organic compounds
Ethyl 1-oxo-1,2,3,4-tetrahydro-9H-carbazole-3-carboxylate
aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Chemistry, Faculty of Arts and Sciences, Dokuz Eylül University, Tınaztepe, 35160 Buca-zmir, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
The title compound, C15H15NO3, contains a carbazole skeleton with an ethoxycarbonyl group at the 3 position. In the indole ring system, the benzene and pyrrole rings are nearly coplanar, forming a dihedral angle of 1.95 (8)°. The cyclohexenone ring has an In the pairs of strong N—H⋯O hydrogen bonds link the molecules into centrosymmetric dimers with R22(10) ring motifs. π–π contacts between parallel pyrrole rings [centroid–centroid distance = 3.776 (2) Å] may further stabilize the structure. A weak C—H⋯π interaction is also observed.
Related literature
For tetrahydrocarbazole derivatives as synthetic precursors of cyclic indole-type ); Phillipson & Zenk (1980); Saxton (1983). The title compound is used in the synthesis of a precursor for the synthesis of the anti-tumor drug ellipticine (Ergün et al., 2004). Murraya L. (Rutaceae) is a genus of shrubs or small trees from Southern Asia (Chang, 1977) from which carbazole have been isolated (Chakraborty & Roy, 1991). For the biological activity of carbazole see: Kondo et al. (1986); Te Paske et al. (1989a,b). For related structures, see: Çaylak et al. (2007); Uludağ et al. (2009). For bond-length data, see: Allen et al. (1987). For ring-motifs, see: Bernstein et al. (1995).
of biological interest, see: Abraham (1975Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S160053680902385X/xu2543sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680902385X/xu2543Isup2.hkl
For the preparation of the title compound, a solution of ethyl 1,2,3,4-tetrahydro-9H-carbazole-3-carboxylate (5.00 g, 20.5 mmol) in methanol (25 ml) was added dropwise to a solution of periodic acid (9.35 g, 41.0 mmol) in methanol-water (1:1, 100 ml) at 273 K. The reaction mixture was stirred for 1 h at 273 K, then stirring was continued for a further 1 h at room temperature. The solvent was evaporated, then the residue was dissolved in chloroform and washed first with sodium carbonate (10%, 50 ml) and then with sodium bisulfite (10%, 50 ml). The organic layer was dried over anhydrous magnesium sulfate and the solvent was evaporated. The residue was chromatographed on silica gel using ethyl acetate and crystallized from methanol (yield; 3.17 g, 67%, m.p. 411 K).
The highest peak in the final difference electron-density map is apart 0.94 Å from atom C3. Atom H9 (for NH) was located in difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically, with C—H = 0.95, 1.00, 0.99 and 0.98 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C15H15NO3 | F(000) = 544 |
Mr = 257.28 | Dx = 1.389 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3480 reflections |
a = 5.6811 (3) Å | θ = 1.6–28.3° |
b = 8.7378 (5) Å | µ = 0.10 mm−1 |
c = 24.8310 (14) Å | T = 100 K |
β = 93.208 (4)° | Rod-shaped, colorless |
V = 1230.69 (12) Å3 | 0.45 × 0.20 × 0.15 mm |
Z = 4 |
Bruker Kappa APEXII CCD area-detector diffractometer | 3004 independent reflections |
Radiation source: fine-focus sealed tube | 2145 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.059 |
ϕ and ω scans | θmax = 28.3°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −7→7 |
Tmin = 0.958, Tmax = 0.983 | k = −11→9 |
9148 measured reflections | l = −32→28 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.075 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.221 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.1083P)2 + 1.2571P] where P = (Fo2 + 2Fc2)/3 |
3004 reflections | (Δ/σ)max < 0.001 |
177 parameters | Δρmax = 1.25 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
C15H15NO3 | V = 1230.69 (12) Å3 |
Mr = 257.28 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.6811 (3) Å | µ = 0.10 mm−1 |
b = 8.7378 (5) Å | T = 100 K |
c = 24.8310 (14) Å | 0.45 × 0.20 × 0.15 mm |
β = 93.208 (4)° |
Bruker Kappa APEXII CCD area-detector diffractometer | 3004 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2145 reflections with I > 2σ(I) |
Tmin = 0.958, Tmax = 0.983 | Rint = 0.059 |
9148 measured reflections |
R[F2 > 2σ(F2)] = 0.075 | 0 restraints |
wR(F2) = 0.221 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 1.25 e Å−3 |
3004 reflections | Δρmin = −0.42 e Å−3 |
177 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.4546 (3) | 0.0609 (2) | 0.42291 (7) | 0.0294 (5) | |
O2 | −0.0619 (5) | 0.3051 (4) | 0.27554 (9) | 0.0775 (11) | |
O3 | −0.2959 (5) | 0.4520 (3) | 0.32045 (8) | 0.0603 (8) | |
C1 | 0.2768 (4) | 0.1407 (3) | 0.42209 (10) | 0.0245 (5) | |
C2 | 0.1783 (5) | 0.2133 (4) | 0.37051 (10) | 0.0316 (6) | |
H2A | 0.1988 | 0.1406 | 0.3405 | 0.038* | |
H2B | 0.2727 | 0.3056 | 0.3634 | 0.038* | |
C3 | −0.0831 (5) | 0.2597 (4) | 0.36991 (11) | 0.0355 (7) | |
H3 | −0.1758 | 0.1623 | 0.3689 | 0.043* | |
C4 | −0.1525 (4) | 0.3454 (3) | 0.41897 (10) | 0.0263 (6) | |
H4A | −0.0978 | 0.4527 | 0.4171 | 0.032* | |
H4B | −0.3264 | 0.3461 | 0.4202 | 0.032* | |
C4A | −0.0453 (4) | 0.2708 (3) | 0.46893 (10) | 0.0229 (5) | |
C5 | −0.2963 (4) | 0.3489 (3) | 0.54916 (10) | 0.0270 (6) | |
H5 | −0.4152 | 0.4041 | 0.5289 | 0.032* | |
C5A | −0.1107 (4) | 0.2805 (3) | 0.52332 (9) | 0.0232 (5) | |
C6 | −0.3046 (5) | 0.3353 (3) | 0.60418 (11) | 0.0313 (6) | |
H6 | −0.4315 | 0.3802 | 0.6219 | 0.038* | |
C7 | −0.1266 (5) | 0.2553 (3) | 0.63473 (10) | 0.0314 (6) | |
H7 | −0.1334 | 0.2502 | 0.6728 | 0.038* | |
C8 | 0.0550 (5) | 0.1850 (3) | 0.61069 (10) | 0.0283 (6) | |
H8 | 0.1737 | 0.1313 | 0.6315 | 0.034* | |
C8A | 0.0608 (4) | 0.1948 (3) | 0.55452 (10) | 0.0243 (5) | |
N9 | 0.2174 (4) | 0.1343 (3) | 0.52100 (8) | 0.0240 (5) | |
H9 | 0.335 (7) | 0.082 (4) | 0.5280 (15) | 0.050 (11)* | |
C9A | 0.1539 (4) | 0.1807 (3) | 0.46917 (9) | 0.0233 (5) | |
C10 | −0.1422 (5) | 0.3404 (4) | 0.31657 (11) | 0.0343 (7) | |
C11 | −0.3501 (8) | 0.5424 (4) | 0.27171 (14) | 0.0588 (11) | |
H11A | −0.3926 | 0.6478 | 0.2821 | 0.071* | |
H11B | −0.2082 | 0.5483 | 0.2504 | 0.071* | |
C12 | −0.5423 (7) | 0.4765 (6) | 0.23878 (18) | 0.0713 (13) | |
H12A | −0.5770 | 0.5416 | 0.2072 | 0.107* | |
H12B | −0.6825 | 0.4693 | 0.2599 | 0.107* | |
H12C | −0.4976 | 0.3741 | 0.2269 | 0.107* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0278 (9) | 0.0346 (11) | 0.0253 (9) | 0.0038 (8) | −0.0018 (7) | 0.0018 (8) |
O2 | 0.0752 (18) | 0.139 (3) | 0.0185 (10) | 0.0649 (19) | 0.0037 (11) | 0.0088 (13) |
O3 | 0.103 (2) | 0.0541 (16) | 0.0224 (10) | 0.0415 (15) | −0.0067 (11) | 0.0049 (10) |
C1 | 0.0240 (11) | 0.0279 (14) | 0.0213 (11) | −0.0035 (10) | −0.0028 (9) | 0.0015 (10) |
C2 | 0.0282 (13) | 0.0451 (18) | 0.0215 (12) | 0.0037 (12) | 0.0013 (10) | 0.0077 (11) |
C3 | 0.0433 (16) | 0.0393 (18) | 0.0234 (13) | 0.0103 (13) | −0.0034 (11) | −0.0001 (11) |
C4 | 0.0259 (12) | 0.0319 (15) | 0.0211 (11) | 0.0004 (11) | 0.0000 (9) | 0.0074 (10) |
C4A | 0.0244 (11) | 0.0230 (13) | 0.0209 (11) | −0.0034 (10) | −0.0032 (9) | 0.0035 (9) |
C5 | 0.0274 (12) | 0.0279 (14) | 0.0254 (12) | −0.0009 (10) | −0.0016 (9) | 0.0029 (10) |
C5A | 0.0267 (12) | 0.0223 (13) | 0.0200 (11) | −0.0048 (10) | −0.0037 (9) | 0.0025 (9) |
C6 | 0.0334 (13) | 0.0349 (16) | 0.0259 (13) | 0.0017 (12) | 0.0033 (10) | −0.0001 (11) |
C7 | 0.0415 (15) | 0.0333 (16) | 0.0193 (11) | −0.0027 (12) | −0.0009 (10) | 0.0013 (11) |
C8 | 0.0353 (13) | 0.0285 (15) | 0.0203 (12) | −0.0019 (11) | −0.0062 (10) | 0.0020 (10) |
C8A | 0.0268 (12) | 0.0240 (13) | 0.0213 (11) | −0.0033 (10) | −0.0040 (9) | 0.0007 (10) |
N9 | 0.0278 (11) | 0.0250 (12) | 0.0186 (10) | 0.0007 (9) | −0.0043 (8) | 0.0003 (8) |
C9A | 0.0274 (12) | 0.0237 (13) | 0.0183 (11) | −0.0049 (10) | −0.0035 (9) | 0.0024 (9) |
C10 | 0.0376 (14) | 0.0441 (18) | 0.0207 (12) | 0.0060 (13) | −0.0035 (10) | 0.0014 (11) |
C11 | 0.101 (3) | 0.040 (2) | 0.0337 (17) | 0.013 (2) | −0.0184 (18) | 0.0118 (14) |
C12 | 0.053 (2) | 0.083 (3) | 0.076 (3) | −0.005 (2) | −0.022 (2) | 0.041 (2) |
O1—C1 | 1.227 (3) | C6—C5 | 1.375 (4) |
O2—C10 | 1.180 (3) | C6—H6 | 0.9500 |
O3—C10 | 1.315 (4) | C7—C6 | 1.415 (4) |
O3—C11 | 1.464 (4) | C7—C8 | 1.366 (4) |
C1—C9A | 1.438 (3) | C7—H7 | 0.9500 |
C2—C1 | 1.508 (3) | C8—C8A | 1.400 (3) |
C2—H2A | 0.9900 | C8—H8 | 0.9500 |
C2—H2B | 0.9900 | C8A—N9 | 1.359 (3) |
C3—C2 | 1.539 (4) | C8A—C5A | 1.423 (3) |
C3—C4 | 1.501 (4) | N9—H9 | 0.82 (4) |
C3—C10 | 1.521 (4) | C9A—C4A | 1.378 (4) |
C3—H3 | 1.0000 | C9A—N9 | 1.378 (3) |
C4—C4A | 1.500 (3) | C11—C12 | 1.446 (6) |
C4—H4A | 0.9900 | C11—H11A | 0.9900 |
C4—H4B | 0.9900 | C11—H11B | 0.9900 |
C5—C5A | 1.399 (4) | C12—H12A | 0.9800 |
C5—H5 | 0.9500 | C12—H12B | 0.9800 |
C5A—C4A | 1.423 (3) | C12—H12C | 0.9800 |
C10—O3—C11 | 116.7 (3) | C5—C6—H6 | 119.6 |
O1—C1—C2 | 121.3 (2) | C7—C6—H6 | 119.6 |
O1—C1—C9A | 124.2 (2) | C6—C7—H7 | 119.3 |
C9A—C1—C2 | 114.5 (2) | C8—C7—C6 | 121.5 (2) |
C1—C2—C3 | 115.5 (2) | C8—C7—H7 | 119.3 |
C1—C2—H2A | 108.4 | C7—C8—C8A | 118.0 (2) |
C1—C2—H2B | 108.4 | C7—C8—H8 | 121.0 |
C3—C2—H2A | 108.4 | C8A—C8—H8 | 121.0 |
C3—C2—H2B | 108.4 | N9—C8A—C5A | 108.9 (2) |
H2A—C2—H2B | 107.5 | N9—C8A—C8 | 129.8 (2) |
C2—C3—H3 | 106.4 | C8—C8A—C5A | 121.4 (2) |
C4—C3—C2 | 114.9 (2) | C8A—N9—C9A | 108.1 (2) |
C4—C3—C10 | 114.8 (2) | C8A—N9—H9 | 130 (3) |
C4—C3—H3 | 106.4 | C9A—N9—H9 | 122 (3) |
C10—C3—C2 | 107.3 (2) | N9—C9A—C1 | 125.0 (2) |
C10—C3—H3 | 106.4 | C4A—C9A—N9 | 110.1 (2) |
C3—C4—H4A | 109.7 | C4A—C9A—C1 | 124.8 (2) |
C3—C4—H4B | 109.7 | O2—C10—O3 | 123.2 (3) |
C4A—C4—C3 | 110.0 (2) | O2—C10—C3 | 123.6 (3) |
C4A—C4—H4A | 109.7 | O3—C10—C3 | 113.3 (2) |
C4A—C4—H4B | 109.7 | O3—C11—H11A | 109.3 |
H4A—C4—H4B | 108.2 | O3—C11—H11B | 109.3 |
C5A—C4A—C4 | 130.1 (2) | C12—C11—O3 | 111.7 (3) |
C9A—C4A—C4 | 123.2 (2) | C12—C11—H11A | 109.3 |
C9A—C4A—C5A | 106.7 (2) | C12—C11—H11B | 109.3 |
C5A—C5—H5 | 120.4 | H11A—C11—H11B | 107.9 |
C6—C5—C5A | 119.2 (2) | C11—C12—H12A | 109.5 |
C6—C5—H5 | 120.4 | C11—C12—H12B | 109.5 |
C4A—C5A—C8A | 106.1 (2) | C11—C12—H12C | 109.5 |
C5—C5A—C4A | 134.8 (2) | H12A—C12—H12B | 109.5 |
C5—C5A—C8A | 119.1 (2) | H12A—C12—H12C | 109.5 |
C5—C6—C7 | 120.8 (3) | H12B—C12—H12C | 109.5 |
C11—O3—C10—O2 | −5.3 (5) | C5—C5A—C4A—C4 | 5.2 (5) |
C11—O3—C10—C3 | 175.9 (3) | C5—C5A—C4A—C9A | −177.5 (3) |
C10—O3—C11—C12 | 88.6 (5) | C8A—C5A—C4A—C4 | −176.3 (3) |
O1—C1—C9A—N9 | −0.6 (4) | C8A—C5A—C4A—C9A | 1.0 (3) |
O1—C1—C9A—C4A | 179.6 (2) | C7—C6—C5—C5A | 0.9 (4) |
C2—C1—C9A—N9 | −176.9 (2) | C8—C7—C6—C5 | −2.0 (4) |
C2—C1—C9A—C4A | 3.2 (4) | C6—C7—C8—C8A | 0.2 (4) |
C3—C2—C1—O1 | 158.9 (3) | C7—C8—C8A—N9 | −178.9 (3) |
C3—C2—C1—C9A | −24.5 (4) | C7—C8—C8A—C5A | 2.7 (4) |
C4—C3—C2—C1 | 46.9 (4) | N9—C8A—C5A—C4A | −1.2 (3) |
C10—C3—C2—C1 | 175.9 (2) | N9—C8A—C5A—C5 | 177.5 (2) |
C2—C3—C4—C4A | −44.0 (3) | C8—C8A—C5A—C4A | 177.5 (2) |
C10—C3—C4—C4A | −169.1 (2) | C8—C8A—C5A—C5 | −3.7 (4) |
C2—C3—C10—O2 | 36.0 (5) | C8—C8A—N9—C9A | −177.6 (3) |
C2—C3—C10—O3 | −145.3 (3) | C5A—C8A—N9—C9A | 1.0 (3) |
C4—C3—C10—O2 | 165.0 (3) | C1—C9A—N9—C8A | 179.8 (2) |
C4—C3—C10—O3 | −16.3 (4) | C4A—C9A—N9—C8A | −0.4 (3) |
C3—C4—C4A—C5A | −159.6 (3) | N9—C9A—C4A—C4 | 177.1 (2) |
C3—C4—C4A—C9A | 23.5 (4) | N9—C9A—C4A—C5A | −0.4 (3) |
C6—C5—C5A—C4A | −179.8 (3) | C1—C9A—C4A—C4 | −3.1 (4) |
C6—C5—C5A—C8A | 1.8 (4) | C1—C9A—C4A—C5A | 179.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N9—H9···O1i | 0.82 (4) | 2.08 (4) | 2.834 (3) | 154 (4) |
C4—H4A···Cg3ii | 0.99 | 2.75 | 3.727 (3) | 171 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | C15H15NO3 |
Mr | 257.28 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 5.6811 (3), 8.7378 (5), 24.8310 (14) |
β (°) | 93.208 (4) |
V (Å3) | 1230.69 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.45 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.958, 0.983 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9148, 3004, 2145 |
Rint | 0.059 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.075, 0.221, 1.05 |
No. of reflections | 3004 |
No. of parameters | 177 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.25, −0.42 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N9—H9···O1i | 0.82 (4) | 2.08 (4) | 2.834 (3) | 154 (4) |
C4—H4A···Cg3ii | 0.99 | 2.75 | 3.727 (3) | 171 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+2, −z. |
Acknowledgements
The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.
References
Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Fransworth, chs. 7 and 8. New York: Marcel Decker. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Çaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913–o3914. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chakraborty, D. P. & Roy, S. (1991). Progress in the Chemistry of Organic Natural Products, edited by W. Herz, G. W. Kirby, W. Steglich & Ch. Tamm, Vol. 57, pp. 71–152. Wien, New York: Springer-Verlag. Google Scholar
Chang, C. E. (1977). Flora of Taiwan, Vol. 3, pp. 520–523. Tapei, Taiwan: Poch Publishing Co. Ltd. Google Scholar
Ergün, Y., Patir, S. & Okay, G. (2004). Synth. Commun. 34, 435–442. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kondo, S., Katayama, M. & Marumo, S. (1986). J. Antibiot. 39, 727–730. CrossRef CAS PubMed Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press. Google Scholar
Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Te Paske, M. R., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. (1989a). J. Org. Chem. 54, 4743–4746. CrossRef CAS Web of Science Google Scholar
Te Paske, M. R., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. (1989b). Tetrahedron Lett. 30, 5965–5968. CrossRef CAS Web of Science Google Scholar
Uludağ, N., Öztürk, A., Hökelek, T. & Erdoğan, Ü. I. (2009). Acta Cryst. E65, o595–o596. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Tetrahydrocarbazole derivatives can be considered to be synthetic precursors of cyclic indole-type alkaloids of biological interest (Abraham, 1975; Phillipson & Zenk, 1980; Saxton, 1983). The title compound was used in the synthesis of the precursor compound for the synthesis of anti-tumor drug ellipticine (Ergün et al., 2004). Murraya L. (Rutaceae) is a genus of shrubs or small trees from Southern Asia (Chang, 1977). The main constituent of this genus include carbazole alkaloids (Chakraborty & Roy, 1991). Several biological properties have been reported for carbazole alkaloids including antibiotic, cytotoxic and antiviral activities (Kondo et al., 1986; Te Paske et al., 1989a,b). The title compound may also be used as a precursor in the synthesis of Murraya alkaloids. The present study was undertaken to ascertain its crystal structure.
The molecule of the title compound (Fig. 1) contains a carbazole skeleton with a carboxyethyl group at position 3, where the bond lengths (Allen et al., 1987) and angles are within normal ranges.
An examination of the deviations from the least-squares planes through individual rings shows that rings B (C4a/C5a/C8a/N9/C9a) and C (C5a/C5—C8/C8a) are nearly coplanar [with a maximum deviation of -0.028 (3) Å for atom C4a] with dihedral angle of A/B = 1.95 (8)°. Ring A (C1—C4/C4a/C9a) adopts envelope conformation with atom C3 displaced by 0.527 (3) Å from the plane of the other rings atoms, as in 3a,4,10,10b-tetrahydro-2H-furo[2,3-a]carbazol-5(3H)-one (Çaylak et al., 2007) and 3,3-ethylenedithio-3,3a,4,5,10,10b-hexahydro-2H-furo[2,3-a]carbazole (Uludağ et al., 2009).
In the crystal structure, pairs of strong intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into centosymmetric dimers with R22(10) ring motifs (Bernstein et al., 1995) (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contact between the pyrrole rings, Cg2—Cg2i, [symmetry code:(i) -x, 1 - y, -z, where Cg2 is centroid of the ring B (C4a/C5a/C8a/N9/C9a)] may further stabilize the structure, with centroid-centroid distance of 3.776 (2) Å. There also exists a weak C—H···π interaction (Table 1).