organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[2-(4-Fluoro­benzyl­­idene)hydrazinocarbon­yl]-N-iso­propyl­benzamide

aDepartment of Applied Chemistry, China Agriculture University, 100193 Beijing, People's Republic of China, and bCollege of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, People's Republic of China
*Correspondence e-mail: shangzho@cau.edu.cn

(Received 28 March 2009; accepted 10 June 2009; online 17 June 2009)

The title compound, C18H18FN3O2, adopts a trans conformation with respect to the C=N double bond. The dihedral angle between the two benzene rings is: 59.73 (6)°. Two independent N—H⋯O hydrogen bonds link the mol­ecules into layers parallel to (101).

Related literature

For biologically active phthalic diamides, see: Coronado et al. (1994[Coronado, R., Morrissette, J., Sukhareva, M. & Vaughan, D. M. (1994). Am. J. Physiol. 266, 1485-1504.]); Tohnishi et al. (2000[Tohnishi, M., Nakao, H., Kohno, E., Nishida, T., Furuya, T., Shimizu, T., Seo, A., Sakata, K., Fujioka, S. & Kanno, H. (2000). Eur. Patent No. EP1006107.]). For the preparation of the title compound, see: Zaky (2002[Zaky, H. T. (2002). Heterocycl. Commun. 8, 355-360.]); Shigeru et al. (2003[Shigeru, N., Takeshi, S., Etsuko, M. & Yasuo, K. (2003). Synth. Commun. 33, 87-98.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18FN3O2

  • Mr = 327.35

  • Monoclinic, P 21 /n

  • a = 13.316 (3) Å

  • b = 8.8904 (18) Å

  • c = 14.102 (3) Å

  • β = 91.10 (3)°

  • V = 1669.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 123 K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi,1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.944, Tmax = 0.972

  • 15335 measured reflections

  • 3833 independent reflections

  • 2302 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.069

  • S = 1.02

  • 3833 reflections

  • 228 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O2i 0.875 (15) 2.127 (15) 2.9887 (16) 168.4 (14)
N1—H2⋯O1ii 0.850 (15) 1.976 (15) 2.8256 (16) 177.8 (15)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1.

Data collection: RAPID-AUTO (Rigaku, 2000[Rigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Molecular Structure Corporation and Rigaku, 2000[Molecular Structure Corporation and Rigaku (2000). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Phthalic diamides possess insecticidal properties due to their ability to activate ryanodine receptor (Coronado et al., 1994; Tohnishi et al., 2000). The title compound (I), a new phthalic diamide derivative, was synthesized by the condensation of N-aminophthalimide with 4-fluorobenzaldehyde followed by a ring-opening reaction using isopropyl amine (Zaky, 2002; Shigeru et al., 2003).

The molecular structure of the title compound is shown in Fig. 1. Molecule was proved to be a trans -isomer with respect to the C9=N2 double bond.

There are two independent N—H···O bonds (Table 1), which link molecules into the layers parallel to (101) plane (Fig. 2).

Related literature top

For biologically active phthalic diamides, see: Coronado et al. (1994); Tohnishi et al. (2000). For the preparation of the title compound, see: Zaky (2002); Shigeru et al. (2003).

Experimental top

To a solution of N-aminophthalimide (1.62 g, 10 mmol) and 4-fluorobenzaldehyde (1.24 g, 10 mmol) in 1,4-dioxane (100 ml), 12 N HCl (0.1 ml) was added at room temperature. After stirring for 5–10 min, a solution of isopropyl amine (1.16 g, 20 mmol) in 1,4-dioxane (10 ml) was added; the reaction mixture was stirred overnight at room temperature. After the solvent was evaporated under reduced pressure, the resulting mixture was dissolved in ethyl acetate (80 ml), washed with H2O (3×30 ml) and dried with anhydrous sodium sulfate to give the title compound (2.01 g, 61.5%). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of ethanol solution at room temperature over one week.

Refinement top

The H atoms bound to N atoms were located in a difference Fourier map and refined isotropically [N—H 0.850 (15), 0.875 (15) Å]. The remaining H atoms were positioned geometrically and included in the refinement in riding model approximation with C—H 0.95 (aromatic), 0.98 (methyl), 1.00 (methyne), and Uiso(H) = 1.2Ueq(C)[1.5Ueq(C) for methyl H atoms].

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2000); cell refinement: RAPID-AUTO (Rigaku, 2000); data reduction: CrystalStructure (Molecular Structure Corporation and Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I); displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small circles of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the [101] direction; hydrogen bonds are shown as dashed lines.
(E)-2-[2-(4-Fluorobenzylidene)hydrazinocarbonyl]-N- isopropylbenzamide top
Crystal data top
C18H18FN3O2F(000) = 688
Mr = 327.35Dx = 1.303 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 15335 reflections
a = 13.316 (3) Åθ = 2.1–27.5°
b = 8.8904 (18) ŵ = 0.09 mm1
c = 14.102 (3) ÅT = 123 K
β = 91.10 (3)°Block, colourless
V = 1669.2 (6) Å30.30 × 0.30 × 0.30 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3833 independent reflections
Radiation source: fine-focus sealed tube2302 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 2.1°
Ω scansh = 1717
Absorption correction: multi-scan
(ABSCOR; Higashi,1995)
k = 1111
Tmin = 0.944, Tmax = 0.972l = 1818
15335 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.015P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3833 reflectionsΔρmax = 0.24 e Å3
228 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0285 (8)
Crystal data top
C18H18FN3O2V = 1669.2 (6) Å3
Mr = 327.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.316 (3) ŵ = 0.09 mm1
b = 8.8904 (18) ÅT = 123 K
c = 14.102 (3) Å0.30 × 0.30 × 0.30 mm
β = 91.10 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3833 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi,1995)
2302 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.972Rint = 0.046
15335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.24 e Å3
3833 reflectionsΔρmin = 0.23 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.62786 (10)0.87434 (17)0.48465 (10)0.0197 (3)
C20.70864 (10)0.80962 (16)0.29308 (10)0.0179 (3)
C30.72241 (10)0.78555 (15)0.47071 (10)0.0168 (3)
C40.76143 (10)0.75512 (15)0.38154 (10)0.0162 (3)
C50.85500 (10)0.68578 (15)0.37629 (10)0.0197 (3)
H50.88190.66340.31600.024*
C60.90921 (11)0.64909 (16)0.45774 (11)0.0228 (4)
H60.97390.60500.45310.027*
C70.86928 (10)0.67651 (16)0.54567 (11)0.0236 (4)
H70.90570.64940.60170.028*
C80.77595 (10)0.74366 (16)0.55190 (10)0.0216 (4)
H80.74820.76130.61240.026*
C90.44987 (11)0.65483 (17)0.36494 (10)0.0222 (4)
H90.39900.72970.36280.027*
C100.43139 (10)0.50842 (17)0.32041 (10)0.0215 (4)
C110.35688 (11)0.49509 (19)0.24980 (11)0.0299 (4)
H110.31730.58030.23310.036*
C120.33975 (12)0.3594 (2)0.20378 (12)0.0384 (5)
H120.29040.35100.15450.046*
C130.39601 (13)0.2385 (2)0.23155 (12)0.0366 (5)
C140.46863 (12)0.24391 (18)0.30209 (11)0.0307 (4)
H140.50530.15650.32020.037*
C150.48647 (11)0.38099 (17)0.34587 (11)0.0237 (4)
H150.53710.38820.39400.028*
C160.66213 (10)0.75633 (16)0.12683 (10)0.0221 (4)
H160.61110.83690.13730.027*
C170.60856 (12)0.61917 (18)0.08583 (11)0.0326 (4)
H17A0.65740.53850.07580.049*
H17B0.57620.64580.02510.049*
H17C0.55760.58480.13010.049*
C180.74105 (11)0.81707 (18)0.05991 (11)0.0311 (4)
H18A0.77360.90530.08860.047*
H18B0.70870.84570.00040.047*
H18C0.79150.73920.04860.047*
F10.37958 (8)0.10376 (12)0.18747 (7)0.0603 (4)
N10.53997 (9)0.82179 (14)0.44990 (9)0.0204 (3)
N20.53387 (8)0.68275 (13)0.40673 (8)0.0196 (3)
N30.70850 (9)0.71718 (14)0.21866 (9)0.0214 (3)
O10.63114 (7)0.99350 (11)0.53105 (7)0.0257 (3)
O20.66866 (7)0.93655 (11)0.29200 (7)0.0217 (3)
H10.7381 (11)0.6294 (17)0.2210 (11)0.038 (5)*
H20.4879 (11)0.8765 (18)0.4542 (10)0.039 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0210 (8)0.0190 (8)0.0193 (9)0.0014 (7)0.0050 (6)0.0005 (7)
C20.0172 (8)0.0152 (8)0.0215 (9)0.0017 (7)0.0023 (6)0.0018 (7)
C30.0184 (7)0.0108 (7)0.0214 (8)0.0035 (6)0.0021 (6)0.0015 (6)
C40.0178 (8)0.0110 (7)0.0197 (8)0.0028 (6)0.0009 (6)0.0006 (7)
C50.0210 (8)0.0172 (8)0.0210 (9)0.0002 (7)0.0043 (6)0.0024 (7)
C60.0191 (8)0.0187 (8)0.0305 (10)0.0035 (7)0.0017 (7)0.0004 (7)
C70.0258 (8)0.0215 (8)0.0233 (9)0.0006 (7)0.0052 (7)0.0030 (7)
C80.0260 (8)0.0222 (8)0.0168 (8)0.0028 (7)0.0026 (6)0.0006 (7)
C90.0184 (8)0.0221 (9)0.0262 (9)0.0009 (7)0.0017 (7)0.0001 (7)
C100.0181 (8)0.0267 (9)0.0197 (9)0.0052 (7)0.0038 (6)0.0024 (7)
C110.0228 (9)0.0406 (10)0.0264 (10)0.0045 (8)0.0005 (7)0.0008 (8)
C120.0292 (10)0.0578 (13)0.0284 (11)0.0181 (10)0.0031 (8)0.0149 (10)
C130.0406 (11)0.0358 (11)0.0339 (11)0.0211 (9)0.0180 (8)0.0213 (9)
C140.0332 (10)0.0252 (9)0.0343 (10)0.0042 (8)0.0161 (8)0.0049 (8)
C150.0219 (8)0.0259 (9)0.0235 (9)0.0045 (7)0.0056 (7)0.0009 (8)
C160.0262 (9)0.0204 (8)0.0197 (9)0.0081 (7)0.0045 (7)0.0010 (7)
C170.0368 (10)0.0280 (9)0.0326 (10)0.0038 (8)0.0088 (8)0.0045 (8)
C180.0387 (10)0.0294 (9)0.0253 (10)0.0072 (8)0.0010 (7)0.0025 (8)
F10.0638 (7)0.0548 (7)0.0630 (8)0.0279 (6)0.0211 (6)0.0401 (6)
N10.0160 (7)0.0170 (7)0.0283 (8)0.0009 (6)0.0017 (6)0.0049 (6)
N20.0213 (7)0.0164 (6)0.0211 (7)0.0029 (6)0.0028 (5)0.0033 (6)
N30.0283 (8)0.0166 (7)0.0192 (7)0.0067 (6)0.0036 (6)0.0018 (6)
O10.0229 (6)0.0202 (6)0.0340 (7)0.0007 (5)0.0037 (5)0.0103 (5)
O20.0267 (6)0.0135 (5)0.0247 (6)0.0028 (5)0.0004 (5)0.0015 (5)
Geometric parameters (Å, º) top
C1—O11.2455 (16)C11—H110.9500
C1—N11.3438 (18)C12—C131.363 (2)
C1—C31.5022 (19)C12—H120.9500
C2—O21.2476 (16)C13—F11.3656 (18)
C2—N31.3330 (18)C13—C141.375 (2)
C2—C41.500 (2)C14—C151.385 (2)
C3—C81.3879 (19)C14—H140.9500
C3—C41.3964 (19)C15—H150.9500
C4—C51.3934 (18)C16—N31.4658 (18)
C5—C61.3836 (19)C16—C171.521 (2)
C5—H50.9500C16—C181.5247 (19)
C6—C71.380 (2)C16—H161.0000
C6—H60.9500C17—H17A0.9800
C7—C81.3831 (18)C17—H17B0.9800
C7—H70.9500C17—H17C0.9800
C8—H80.9500C18—H18A0.9800
C9—N21.2786 (17)C18—H18B0.9800
C9—C101.464 (2)C18—H18C0.9800
C9—H90.9500N1—N21.3796 (16)
C10—C151.393 (2)N1—H20.850 (15)
C10—C111.3972 (19)N3—H10.875 (15)
C11—C121.386 (2)
O1—C1—N1120.58 (13)C11—C12—H12121.1
O1—C1—C3119.65 (13)C12—C13—F1118.60 (17)
N1—C1—C3119.72 (13)C12—C13—C14123.75 (16)
O2—C2—N3123.63 (14)F1—C13—C14117.65 (18)
O2—C2—C4119.68 (13)C13—C14—C15117.74 (17)
N3—C2—C4116.68 (13)C13—C14—H14121.1
C8—C3—C4119.79 (13)C15—C14—H14121.1
C8—C3—C1116.84 (13)C14—C15—C10121.07 (15)
C4—C3—C1123.16 (13)C14—C15—H15119.5
C5—C4—C3118.82 (13)C10—C15—H15119.5
C5—C4—C2120.26 (13)N3—C16—C17109.39 (12)
C3—C4—C2120.64 (12)N3—C16—C18110.32 (12)
C6—C5—C4120.86 (14)C17—C16—C18111.86 (13)
C6—C5—H5119.6N3—C16—H16108.4
C4—C5—H5119.6C17—C16—H16108.4
C7—C6—C5120.02 (14)C18—C16—H16108.4
C7—C6—H6120.0C16—C17—H17A109.5
C5—C6—H6120.0C16—C17—H17B109.5
C6—C7—C8119.69 (14)H17A—C17—H17B109.5
C6—C7—H7120.2C16—C17—H17C109.5
C8—C7—H7120.2H17A—C17—H17C109.5
C7—C8—C3120.76 (13)H17B—C17—H17C109.5
C7—C8—H8119.6C16—C18—H18A109.5
C3—C8—H8119.6C16—C18—H18B109.5
N2—C9—C10120.58 (14)H18A—C18—H18B109.5
N2—C9—H9119.7C16—C18—H18C109.5
C10—C9—H9119.7H18A—C18—H18C109.5
C15—C10—C11118.54 (15)H18B—C18—H18C109.5
C15—C10—C9121.96 (14)C1—N1—N2121.06 (13)
C11—C10—C9119.49 (14)C1—N1—H2118.7 (11)
C12—C11—C10121.04 (16)N2—N1—H2120.2 (11)
C12—C11—H11119.5C9—N2—N1114.89 (12)
C10—C11—H11119.5C2—N3—C16122.92 (13)
C13—C12—C11117.83 (16)C2—N3—H1121.8 (10)
C13—C12—H12121.1C16—N3—H1115.3 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O2i0.875 (15)2.127 (15)2.9887 (16)168.4 (14)
N1—H2···O1ii0.850 (15)1.976 (15)2.8256 (16)177.8 (15)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC18H18FN3O2
Mr327.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)13.316 (3), 8.8904 (18), 14.102 (3)
β (°) 91.10 (3)
V3)1669.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi,1995)
Tmin, Tmax0.944, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
15335, 3833, 2302
Rint0.046
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.069, 1.02
No. of reflections3833
No. of parameters228
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: RAPID-AUTO (Rigaku, 2000), CrystalStructure (Molecular Structure Corporation and Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O2i0.875 (15)2.127 (15)2.9887 (16)168.4 (14)
N1—H2···O1ii0.850 (15)1.976 (15)2.8256 (16)177.8 (15)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSFC) (grant No. 20572129), National Basic Research Program of China (2003CB114405) and National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Technology of China (No. 2006BAE01AE01–11).

References

First citationCoronado, R., Morrissette, J., Sukhareva, M. & Vaughan, D. M. (1994). Am. J. Physiol. 266, 1485–1504.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation and Rigaku (2000). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShigeru, N., Takeshi, S., Etsuko, M. & Yasuo, K. (2003). Synth. Commun. 33, 87–98.  Google Scholar
First citationTohnishi, M., Nakao, H., Kohno, E., Nishida, T., Furuya, T., Shimizu, T., Seo, A., Sakata, K., Fujioka, S. & Kanno, H. (2000). Eur. Patent No. EP1006107.  Google Scholar
First citationZaky, H. T. (2002). Heterocycl. Commun. 8, 355–360.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds