organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1702-o1703

Ethyl 1-oxo-1,2,3,4-tetra­hydro-9H-carbazole-3-carboxyl­ate

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Chemistry, Faculty of Arts and Sciences, Dokuz Eylül University, Tınaztepe, 35160 Buca-zmir, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 19 June 2009; accepted 22 June 2009; online 27 June 2009)

The title compound, C15H15NO3, contains a carbazole skeleton with an ethoxy­carbonyl group at the 3 position. In the indole ring system, the benzene and pyrrole rings are nearly coplanar, forming a dihedral angle of 1.95 (8)°. The cyclo­hexenone ring has an envelope conformation. In the crystal structure, pairs of strong N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers with R22(10) ring motifs. ππ contacts between parallel pyrrole rings [centroid–centroid distance = 3.776 (2) Å] may further stabilize the structure. A weak C—H⋯π inter­action is also observed.

Related literature

For tetrahydrocarbazole derivatives as synthetic precursors of cyclic indole-type alkaloids of biological interest, see: Abraham (1975[Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Fransworth, chs. 7 and 8. New York: Marcel Decker.]); Phillipson & Zenk (1980[Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.]); Saxton (1983[Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.]). The title compound is used in the synthesis of a precursor for the synthesis of the anti-tumor drug ellipticine (Ergün et al., 2004[Ergün, Y., Patir, S. & Okay, G. (2004). Synth. Commun. 34, 435-442.]). Murraya L. (Rutaceae) is a genus of shrubs or small trees from Southern Asia (Chang, 1977[Chang, C. E. (1977). Flora of Taiwan, Vol. 3, pp. 520-523. Tapei, Taiwan: Poch Publishing Co. Ltd.]) from which carbazole alkaloids have been isolated (Chakraborty & Roy, 1991[Chakraborty, D. P. & Roy, S. (1991). Progress in the Chemistry of Organic Natural Products, edited by W. Herz, G. W. Kirby, W. Steglich & Ch. Tamm, Vol. 57, pp. 71-152. Wien, New York: Springer-Verlag.]). For the biological activity of carbazole alkaloids, see: Kondo et al. (1986[Kondo, S., Katayama, M. & Marumo, S. (1986). J. Antibiot. 39, 727-730.]); Te Paske et al. (1989a[Te Paske, M. R., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. (1989a). J. Org. Chem. 54, 4743-4746.],b[Te Paske, M. R., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. (1989b). Tetrahedron Lett. 30, 5965-5968.]). For related structures, see: Çaylak et al. (2007[Çaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913-o3914.]); Uludağ et al. (2009[Uludağ, N., Öztürk, A., Hökelek, T. & Erdoğan, Ü. I. (2009). Acta Cryst. E65, o595-o596.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring-motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO3

  • Mr = 257.28

  • Monoclinic, P 21 /c

  • a = 5.6811 (3) Å

  • b = 8.7378 (5) Å

  • c = 24.8310 (14) Å

  • β = 93.208 (4)°

  • V = 1230.69 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.45 × 0.20 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.983

  • 9148 measured reflections

  • 3004 independent reflections

  • 2145 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.221

  • S = 1.05

  • 3004 reflections

  • 177 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O1i 0.82 (4) 2.08 (4) 2.834 (3) 154 (4)
C4—H4ACg3ii 0.99 2.75 3.727 (3) 171
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+2, -z. Cg3 is the centroid of the C5A/C5–C8/C8A ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Tetrahydrocarbazole derivatives can be considered to be synthetic precursors of cyclic indole-type alkaloids of biological interest (Abraham, 1975; Phillipson & Zenk, 1980; Saxton, 1983). The title compound was used in the synthesis of the precursor compound for the synthesis of anti-tumor drug ellipticine (Ergün et al., 2004). Murraya L. (Rutaceae) is a genus of shrubs or small trees from Southern Asia (Chang, 1977). The main constituent of this genus include carbazole alkaloids (Chakraborty & Roy, 1991). Several biological properties have been reported for carbazole alkaloids including antibiotic, cytotoxic and antiviral activities (Kondo et al., 1986; Te Paske et al., 1989a,b). The title compound may also be used as a precursor in the synthesis of Murraya alkaloids. The present study was undertaken to ascertain its crystal structure.

The molecule of the title compound (Fig. 1) contains a carbazole skeleton with a carboxyethyl group at position 3, where the bond lengths (Allen et al., 1987) and angles are within normal ranges.

An examination of the deviations from the least-squares planes through individual rings shows that rings B (C4a/C5a/C8a/N9/C9a) and C (C5a/C5—C8/C8a) are nearly coplanar [with a maximum deviation of -0.028 (3) Å for atom C4a] with dihedral angle of A/B = 1.95 (8)°. Ring A (C1—C4/C4a/C9a) adopts envelope conformation with atom C3 displaced by 0.527 (3) Å from the plane of the other rings atoms, as in 3a,4,10,10b-tetrahydro-2H-furo[2,3-a]carbazol-5(3H)-one (Çaylak et al., 2007) and 3,3-ethylenedithio-3,3a,4,5,10,10b-hexahydro-2H-furo[2,3-a]carbazole (Uludağ et al., 2009).

In the crystal structure, pairs of strong intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into centosymmetric dimers with R22(10) ring motifs (Bernstein et al., 1995) (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contact between the pyrrole rings, Cg2—Cg2i, [symmetry code:(i) -x, 1 - y, -z, where Cg2 is centroid of the ring B (C4a/C5a/C8a/N9/C9a)] may further stabilize the structure, with centroid-centroid distance of 3.776 (2) Å. There also exists a weak C—H···π interaction (Table 1).

Related literature top

For general background, see: Abraham (1975); Phillipson & Zenk (1980); Saxton (1983); Ergün et al. (2004); Chang (1977); Chakraborty & Roy (1991); Kondo et al. (1986); Te Paske et al. (1989a,b). For related structures, see: Çaylak et al. (2007); Uludağ et al. (2009). For bond-length data, see: Allen et al. (1987). For ring-motifs, see: Bernstein et al. (1995). Cg3 is the centroid of the C5A/C5–C8/C8A ring.

Experimental top

For the preparation of the title compound, a solution of ethyl 1,2,3,4-tetrahydro-9H-carbazole-3-carboxylate (5.00 g, 20.5 mmol) in methanol (25 ml) was added dropwise to a solution of periodic acid (9.35 g, 41.0 mmol) in methanol-water (1:1, 100 ml) at 273 K. The reaction mixture was stirred for 1 h at 273 K, then stirring was continued for a further 1 h at room temperature. The solvent was evaporated, then the residue was dissolved in chloroform and washed first with sodium carbonate (10%, 50 ml) and then with sodium bisulfite (10%, 50 ml). The organic layer was dried over anhydrous magnesium sulfate and the solvent was evaporated. The residue was chromatographed on silica gel using ethyl acetate and crystallized from methanol (yield; 3.17 g, 67%, m.p. 411 K).

Refinement top

The highest peak in the final difference electron-density map is apart 0.94 Å from atom C3. Atom H9 (for NH) was located in difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically, with C—H = 0.95, 1.00, 0.99 and 0.98 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram for the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
Ethyl 1-oxo-1,2,3,4-tetrahydro-9H-carbazole-3-carboxylate top
Crystal data top
C15H15NO3F(000) = 544
Mr = 257.28Dx = 1.389 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3480 reflections
a = 5.6811 (3) Åθ = 1.6–28.3°
b = 8.7378 (5) ŵ = 0.10 mm1
c = 24.8310 (14) ÅT = 100 K
β = 93.208 (4)°Rod-shaped, colorless
V = 1230.69 (12) Å30.45 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3004 independent reflections
Radiation source: fine-focus sealed tube2145 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.958, Tmax = 0.983k = 119
9148 measured reflectionsl = 3228
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1083P)2 + 1.2571P]
where P = (Fo2 + 2Fc2)/3
3004 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 1.25 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C15H15NO3V = 1230.69 (12) Å3
Mr = 257.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.6811 (3) ŵ = 0.10 mm1
b = 8.7378 (5) ÅT = 100 K
c = 24.8310 (14) Å0.45 × 0.20 × 0.15 mm
β = 93.208 (4)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3004 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2145 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.983Rint = 0.059
9148 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.221H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.25 e Å3
3004 reflectionsΔρmin = 0.42 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4546 (3)0.0609 (2)0.42291 (7)0.0294 (5)
O20.0619 (5)0.3051 (4)0.27554 (9)0.0775 (11)
O30.2959 (5)0.4520 (3)0.32045 (8)0.0603 (8)
C10.2768 (4)0.1407 (3)0.42209 (10)0.0245 (5)
C20.1783 (5)0.2133 (4)0.37051 (10)0.0316 (6)
H2A0.19880.14060.34050.038*
H2B0.27270.30560.36340.038*
C30.0831 (5)0.2597 (4)0.36991 (11)0.0355 (7)
H30.17580.16230.36890.043*
C40.1525 (4)0.3454 (3)0.41897 (10)0.0263 (6)
H4A0.09780.45270.41710.032*
H4B0.32640.34610.42020.032*
C4A0.0453 (4)0.2708 (3)0.46893 (10)0.0229 (5)
C50.2963 (4)0.3489 (3)0.54916 (10)0.0270 (6)
H50.41520.40410.52890.032*
C5A0.1107 (4)0.2805 (3)0.52332 (9)0.0232 (5)
C60.3046 (5)0.3353 (3)0.60418 (11)0.0313 (6)
H60.43150.38020.62190.038*
C70.1266 (5)0.2553 (3)0.63473 (10)0.0314 (6)
H70.13340.25020.67280.038*
C80.0550 (5)0.1850 (3)0.61069 (10)0.0283 (6)
H80.17370.13130.63150.034*
C8A0.0608 (4)0.1948 (3)0.55452 (10)0.0243 (5)
N90.2174 (4)0.1343 (3)0.52100 (8)0.0240 (5)
H90.335 (7)0.082 (4)0.5280 (15)0.050 (11)*
C9A0.1539 (4)0.1807 (3)0.46917 (9)0.0233 (5)
C100.1422 (5)0.3404 (4)0.31657 (11)0.0343 (7)
C110.3501 (8)0.5424 (4)0.27171 (14)0.0588 (11)
H11A0.39260.64780.28210.071*
H11B0.20820.54830.25040.071*
C120.5423 (7)0.4765 (6)0.23878 (18)0.0713 (13)
H12A0.57700.54160.20720.107*
H12B0.68250.46930.25990.107*
H12C0.49760.37410.22690.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0278 (9)0.0346 (11)0.0253 (9)0.0038 (8)0.0018 (7)0.0018 (8)
O20.0752 (18)0.139 (3)0.0185 (10)0.0649 (19)0.0037 (11)0.0088 (13)
O30.103 (2)0.0541 (16)0.0224 (10)0.0415 (15)0.0067 (11)0.0049 (10)
C10.0240 (11)0.0279 (14)0.0213 (11)0.0035 (10)0.0028 (9)0.0015 (10)
C20.0282 (13)0.0451 (18)0.0215 (12)0.0037 (12)0.0013 (10)0.0077 (11)
C30.0433 (16)0.0393 (18)0.0234 (13)0.0103 (13)0.0034 (11)0.0001 (11)
C40.0259 (12)0.0319 (15)0.0211 (11)0.0004 (11)0.0000 (9)0.0074 (10)
C4A0.0244 (11)0.0230 (13)0.0209 (11)0.0034 (10)0.0032 (9)0.0035 (9)
C50.0274 (12)0.0279 (14)0.0254 (12)0.0009 (10)0.0016 (9)0.0029 (10)
C5A0.0267 (12)0.0223 (13)0.0200 (11)0.0048 (10)0.0037 (9)0.0025 (9)
C60.0334 (13)0.0349 (16)0.0259 (13)0.0017 (12)0.0033 (10)0.0001 (11)
C70.0415 (15)0.0333 (16)0.0193 (11)0.0027 (12)0.0009 (10)0.0013 (11)
C80.0353 (13)0.0285 (15)0.0203 (12)0.0019 (11)0.0062 (10)0.0020 (10)
C8A0.0268 (12)0.0240 (13)0.0213 (11)0.0033 (10)0.0040 (9)0.0007 (10)
N90.0278 (11)0.0250 (12)0.0186 (10)0.0007 (9)0.0043 (8)0.0003 (8)
C9A0.0274 (12)0.0237 (13)0.0183 (11)0.0049 (10)0.0035 (9)0.0024 (9)
C100.0376 (14)0.0441 (18)0.0207 (12)0.0060 (13)0.0035 (10)0.0014 (11)
C110.101 (3)0.040 (2)0.0337 (17)0.013 (2)0.0184 (18)0.0118 (14)
C120.053 (2)0.083 (3)0.076 (3)0.005 (2)0.022 (2)0.041 (2)
Geometric parameters (Å, º) top
O1—C11.227 (3)C6—C51.375 (4)
O2—C101.180 (3)C6—H60.9500
O3—C101.315 (4)C7—C61.415 (4)
O3—C111.464 (4)C7—C81.366 (4)
C1—C9A1.438 (3)C7—H70.9500
C2—C11.508 (3)C8—C8A1.400 (3)
C2—H2A0.9900C8—H80.9500
C2—H2B0.9900C8A—N91.359 (3)
C3—C21.539 (4)C8A—C5A1.423 (3)
C3—C41.501 (4)N9—H90.82 (4)
C3—C101.521 (4)C9A—C4A1.378 (4)
C3—H31.0000C9A—N91.378 (3)
C4—C4A1.500 (3)C11—C121.446 (6)
C4—H4A0.9900C11—H11A0.9900
C4—H4B0.9900C11—H11B0.9900
C5—C5A1.399 (4)C12—H12A0.9800
C5—H50.9500C12—H12B0.9800
C5A—C4A1.423 (3)C12—H12C0.9800
C10—O3—C11116.7 (3)C5—C6—H6119.6
O1—C1—C2121.3 (2)C7—C6—H6119.6
O1—C1—C9A124.2 (2)C6—C7—H7119.3
C9A—C1—C2114.5 (2)C8—C7—C6121.5 (2)
C1—C2—C3115.5 (2)C8—C7—H7119.3
C1—C2—H2A108.4C7—C8—C8A118.0 (2)
C1—C2—H2B108.4C7—C8—H8121.0
C3—C2—H2A108.4C8A—C8—H8121.0
C3—C2—H2B108.4N9—C8A—C5A108.9 (2)
H2A—C2—H2B107.5N9—C8A—C8129.8 (2)
C2—C3—H3106.4C8—C8A—C5A121.4 (2)
C4—C3—C2114.9 (2)C8A—N9—C9A108.1 (2)
C4—C3—C10114.8 (2)C8A—N9—H9130 (3)
C4—C3—H3106.4C9A—N9—H9122 (3)
C10—C3—C2107.3 (2)N9—C9A—C1125.0 (2)
C10—C3—H3106.4C4A—C9A—N9110.1 (2)
C3—C4—H4A109.7C4A—C9A—C1124.8 (2)
C3—C4—H4B109.7O2—C10—O3123.2 (3)
C4A—C4—C3110.0 (2)O2—C10—C3123.6 (3)
C4A—C4—H4A109.7O3—C10—C3113.3 (2)
C4A—C4—H4B109.7O3—C11—H11A109.3
H4A—C4—H4B108.2O3—C11—H11B109.3
C5A—C4A—C4130.1 (2)C12—C11—O3111.7 (3)
C9A—C4A—C4123.2 (2)C12—C11—H11A109.3
C9A—C4A—C5A106.7 (2)C12—C11—H11B109.3
C5A—C5—H5120.4H11A—C11—H11B107.9
C6—C5—C5A119.2 (2)C11—C12—H12A109.5
C6—C5—H5120.4C11—C12—H12B109.5
C4A—C5A—C8A106.1 (2)C11—C12—H12C109.5
C5—C5A—C4A134.8 (2)H12A—C12—H12B109.5
C5—C5A—C8A119.1 (2)H12A—C12—H12C109.5
C5—C6—C7120.8 (3)H12B—C12—H12C109.5
C11—O3—C10—O25.3 (5)C5—C5A—C4A—C45.2 (5)
C11—O3—C10—C3175.9 (3)C5—C5A—C4A—C9A177.5 (3)
C10—O3—C11—C1288.6 (5)C8A—C5A—C4A—C4176.3 (3)
O1—C1—C9A—N90.6 (4)C8A—C5A—C4A—C9A1.0 (3)
O1—C1—C9A—C4A179.6 (2)C7—C6—C5—C5A0.9 (4)
C2—C1—C9A—N9176.9 (2)C8—C7—C6—C52.0 (4)
C2—C1—C9A—C4A3.2 (4)C6—C7—C8—C8A0.2 (4)
C3—C2—C1—O1158.9 (3)C7—C8—C8A—N9178.9 (3)
C3—C2—C1—C9A24.5 (4)C7—C8—C8A—C5A2.7 (4)
C4—C3—C2—C146.9 (4)N9—C8A—C5A—C4A1.2 (3)
C10—C3—C2—C1175.9 (2)N9—C8A—C5A—C5177.5 (2)
C2—C3—C4—C4A44.0 (3)C8—C8A—C5A—C4A177.5 (2)
C10—C3—C4—C4A169.1 (2)C8—C8A—C5A—C53.7 (4)
C2—C3—C10—O236.0 (5)C8—C8A—N9—C9A177.6 (3)
C2—C3—C10—O3145.3 (3)C5A—C8A—N9—C9A1.0 (3)
C4—C3—C10—O2165.0 (3)C1—C9A—N9—C8A179.8 (2)
C4—C3—C10—O316.3 (4)C4A—C9A—N9—C8A0.4 (3)
C3—C4—C4A—C5A159.6 (3)N9—C9A—C4A—C4177.1 (2)
C3—C4—C4A—C9A23.5 (4)N9—C9A—C4A—C5A0.4 (3)
C6—C5—C5A—C4A179.8 (3)C1—C9A—C4A—C43.1 (4)
C6—C5—C5A—C8A1.8 (4)C1—C9A—C4A—C5A179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O1i0.82 (4)2.08 (4)2.834 (3)154 (4)
C4—H4A···Cg3ii0.992.753.727 (3)171
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC15H15NO3
Mr257.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.6811 (3), 8.7378 (5), 24.8310 (14)
β (°) 93.208 (4)
V3)1230.69 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.20 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.958, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
9148, 3004, 2145
Rint0.059
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.221, 1.05
No. of reflections3004
No. of parameters177
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.25, 0.42

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O1i0.82 (4)2.08 (4)2.834 (3)154 (4)
C4—H4A···Cg3ii0.992.753.727 (3)171
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+2, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

References

First citationAbraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Fransworth, chs. 7 and 8. New York: Marcel Decker.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913–o3914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakraborty, D. P. & Roy, S. (1991). Progress in the Chemistry of Organic Natural Products, edited by W. Herz, G. W. Kirby, W. Steglich & Ch. Tamm, Vol. 57, pp. 71–152. Wien, New York: Springer-Verlag.  Google Scholar
First citationChang, C. E. (1977). Flora of Taiwan, Vol. 3, pp. 520–523. Tapei, Taiwan: Poch Publishing Co. Ltd.  Google Scholar
First citationErgün, Y., Patir, S. & Okay, G. (2004). Synth. Commun. 34, 435–442.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKondo, S., Katayama, M. & Marumo, S. (1986). J. Antibiot. 39, 727–730.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPhillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.  Google Scholar
First citationSaxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTe Paske, M. R., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. (1989a). J. Org. Chem. 54, 4743–4746.  CrossRef CAS Web of Science Google Scholar
First citationTe Paske, M. R., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. (1989b). Tetrahedron Lett. 30, 5965–5968.  CrossRef CAS Web of Science Google Scholar
First citationUludağ, N., Öztürk, A., Hökelek, T. & Erdoğan, Ü. I. (2009). Acta Cryst. E65, o595–o596.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1702-o1703
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds