organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N,N-di­phenyl­acetamide

aCollege of Food Science and Light Industry, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: sunjie5516@126.com

(Received 13 May 2009; accepted 23 June 2009; online 27 June 2009)

In the title compound, C14H12ClNO, the central acetamide plane forms dihedral angles of 76.0 (2) and 64.0 (2)° with the phenyl rings and the phenyl rings form a dihedral angle of 71.8 (2)° with each other.

Related literature

The title compound is an important inter­mediate in the synthesis of N-phenyl-indolin-2-one, which can be further transformed to l-aryl-3-(amino­alkyl­idene)oxindoles, a new class of `GABAergic' agents (Shindikar et al., 2006[Shindikar, A. V., Khan, F. & Viswanathan, C. L. (2006). Eur. J. Med. Chem. 41, 786—792.]; Sarges et al., 1989[Sarges, R., Howard, H. R., Koe, K. B. & Weissman, A. (1989). J. Med. Chem. 2, 437-444.]) using a new variant of the Friedel–Crafts cyclization (Hennessy & Buchwald, 2003[Hennessy, E. J. & Buchwald, S. L. (2003). J. Am. Chem. Soc. 40, 12084-12085.]; Trost & Frederiksen, 2005[Trost, B. M. & Frederiksen, M. U. (2005). Angew. Chem. Int. Ed. 44, 308-312.]; Trost & Yong, 2006[Trost, B. M. & Yong, Z. (2006). J. Am. Chem. Soc. 128, 4590-4591.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO

  • Mr = 245.70

  • Orthorhombic, P 21 21 21

  • a = 6.4350 (13) Å

  • b = 12.799 (3) Å

  • c = 14.944 (3) Å

  • V = 1230.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.917, Tmax = 0.971

  • 2519 measured reflections

  • 2231 independent reflections

  • 1842 reflections with I > 2σ(I)

  • Rint = 0.064

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.112

  • S = 1.00

  • 2231 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 912 Friedel pairs

  • Flack parameter: −0.14 (9)

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

The title compound is an important intermediate in the synthesis of N-phenyl-indolin-2-one, which can be further transformed to l-aryl-3-(aminoalkylidene)oxindoles, a new class of "GABAergic" agents (Shindikar et al., 2006; Sarges et al., 1989) using the new variant of the Friedel-Crafts cyclization (Hennessy & Buchwald, 2003; Trost & Frederiksen, 2005; Trost & Yong, 2006).

In the molecule of the title compound (Fig 1), dihedral angles formed by the central plane C14/C13/N/O with phenyl rings C1—C6 and C7—C12 are equal to 104.0 (2)° and 116.0 (2)° respectively; phenyl rings form dihedral angle 108.2 (2)° with each other.

Related literature top

The title compound is an important intermediate in the synthesis of N-phenyl-indolin-2-one, which can be further transformed to l-aryl-3-(aminoalkylidene)oxindoles, a new class of `GABAergic' agents (Shindikar et al., 2006; Sarges et al., 1989) using a new variant of the Friedel–Crafts cyclization (Hennessy & Buchwald, 2003; Trost & Frederiksen, 2005; Trost & Yong, 2006).

Experimental top

The title compound was prepared by refluxing for 2 hrs of the mixture of diphenylamine (1.69 g, 0.01 mol) and chloroacetyl chloride (1.13 g, 0.01 mol) in 50 ml of toluene. 150 ml of water was then added to the reaction mixture causing precipitation of the product, which was filtered, washed with water, dried and and recrystallized from ethanol (yield 97%). Crystals suitable for X-ray analysis were obtained by slow evaporation of a chloroform solution (yield 96%, m.p.413 K).

Refinement top

The H atoms were positioned geometrically (C—H 0.97 and 0.93 Å for methylene and aromatic H, respectively), and included in the refinement in the riding motion approximation with Uiso(H) = 1.2Ueq of the carrying atom.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound; thermal displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radius.
2-Chloro-N,N-diphenylacetamide top
Crystal data top
C14H12ClNODx = 1.326 Mg m3
Mr = 245.70Melting point: 393 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 6.4350 (13) Åθ = 9.0–13.0°
b = 12.799 (3) ŵ = 0.29 mm1
c = 14.944 (3) ÅT = 293 K
V = 1230.8 (5) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm
F(000) = 512
Data collection top
Enraf–Nonius CAD-4
diffractometer
1842 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
Graphite monochromatorθmax = 25.3°, θmin = 2.1°
ω/2θ scansh = 70
Absorption correction: ψ scan
(North et al., 1968)
k = 1515
Tmin = 0.917, Tmax = 0.971l = 170
2519 measured reflections3 standard reflections every 200 reflections
2231 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.065P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2231 reflectionsΔρmax = 0.18 e Å3
154 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983), 912 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.14 (9)
Crystal data top
C14H12ClNOV = 1230.8 (5) Å3
Mr = 245.70Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.4350 (13) ŵ = 0.29 mm1
b = 12.799 (3) ÅT = 293 K
c = 14.944 (3) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1842 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.064
Tmin = 0.917, Tmax = 0.9713 standard reflections every 200 reflections
2519 measured reflections intensity decay: 1%
2231 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.112Δρmax = 0.18 e Å3
S = 1.00Δρmin = 0.21 e Å3
2231 reflectionsAbsolute structure: Flack (1983), 912 Friedel pairs
154 parametersAbsolute structure parameter: 0.14 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.97222 (13)0.79305 (6)0.11836 (6)0.0621 (3)
O1.0050 (3)0.63002 (15)0.01779 (12)0.0490 (5)
N1.2460 (3)0.52988 (16)0.05137 (14)0.0354 (5)
C11.6477 (5)0.4811 (2)0.2686 (2)0.0543 (8)
H1A1.73590.47110.31720.065*
C21.4544 (5)0.4359 (2)0.26845 (19)0.0514 (8)
H2A1.41110.39560.31670.062*
C31.3243 (5)0.4509 (2)0.19570 (17)0.0410 (7)
H3A1.19430.41930.19430.049*
C41.3879 (4)0.51270 (19)0.12568 (16)0.0343 (6)
C51.5827 (5)0.5572 (2)0.1258 (2)0.0485 (7)
H5A1.62630.59780.07770.058*
C61.7120 (5)0.5409 (3)0.1976 (2)0.0596 (9)
H6A1.84390.57060.19810.072*
C71.1939 (8)0.2816 (3)0.1312 (2)0.0726 (12)
H7A1.18340.22700.17190.087*
C81.0262 (7)0.3081 (3)0.0781 (3)0.0695 (11)
H8A0.90340.27020.08250.083*
C91.0392 (5)0.3908 (2)0.0181 (2)0.0527 (8)
H9A0.92610.40900.01740.063*
C101.2238 (5)0.4453 (2)0.01240 (17)0.0381 (7)
C111.3920 (5)0.4182 (2)0.06415 (18)0.0500 (8)
H11A1.51650.45460.05940.060*
C121.3728 (7)0.3355 (3)0.1236 (2)0.0626 (9)
H12A1.48580.31700.15900.075*
C131.1327 (4)0.6186 (2)0.04201 (16)0.0341 (6)
C141.1818 (4)0.7040 (2)0.10923 (18)0.0410 (6)
H14A1.30580.74120.09050.049*
H14B1.20920.67290.16720.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0602 (5)0.0518 (5)0.0743 (6)0.0188 (4)0.0070 (4)0.0153 (4)
O0.0505 (12)0.0557 (12)0.0409 (10)0.0128 (10)0.0121 (10)0.0018 (9)
N0.0378 (12)0.0378 (12)0.0306 (11)0.0016 (11)0.0061 (10)0.0002 (10)
C10.055 (2)0.063 (2)0.0450 (17)0.0191 (17)0.0191 (17)0.0039 (16)
C20.066 (2)0.0570 (18)0.0315 (15)0.0058 (16)0.0011 (15)0.0079 (13)
C30.0404 (16)0.0448 (15)0.0377 (15)0.0018 (13)0.0028 (13)0.0058 (13)
C40.0360 (14)0.0374 (13)0.0295 (13)0.0037 (11)0.0034 (12)0.0008 (11)
C50.0403 (16)0.0593 (18)0.0459 (17)0.0076 (13)0.0032 (14)0.0137 (15)
C60.0380 (18)0.078 (2)0.063 (2)0.0050 (16)0.0138 (17)0.0025 (19)
C70.122 (4)0.0484 (19)0.047 (2)0.006 (2)0.023 (2)0.0115 (16)
C80.086 (3)0.0488 (19)0.073 (2)0.020 (2)0.029 (2)0.0012 (17)
C90.057 (2)0.0487 (17)0.0525 (17)0.0111 (16)0.0092 (16)0.0001 (15)
C100.0508 (17)0.0327 (14)0.0307 (14)0.0016 (13)0.0058 (13)0.0035 (11)
C110.060 (2)0.0472 (17)0.0429 (16)0.0021 (15)0.0058 (16)0.0007 (14)
C120.086 (3)0.0569 (19)0.0447 (18)0.012 (2)0.000 (2)0.0085 (16)
C130.0329 (14)0.0406 (14)0.0288 (13)0.0003 (12)0.0009 (12)0.0045 (11)
C140.0385 (14)0.0403 (15)0.0443 (15)0.0026 (12)0.0001 (13)0.0028 (13)
Geometric parameters (Å, º) top
Cl—C141.771 (3)C6—H6A0.9300
O—C131.223 (3)C7—C121.347 (6)
N—C131.357 (3)C7—C81.382 (6)
N—C101.449 (3)C7—H7A0.9300
N—C41.454 (3)C8—C91.390 (5)
C1—C21.372 (5)C8—H8A0.9300
C1—C61.372 (5)C9—C101.380 (4)
C1—H1A0.9300C9—H9A0.9300
C2—C31.386 (4)C10—C111.375 (4)
C2—H2A0.9300C11—C121.386 (4)
C3—C41.374 (4)C11—H11A0.9300
C3—H3A0.9300C12—H12A0.9300
C4—C51.377 (4)C13—C141.518 (4)
C5—C61.374 (4)C14—H14A0.9700
C5—H5A0.9300C14—H14B0.9700
C13—N—C10120.3 (2)C7—C8—C9120.7 (3)
C13—N—C4122.9 (2)C7—C8—H8A119.7
C10—N—C4116.8 (2)C9—C8—H8A119.7
C2—C1—C6120.5 (3)C10—C9—C8118.5 (3)
C2—C1—H1A119.8C10—C9—H9A120.8
C6—C1—H1A119.8C8—C9—H9A120.8
C1—C2—C3119.4 (3)C11—C10—C9121.0 (3)
C1—C2—H2A120.3C11—C10—N118.7 (3)
C3—C2—H2A120.3C9—C10—N120.2 (3)
C4—C3—C2119.8 (3)C10—C11—C12118.9 (3)
C4—C3—H3A120.1C10—C11—H11A120.6
C2—C3—H3A120.1C12—C11—H11A120.6
C3—C4—C5120.6 (3)C7—C12—C11121.4 (4)
C3—C4—N118.8 (2)C7—C12—H12A119.3
C5—C4—N120.7 (2)C11—C12—H12A119.3
C6—C5—C4119.3 (3)O—C13—N122.4 (2)
C6—C5—H5A120.3O—C13—C14122.5 (2)
C4—C5—H5A120.3N—C13—C14115.0 (2)
C1—C6—C5120.4 (3)C13—C14—Cl110.84 (19)
C1—C6—H6A119.8C13—C14—H14A109.5
C5—C6—H6A119.8Cl—C14—H14A109.5
C12—C7—C8119.6 (3)C13—C14—H14B109.5
C12—C7—H7A120.2Cl—C14—H14B109.5
C8—C7—H7A120.2H14A—C14—H14B108.1
C6—C1—C2—C30.2 (5)C8—C9—C10—N178.0 (3)
C1—C2—C3—C41.6 (4)C13—N—C10—C11116.2 (3)
C2—C3—C4—C52.1 (4)C4—N—C10—C1165.9 (3)
C2—C3—C4—N178.1 (2)C13—N—C10—C966.3 (3)
C13—N—C4—C3100.9 (3)C4—N—C10—C9111.6 (3)
C10—N—C4—C377.0 (3)C9—C10—C11—C120.9 (4)
C13—N—C4—C579.4 (3)N—C10—C11—C12178.4 (2)
C10—N—C4—C5102.8 (3)C8—C7—C12—C110.7 (5)
C3—C4—C5—C61.3 (4)C10—C11—C12—C70.2 (5)
N—C4—C5—C6179.0 (3)C10—N—C13—O2.1 (4)
C2—C1—C6—C50.7 (5)C4—N—C13—O175.7 (2)
C4—C5—C6—C10.1 (5)C10—N—C13—C14175.8 (2)
C12—C7—C8—C91.1 (5)C4—N—C13—C146.4 (4)
C7—C8—C9—C100.4 (5)O—C13—C14—Cl23.3 (3)
C8—C9—C10—C110.6 (4)N—C13—C14—Cl158.8 (2)

Experimental details

Crystal data
Chemical formulaC14H12ClNO
Mr245.70
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.4350 (13), 12.799 (3), 14.944 (3)
V3)1230.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.917, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
2519, 2231, 1842
Rint0.064
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.112, 1.00
No. of reflections2231
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21
Absolute structureFlack (1983), 912 Friedel pairs
Absolute structure parameter0.14 (9)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Center of Testing and Analysis of Nanjing University for support of this study.

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHennessy, E. J. & Buchwald, S. L. (2003). J. Am. Chem. Soc. 40, 12084–12085.  Web of Science CrossRef Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSarges, R., Howard, H. R., Koe, K. B. & Weissman, A. (1989). J. Med. Chem. 2, 437–444.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShindikar, A. V., Khan, F. & Viswanathan, C. L. (2006). Eur. J. Med. Chem. 41, 786—792.  Web of Science CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrost, B. M. & Frederiksen, M. U. (2005). Angew. Chem. Int. Ed. 44, 308–312.  Web of Science CrossRef CAS Google Scholar
First citationTrost, B. M. & Yong, Z. (2006). J. Am. Chem. Soc. 128, 4590–4591.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds