organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Bromo­phen­yl)-3,4,5-tri­meth­oxy­benzamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Str.7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 21 May 2009; accepted 29 May 2009; online 6 June 2009)

In the title compound, C16H16BrNO4, the dihedral between the planes of the aromatic rings is 7.74 (18)°. The amide group is tilted with respect to the bromo- and meth­oxy-substituted aromatic rings by 36.3 (8) and 35.2 (8)°, respectively. The meta-meth­oxy groups are essentially in-plane with the aromatic ring [dihedral angles CH3—O—C—C = −4.6 (4) and −2.5 (4)°]. The para-meth­oxy group is markedly displaced from the ring plane [dihedral angle CH3—O—C—C = −72.5 (4)°]. The crystal packing is stabilized by N—H⋯O hydrogen bonds linking the mol­ecules into chains running along the b axis.

Related literature

For related structures and general background, see: Saeed et al. (2009[Saeed, A., Irfan, M. & Bolte, M. (2009). Acta Cryst. E65, o1334.]). For conformations of aromatic meth­oxy groups, see: Vande Velde et al. (2006[Vande Velde, C., Bultinck, E., Tersago, K., Van Alsenoy, C. & Blockhuys, F. (2006). Int. J. Quantum Chem. 107, 670-679.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16BrNO4

  • Mr = 366.21

  • Orthorhombic, P n a 21

  • a = 13.3085 (8) Å

  • b = 4.9953 (3) Å

  • c = 23.4061 (12) Å

  • V = 1556.04 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.66 mm−1

  • T = 173 K

  • 0.37 × 0.34 × 0.19 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan [MULABS (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])] Tmin = 0.418, Tmax = 0.600

  • 11994 measured reflections

  • 3028 independent reflections

  • 2748 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.076

  • S = 0.99

  • 3028 reflections

  • 207 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1405 Friedel pairs

  • Flack parameter: 0.001 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.85 (4) 2.06 (4) 2.821 (3) 149 (3)
Symmetry code: (i) x, y-1, z.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The background to this study has been described in an earlier paper on N-(2-chlorophenyl)-4-chlorobenzamide (Saeed et al., 2009). As part of our work on the structure of benzanilides and related compounds, we report here the structure of the title compound, Fig. 1.

In the title compound, C16H16BrNO4, the dihedral angle between the aromatic rings is 7.74 (18)°. The amide moiety is tilted against the bromo and methoxy substituted aromatic rings by 36.3 (8)° and 35.2 (8)°, respectively. The meta methoxy groups are essentially in plane with the aromatic ring [dihedral angles CH3—O—C—C = -4.6 (4)° and -2.5 (4)°], the methoxy group in para position is markedly displaced from the ring plane [dihedral angle CH3—O—C—C = -72.5 (4)°]. This can be attributed to a combination of resonance effects, which lead for aromatic methoxy groups to being coplanar with an aromatic ring, and steric interactions, which prohibit a coplanar arrangement when more than two methoxy groups are present per benzene moiety (Vande Velde et al., 2006). The crystal packing is stabilized by N—H···O hydrogen bonds linking the molecules to chains running along the b axis (Fig. 2).

Related literature top

For related structures and general background, see: Saeed et al. (2009). For conformations of aromatic methoxy groups, see: Vande Velde et al. (2006).

Experimental top

3,4,5-Trimethoxybenzoyl chloride (5.4 mmol) in CHCl3 was treated with 3-bromoaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded the title compound (81%) as colourless needles. Anal. calcd. for C16H16BrNO4: C, 52.48; H, 4.40; N, 3.82%; found: C, 52.51; H, 4.36; N, 3.87

Refinement top

H atoms were located in a difference map but those bonded to C were geometrically positioned and refined using a riding model with fixed individual displacement parameters [U(Hiso) = 1.2Ueq(C) or U(Hiso) = 1.5Ueq(Cmethyl)] using a riding model with Caromatic—H = 0.95 Å or Cmethyl—H = 0.98 Å. The H atom bonded to N was freely refined.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound with the atom numbering scheme; displacement ellipsoids are at the 50% probability level; H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing diagram of the title compound. Hydrogen bonds are drawn as dashed lines.
N-(3-Bromophenyl)-3,4,5-trimethoxybenzamide top
Crystal data top
C16H16BrNO4F(000) = 744
Mr = 366.21Dx = 1.563 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 11796 reflections
a = 13.3085 (8) Åθ = 3.5–26.7°
b = 4.9953 (3) ŵ = 2.66 mm1
c = 23.4061 (12) ÅT = 173 K
V = 1556.04 (15) Å3Plate, colourless
Z = 40.37 × 0.34 × 0.19 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
3028 independent reflections
Radiation source: fine-focus sealed tube2748 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 26.3°, θmin = 3.5°
Absorption correction: multi-scan
[MULABS (Spek, 2009; Blessing, 1995)]
h = 1616
Tmin = 0.418, Tmax = 0.600k = 66
11994 measured reflectionsl = 2926
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0493P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.46 e Å3
3028 reflectionsΔρmin = 0.39 e Å3
207 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0168 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 1405 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.001 (8)
Crystal data top
C16H16BrNO4V = 1556.04 (15) Å3
Mr = 366.21Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 13.3085 (8) ŵ = 2.66 mm1
b = 4.9953 (3) ÅT = 173 K
c = 23.4061 (12) Å0.37 × 0.34 × 0.19 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
3028 independent reflections
Absorption correction: multi-scan
[MULABS (Spek, 2009; Blessing, 1995)]
2748 reflections with I > 2σ(I)
Tmin = 0.418, Tmax = 0.600Rint = 0.056
11994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076Δρmax = 0.46 e Å3
S = 0.99Δρmin = 0.39 e Å3
3028 reflectionsAbsolute structure: Flack (1983), with 1405 Friedel pairs
207 parametersAbsolute structure parameter: 0.001 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.19897 (2)0.79946 (7)0.12371 (2)0.04356 (13)
N10.52764 (18)0.5080 (5)0.23414 (11)0.0203 (5)
H10.546 (3)0.351 (8)0.2441 (17)0.023 (9)*
O10.51118 (18)0.9515 (4)0.25246 (10)0.0285 (5)
O20.62891 (16)0.9862 (4)0.46087 (9)0.0276 (4)
O30.78413 (15)0.6364 (4)0.46308 (10)0.0259 (4)
O40.82971 (16)0.3369 (4)0.37342 (10)0.0276 (5)
C10.5457 (2)0.7303 (5)0.26493 (13)0.0204 (6)
C110.4666 (2)0.4924 (5)0.18432 (13)0.0220 (6)
C120.3799 (2)0.6447 (6)0.17818 (13)0.0246 (6)
H120.36130.77240.20630.030*
C130.3216 (2)0.6057 (6)0.13014 (16)0.0279 (6)
C140.3467 (3)0.4244 (7)0.08727 (14)0.0334 (7)
H140.30600.40430.05420.040*
C150.4334 (3)0.2740 (7)0.09471 (15)0.0332 (7)
H150.45200.14660.06650.040*
C160.4931 (3)0.3066 (6)0.14241 (13)0.0270 (6)
H160.55230.20220.14670.032*
C210.6099 (2)0.6961 (5)0.31655 (12)0.0201 (5)
C220.5883 (2)0.8619 (5)0.36327 (13)0.0220 (6)
H220.53430.98590.36140.026*
C230.6460 (2)0.8435 (5)0.41199 (12)0.0206 (6)
C240.7280 (2)0.6655 (5)0.41433 (13)0.0210 (6)
C250.7487 (2)0.5016 (5)0.36721 (13)0.0201 (5)
C260.6890 (2)0.5141 (5)0.31853 (13)0.0213 (6)
H260.70210.39970.28700.026*
C270.5500 (2)1.1804 (6)0.45934 (14)0.0279 (6)
H27A0.56101.30330.42730.042*
H27B0.54951.28170.49520.042*
H27C0.48531.08950.45450.042*
C280.8483 (3)0.8582 (7)0.47549 (15)0.0337 (7)
H28A0.90010.87270.44590.051*
H28B0.88050.83080.51270.051*
H28C0.80861.02320.47640.051*
C290.8502 (2)0.1607 (6)0.32691 (15)0.0287 (7)
H29A0.79100.04960.31940.043*
H29B0.90740.04560.33660.043*
H29C0.86640.26590.29280.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02770 (15)0.0536 (2)0.0494 (2)0.00300 (13)0.0092 (2)0.0107 (3)
N10.0287 (12)0.0138 (10)0.0184 (12)0.0002 (9)0.0028 (10)0.0013 (9)
O10.0429 (12)0.0152 (9)0.0273 (11)0.0026 (8)0.0104 (10)0.0011 (8)
O20.0303 (11)0.0332 (10)0.0192 (10)0.0084 (8)0.0025 (9)0.0069 (9)
O30.0274 (10)0.0289 (10)0.0214 (11)0.0008 (8)0.0053 (8)0.0023 (8)
O40.0232 (10)0.0286 (11)0.0311 (12)0.0097 (8)0.0021 (9)0.0039 (9)
C10.0237 (13)0.0175 (12)0.0199 (14)0.0026 (9)0.0012 (11)0.0009 (10)
C110.0280 (14)0.0206 (11)0.0176 (14)0.0031 (11)0.0002 (11)0.0026 (11)
C120.0277 (15)0.0248 (13)0.0212 (14)0.0013 (11)0.0001 (12)0.0019 (11)
C130.0250 (12)0.0337 (13)0.0251 (18)0.0052 (10)0.0008 (13)0.0053 (14)
C140.0352 (17)0.0428 (17)0.0223 (16)0.0146 (14)0.0052 (13)0.0034 (14)
C150.0402 (19)0.0357 (17)0.0235 (17)0.0072 (14)0.0011 (14)0.0058 (13)
C160.0326 (16)0.0253 (14)0.0232 (16)0.0008 (12)0.0003 (12)0.0039 (11)
C210.0225 (14)0.0169 (11)0.0208 (14)0.0018 (10)0.0025 (10)0.0014 (11)
C220.0244 (14)0.0184 (12)0.0232 (15)0.0018 (10)0.0007 (12)0.0005 (10)
C230.0242 (14)0.0197 (13)0.0178 (14)0.0015 (10)0.0040 (11)0.0035 (11)
C240.0215 (13)0.0229 (13)0.0186 (14)0.0018 (10)0.0016 (11)0.0009 (11)
C250.0181 (12)0.0185 (13)0.0238 (15)0.0001 (10)0.0005 (11)0.0021 (10)
C260.0243 (14)0.0191 (12)0.0205 (14)0.0010 (10)0.0029 (11)0.0019 (10)
C270.0324 (16)0.0244 (14)0.0269 (16)0.0064 (12)0.0015 (13)0.0055 (12)
C280.0318 (17)0.0352 (17)0.0341 (19)0.0032 (14)0.0116 (14)0.0036 (14)
C290.0296 (16)0.0257 (15)0.0308 (17)0.0070 (12)0.0062 (13)0.0021 (13)
Geometric parameters (Å, º) top
Br1—C131.903 (3)C15—H150.9500
N1—C11.346 (4)C16—H160.9500
N1—C111.423 (4)C21—C261.392 (4)
N1—H10.85 (4)C21—C221.401 (4)
O1—C11.232 (3)C22—C231.378 (4)
O2—C231.367 (3)C22—H220.9500
O2—C271.431 (3)C23—C241.409 (4)
O3—C241.371 (4)C24—C251.401 (4)
O3—C281.429 (4)C25—C261.391 (4)
O4—C251.363 (3)C26—H260.9500
O4—C291.426 (4)C27—H27A0.9800
C1—C211.490 (4)C27—H27B0.9800
C11—C121.389 (4)C27—H27C0.9800
C11—C161.396 (4)C28—H28A0.9800
C12—C131.380 (5)C28—H28B0.9800
C12—H120.9500C28—H28C0.9800
C13—C141.393 (5)C29—H29A0.9800
C14—C151.388 (5)C29—H29B0.9800
C14—H140.9500C29—H29C0.9800
C15—C161.379 (4)
C1—N1—C11125.9 (2)C21—C22—H22120.3
C1—N1—H1124 (2)O2—C23—C22124.4 (3)
C11—N1—H1110 (2)O2—C23—C24115.2 (2)
C23—O2—C27117.1 (2)C22—C23—C24120.4 (3)
C24—O3—C28114.4 (2)O3—C24—C25119.1 (3)
C25—O4—C29116.3 (2)O3—C24—C23121.4 (2)
O1—C1—N1123.2 (3)C25—C24—C23119.4 (3)
O1—C1—C21120.6 (2)O4—C25—C26124.5 (3)
N1—C1—C21116.2 (2)O4—C25—C24115.1 (3)
C12—C11—C16120.1 (3)C26—C25—C24120.4 (2)
C12—C11—N1121.9 (3)C25—C26—C21119.3 (3)
C16—C11—N1117.9 (3)C25—C26—H26120.4
C13—C12—C11118.3 (3)C21—C26—H26120.4
C13—C12—H12120.8O2—C27—H27A109.5
C11—C12—H12120.8O2—C27—H27B109.5
C12—C13—C14122.9 (3)H27A—C27—H27B109.5
C12—C13—Br1118.4 (3)O2—C27—H27C109.5
C14—C13—Br1118.7 (2)H27A—C27—H27C109.5
C15—C14—C13117.5 (3)H27B—C27—H27C109.5
C15—C14—H14121.3O3—C28—H28A109.5
C13—C14—H14121.3O3—C28—H28B109.5
C16—C15—C14121.1 (3)H28A—C28—H28B109.5
C16—C15—H15119.5O3—C28—H28C109.5
C14—C15—H15119.5H28A—C28—H28C109.5
C15—C16—C11120.1 (3)H28B—C28—H28C109.5
C15—C16—H16119.9O4—C29—H29A109.5
C11—C16—H16119.9O4—C29—H29B109.5
C26—C21—C22121.0 (3)H29A—C29—H29B109.5
C26—C21—C1122.4 (2)O4—C29—H29C109.5
C22—C21—C1116.6 (2)H29A—C29—H29C109.5
C23—C22—C21119.5 (3)H29B—C29—H29C109.5
C23—C22—H22120.3
C11—N1—C1—O10.9 (5)C27—O2—C23—C224.6 (4)
C11—N1—C1—C21178.3 (3)C27—O2—C23—C24176.5 (2)
C1—N1—C11—C1235.8 (4)C21—C22—C23—O2176.9 (3)
C1—N1—C11—C16147.8 (3)C21—C22—C23—C241.9 (4)
C16—C11—C12—C130.3 (4)C28—O3—C24—C25111.7 (3)
N1—C11—C12—C13176.0 (3)C28—O3—C24—C2372.5 (4)
C11—C12—C13—C141.2 (4)O2—C23—C24—O31.4 (4)
C11—C12—C13—Br1176.5 (2)C22—C23—C24—O3177.5 (3)
C12—C13—C14—C151.5 (5)O2—C23—C24—C25177.1 (2)
Br1—C13—C14—C15176.2 (2)C22—C23—C24—C251.8 (4)
C13—C14—C15—C161.0 (5)C29—O4—C25—C262.5 (4)
C14—C15—C16—C110.2 (5)C29—O4—C25—C24177.7 (3)
C12—C11—C16—C150.2 (4)O3—C24—C25—O44.4 (4)
N1—C11—C16—C15176.6 (3)C23—C24—C25—O4179.8 (2)
O1—C1—C21—C26146.1 (3)O3—C24—C25—C26175.8 (3)
N1—C1—C21—C2634.6 (4)C23—C24—C25—C260.0 (4)
O1—C1—C21—C2232.5 (4)O4—C25—C26—C21178.2 (2)
N1—C1—C21—C22146.8 (3)C24—C25—C26—C211.6 (4)
C26—C21—C22—C230.3 (4)C22—C21—C26—C251.5 (4)
C1—C21—C22—C23178.9 (2)C1—C21—C26—C25177.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.85 (4)2.06 (4)2.821 (3)149 (3)
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H16BrNO4
Mr366.21
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)13.3085 (8), 4.9953 (3), 23.4061 (12)
V3)1556.04 (15)
Z4
Radiation typeMo Kα
µ (mm1)2.66
Crystal size (mm)0.37 × 0.34 × 0.19
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
[MULABS (Spek, 2009; Blessing, 1995)]
Tmin, Tmax0.418, 0.600
No. of measured, independent and
observed [I > 2σ(I)] reflections
11994, 3028, 2748
Rint0.056
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.076, 0.99
No. of reflections3028
No. of parameters207
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.39
Absolute structureFlack (1983), with 1405 Friedel pairs
Absolute structure parameter0.001 (8)

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.85 (4)2.06 (4)2.821 (3)149 (3)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

AI gratefully acknowledges a research scholarship from the HEC, Islamabad, Pakistan, under the HEC Indigenous PhD Scholarship 5000 Scheme.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSaeed, A., Irfan, M. & Bolte, M. (2009). Acta Cryst. E65, o1334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVande Velde, C., Bultinck, E., Tersago, K., Van Alsenoy, C. & Blockhuys, F. (2006). Int. J. Quantum Chem. 107, 670–679.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds