020.48690.70200.081*
C140.2185 (2)0.31439 (13)0.3830 (2)0.0813 (6)
H14A0.31350.28630.44600.098*
H14B0.26250.35340.33860.098*
C150.1095 (3)0.26391 (19)0.2798 (3)0.1340 (12)
H15A0.17420.23820.23310.201*
H15B0.02060.29260.21360.201*
H15C0.06100.22730.32380.201*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0639 (7)0.0630 (7)0.0511 (6)0.0017 (5)0.0226 (5)0.0089 (5)
O20.0581 (7)0.0677 (7)0.0577 (7)0.0012 (6)0.0173 (5)0.0193 (6)
N10.0589 (8)0.0543 (7)0.0408 (7)0.0030 (6)0.0136 (6)0.0069 (6)
N20.0865 (11)0.0894 (11)0.0453 (8)0.0104 (9)0.0241 (8)0.0082 (8)
N30.0554 (7)0.0591 (8)0.0453 (7)0.0013 (6)0.0136 (6)0.0042 (6)
C10.0761 (12)0.0722 (11)0.0518 (10)0.0112 (9)0.0210 (9)0.0116 (9)
C20.0597 (9)0.0634 (10)0.0400 (8)0.0069 (8)0.0112 (7)0.0092 (7)
C30.0748 (12)0.0795 (12)0.0429 (9)0.0053 (10)0.0083 (8)0.0017 (8)
C40.0676 (11)0.0768 (12)0.0647 (12)0.0044 (10)0.0029 (10)0.0055 (10)
C50.0636 (11)0.0796 (13)0.0809 (14)0.0112 (10)0.0222 (10)0.0037 (11)
C60.0611 (10)0.0722 (11)0.0578 (10)0.0017 (9)0.0239 (8)0.0043 (9)
C70.0477 (8)0.0516 (8)0.0420 (8)0.0091 (7)0.0094 (6)0.0069 (6)
C80.0619 (10)0.0515 (9)0.0470 (9)0.0101 (7)0.0153 (7)0.0003 (7)
C90.0551 (9)0.0438 (7)0.0374 (8)0.0002 (6)0.0141 (6)0.0044 (6)
C100.0577 (9)0.0420 (7)0.0389 (8)0.0011 (6)0.0180 (6)0.0014 (6)
C110.0615 (10)0.0527 (9)0.0552 (9)0.0061 (7)0.0210 (8)0.0052 (7)
C120.0580 (10)0.0751 (11)0.0709 (12)0.0095 (9)0.0252 (9)0.0033 (10)
C130.0632 (11)0.0810 (12)0.0684 (12)0.0060 (9)0.0342 (9)0.0004 (10)
C140.0680 (12)0.0984 (15)0.0776 (13)0.0098 (11)0.0257 (10)0.0302 (12)
C150.0854 (16)0.165 (3)0.138 (2)0.0083 (17)0.0234 (16)0.097 (2)
Geometric parameters (Å, º) top
O1—C101.3723 (17)C7—C61.382 (2)
O1—C131.352 (2)C8—H8A0.9700
O2—N31.3909 (16)C8—H8B0.9700
O2—C141.438 (2)C9—N31.285 (2)
N1—C11.351 (2)C9—C81.503 (2)
N1—C71.379 (2)C9—C101.446 (2)
N1—C81.457 (2)C10—C111.350 (2)
N2—C11.303 (2)C11—C121.411 (2)
C1—H10.9300C11—H110.9300
C2—N21.385 (2)C12—H120.9300
C2—C31.388 (2)C13—C121.328 (3)
C3—C41.361 (3)C13—H130.9300
C3—H30.9300C14—C151.442 (3)
C4—H40.9300C14—H14A0.9700
C5—C41.391 (3)C14—H14B0.9700
C5—H50.9300C15—H15A0.9600
C6—C51.379 (3)C15—H15B0.9600
C6—H60.9300C15—H15C0.9600
C7—C21.391 (2)
C13—O1—C10106.63 (13)C9—C8—H8A109.2
N3—O2—C14108.44 (12)C9—C8—H8B109.2
C1—N1—C7106.03 (13)H8A—C8—H8B107.9
C1—N1—C8127.31 (15)N3—C9—C8113.87 (14)
C7—N1—C8126.65 (13)N3—C9—C10127.33 (14)
C1—N2—C2104.09 (14)C10—C9—C8118.81 (13)
C9—N3—O2111.93 (13)O1—C10—C9114.39 (13)
N1—C1—H1122.8C11—C10—O1108.92 (13)
N2—C1—N1114.46 (16)C11—C10—C9136.69 (14)
N2—C1—H1122.8C10—C11—C12106.94 (15)
N2—C2—C3130.09 (16)C10—C11—H11126.5
N2—C2—C7110.10 (15)C12—C11—H11126.5
C3—C2—C7119.80 (16)C11—C12—H12126.7
C2—C3—H3120.9C13—C12—C11106.65 (16)
C4—C3—C2118.29 (17)C13—C12—H12126.7
C4—C3—H3120.9O1—C13—H13124.6
C3—C4—C5121.26 (18)C12—C13—O1110.85 (16)
C3—C4—H4119.4C12—C13—H13124.6
C5—C4—H4119.4O2—C14—C15109.09 (17)
C4—C5—H5119.1O2—C14—H14A109.9
C6—C5—C4121.86 (18)O2—C14—H14B109.9
C6—C5—H5119.1C15—C14—H14A109.9
C5—C6—C7116.19 (17)C15—C14—H14B109.9
C5—C6—H6121.9H14A—C14—H14B108.3
C7—C6—H6121.9C14—C15—H15A109.5
N1—C7—C6132.10 (15)C14—C15—H15B109.5
N1—C7—C2105.31 (14)C14—C15—H15C109.5
C6—C7—C2122.57 (15)H15A—C15—H15B109.5
N1—C8—C9112.26 (12)H15A—C15—H15C109.5
N1—C8—H8A109.2H15B—C15—H15C109.5
N1—C8—H8B109.2
C13—O1—C10—C9179.95 (13)C7—C6—C5—C41.3 (3)
C13—O1—C10—C110.15 (17)N1—C7—C2—N20.25 (18)
C10—O1—C13—C120.1 (2)N1—C7—C2—C3179.41 (14)
C14—O2—N3—C9177.14 (15)C6—C7—C2—N2178.33 (15)
N3—O2—C14—C15179.4 (2)C6—C7—C2—C30.8 (2)
C7—N1—C1—N20.1 (2)N1—C7—C6—C5177.93 (16)
C8—N1—C1—N2179.70 (15)C2—C7—C6—C50.2 (2)
C1—N1—C7—C20.23 (17)C8—C9—N3—O2179.48 (11)
C1—N1—C7—C6178.15 (17)C10—C9—N3—O20.6 (2)
C8—N1—C7—C2179.61 (14)N3—C9—C8—N1104.67 (16)
C8—N1—C7—C62.0 (3)C10—C9—C8—N175.41 (17)
C1—N1—C8—C9102.12 (19)N3—C9—C10—O1177.03 (14)
C7—N1—C8—C977.69 (19)N3—C9—C10—C113.1 (3)
C2—N2—C1—N10.0 (2)C8—C9—C10—O12.88 (18)
C3—C2—N2—C1179.21 (18)C8—C9—C10—C11176.98 (17)
C7—C2—N2—C10.16 (19)O1—C10—C11—C120.16 (18)
N2—C2—C3—C4178.13 (18)C9—C10—C11—C12179.97 (17)
C7—C2—C3—C40.8 (3)C10—C11—C12—C130.1 (2)
C2—C3—C4—C50.2 (3)O1—C13—C12—C110.0 (2)
C6—C5—C4—C31.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N2i0.932.543.328 (2)143
C14—H14A···Cg2ii0.972.883.768 (2)153
Symmetry codes: (i) x, y+1, z+2; (ii) x, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC15H15N3O2
Mr269.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.4448 (5), 17.6345 (11), 10.3147 (6)
β (°) 110.755 (2)
V3)1436.38 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.967, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
16676, 3742, 2291
Rint0.027
(sin θ/λ)max1)0.679
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.140, 1.03
No. of reflections3742
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N2i0.932.543.328 (2)143
C14—H14A···Cg2ii0.972.883.768 (2)153
Symmetry codes: (i) x, y+1, z+2; (ii) x, y1/2, z3/2.
 

Acknowledgements

The authors acknowledge the Zonguldak Karaelmas University Research Fund (Project No. 2007/2–13–02–09).

References

First citationBaji, H., Flammang, M., Kimny, T., Gasquez, F., Compagnon, P. L. & Delcourt, A. (1995). Eur. J. Med. Chem. 30, 617–626.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhandari, K., Srinivas, N., Shiva Keshava, G. B. & Shukla, P. K. (2009). Eur. J. Med. Chem. 44, 437–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEmami, S., Falahatti, M., Banifatemi, A., Moshiri, K. & Shafiee, A. (2002). Arch. Pharm. 335, 318–324.  Web of Science CrossRef CAS Google Scholar
First citationEmami, S., Falahatti, M., Banifatemi, A., Moshiri, K. & Shafiee, A. (2004). Bioorg. Med. Chem. 12, 5881–5889.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMilanese, L., Giacche, N., Schiaffella, F., Vecchiarelli, A., Macchiarulo, A. & Fringuelli, R. (2007). ChemMedChem, 2, 1208–1213.  Web of Science CrossRef PubMed CAS Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Çaylak, N. & Hökelek, T. (2007a). Acta Cryst. E63, o4090–o4091.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2009a). Acta Cryst. E65, o1517–o1518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2009b). Acta Cryst. E65, o1604–o1605.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731–734.  Google Scholar
First citationPolak, A. (1982). Arzneim. Forsch. Drug. Res. 32, 17–24.  CAS Google Scholar
First citationPorretta, G. C., Fioravanti, R., Biava, M., Cirilli, R., Simonetti, N., Villa, A., Bello, U., Faccendini, P. & Tita, B. (1993). Eur. J. Med. Chem. 28, 749–760.  CrossRef CAS Web of Science Google Scholar
First citationRamalingan, C., Park, Y. T. & Kabilan, S. (2006). Eur. J. Med. Chem. 41, 683–696.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRossello, A., Bertini, S., Lapucci, A., Macchia, M., Martinelli, A., Rapposelli, S., Herreros, E. & Macchia, B. (2002). J. Med. Chem. 45, 4903–4912.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1621-o1622
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds