organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1543-o1544

8β-Acet­­oxy-14α-benzo­yl­oxy-N-ethyl-3α,10β,13β,15α-tetra­hydr­­oxy-1α,6α,16β-trimeth­­oxy-4β-(meth­oxy­methyl­ene)aconitane: aconifine from Aconitum karakolicum Rapaics

aS. Yunusov Institute of Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, M. Ulugbek Str. 77, Tashkent 100170, Uzbekistan
*Correspondence e-mail: tashkhodjaev@rambler.ru

(Received 27 May 2009; accepted 5 June 2009; online 10 June 2009)

The title compound, C34H47NO12, is the norditerpenoid alkaloid aconifine isolated from the leaves and tubers of Aconitum karakolicum Rapaics. It has a lycoctonine carbon skeleton and contains four six-membered rings and two five-membered rings; its geometry is similar to that observed in other lycoctonine-type diterpenoid alkaloids. There are two intra­molecular O—H⋯O hydrogen bonds which close five- and seven-membered pseudo-rings, respectively. In the crystal, two inter­molecular O—H⋯O hydrogen bonds cross-link the mol­ecules into double chains along the a axis.

Related literature

For the isolation of aconifine, see: Sultankhodzhaev et al. (1973[Sultankhodzhaev, M. N., Yunusov, M. S. & Yunusov, S. Yu. (1973). Khim. Prir. Soedin. pp. 127-129.]). For spectroscopic data and the chemical structure of aconifine, see: Sultankhodzhaev et al. (1980[Sultankhodzhaev, M. N., Beshitaishvili, L. V., Yagudaev, M. R., Yunusov, M. S. & Yunusov, S. Yu. (1980). Khim. Prir. Soedin. pp. 665-672.]). For the neurocardiotoxic activity of aconifine, see: Dzhakhangirov et al. (1997[Dzhakhangirov, F. N., Sultankhodzhaev, M. N., Tashkhodjaev, B. & Salimov, B. T. (1997). Khim. Prir. Soedin. pp. 254-270.]). For the neurocardiotoxic activity of lycoctonine alkaloids, see: Dzhakhangirov et al. (1976[Dzhakhangirov, F. N. (1976). Dokl. Akad. Nauk UzSSR, pp. 32-33.]). For general background to lycoctonine alkaloids and their structures, see: Joshi & Pelletier (1987[Joshi, B. S. & Pelletier, S. W. (1987). Heterocycles, 26, 2503-2518.]).

[Scheme 1]

Experimental

Crystal data
  • C34H47NO12

  • Mr = 661.73

  • Orthorhombic, P 21 21 21

  • a = 12.0213 (3) Å

  • b = 15.4938 (6) Å

  • c = 17.1038 (4) Å

  • V = 3185.68 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.87 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.767, Tmax = 0.811

  • 11111 measured reflections

  • 6334 independent reflections

  • 6050 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.06

  • 6334 reflections

  • 451 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2633 Friedel pairs

  • Flack parameter: 0.04 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O5 0.83 (3) 2.07 (3) 2.791 (2) 146 (3)
O8—H8⋯O12 0.83 (3) 2.11 (3) 2.598 (2) 117 (3)
O2—H2⋯O7i 0.87 (3) 2.21 (3) 3.066 (2) 168 (3)
O8—H8⋯O2ii 0.83 (3) 2.39 (3) 2.928 (2) 123 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z]; (ii) x-1, y, z.

Data collection: CrysAlisPro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The norditerpenoid alkaloid aconifine was isolated from leaves and tubers of Aconitum karakolicum Rapaics (Sultankhodzhaev et al.,1980). It exhibits neurocardiotoxic properties (Dzhakhangirov et al., 1997) similar to those of aconitine (Dzhakhangirov et al., 1976). The molecular structure of the title compound is shown in Fig. 1. Aconifine has a lycoctonine carbon skeleton; its geometry is similar to that observed in other lycoctonine type diterpenoid alkaloids (Joshi et al.,1987).

The lycoctonine carbon skeleton, contains four six-membered rings, (A, C, E and F), and two five-membered rings (B and D) (Fig. 2). Rings A and C have more or less regular chair conformations, whereas ring F shows significant distortions and ring E adopts a sofa conformation. The five-membered rings B and D have envelope conformations.

The position and orientation of the 10 oxo substituents on the carbon lycoctonine skeleton are 1α, 3α, 4β, 6α, 8β, 10β, 13β, 14α, 15α, 16β, which confirms the earlier structure assignment based on spectral data (Sultankhodzhaev et al., 1980).

In the crystal structure of the title compound there are four acidic H atoms that can participate in H-bonds. The H8 and H11 hydroxyl hydrogen atoms take part in intramolecular H-bonds which close 5 and 7-membered pseudo-cycles, respectively. Hydroxyl hydrogen atom H7 does not take a part in any H-bonding interactions. Atoms H2 and H8 participate in intermolecular O—H···O bonds which link the molecules into infinite double chains along the a-axis (Table 1; Fig.3). The hydrogen atom H8 forms a bifurcated H-bond to both O2 and O7.

Related literature top

For the isolation of aconifine, see: Sultankhodzhaev et al. (1973). For spectroscopic data and the chemical structure of aconifine, see: Sultankhodzhaev et al. (1980). For the neurocardiotoxic activity of aconifine, see: Dzhakhangirov et al. (1997). For the neurocardiotoxic activity of lycoctonine alkaloids, see: Dzhakhangirov et al. (1976). For general background to lycoctonine alkaloids and their structures, see: Joshi et al. (1987).

Experimental top

The title compound was isolated from the chloroform fraction of the tubers of Aconitum karakolicum Rapaics by a known method (Sultankhodzhaev et al., 1973). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution at room temperature (m.p. 471–473 K).

Refinement top

The hydroxyl hydrogen atoms were located in a difference Fourier map and refined isotropically. The H atoms bonded to C atoms were placed geometrically (with C—H distances of 0.98 Å for CH; 0.97 Å for CH2; 0.96 Å for CH3; and 0.93 Å for Car) and included in the refinement in a riding motion approximation with Uiso=1.2Ueq(C) [Uiso=1.5Ueq(C) for methyl H atoms].

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of aconifine, showing the atomic numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Ring assignments in Aconifine
[Figure 3] Fig. 3. Crystal packing of aconifine, viewed down the c-axis; H-bonds shown as dashed lines. H-atoms not involved in hydrogen bonding are omitted for clarity.
8β-Acetoxy-14α-benzoyloxy-N-ethyl-3α,10β,13β,15α-tetrahydroxy- 1α,6α,16β-trimethoxy-4β-(methoxymethylene)aconitane top
Crystal data top
C34H47NO12Dx = 1.380 Mg m3
Mr = 661.73Melting point: 472(2) K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 11111 reflections
a = 12.0213 (3) Åθ = 3.7–75.5°
b = 15.4938 (6) ŵ = 0.87 mm1
c = 17.1038 (4) ÅT = 100 K
V = 3185.68 (16) Å3Prizmatic, colourless
Z = 40.40 × 0.30 × 0.25 mm
F(000) = 1416
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
6334 independent reflections
Radiation source: Enhance (Cu) X-ray Source6050 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.2576 pixels mm-1θmax = 75.6°, θmin = 3.9°
ω scansh = 159
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1919
Tmin = 0.767, Tmax = 0.811l = 2121
11111 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0771P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.36 e Å3
6334 reflectionsΔρmin = 0.22 e Å3
451 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00043 (12)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2633 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.04 (10)
Crystal data top
C34H47NO12V = 3185.68 (16) Å3
Mr = 661.73Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 12.0213 (3) ŵ = 0.87 mm1
b = 15.4938 (6) ÅT = 100 K
c = 17.1038 (4) Å0.40 × 0.30 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
6334 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
6050 reflections with I > 2σ(I)
Tmin = 0.767, Tmax = 0.811Rint = 0.024
11111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098Δρmax = 0.36 e Å3
S = 1.06Δρmin = 0.22 e Å3
6334 reflectionsAbsolute structure: Flack (1983), 2633 Friedel pairs
451 parametersAbsolute structure parameter: 0.04 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66866 (9)0.16533 (7)0.10572 (6)0.0176 (2)
O21.04961 (9)0.13201 (8)0.02826 (7)0.0209 (2)
O30.98504 (9)0.08240 (8)0.16387 (7)0.0217 (2)
O40.82173 (10)0.09161 (8)0.13342 (7)0.0232 (2)
O50.55172 (11)0.23615 (8)0.08471 (7)0.0251 (3)
O60.53676 (9)0.10653 (7)0.14475 (6)0.0171 (2)
O70.58835 (9)0.18623 (7)0.09376 (6)0.0175 (2)
O80.29051 (9)0.12191 (8)0.00458 (6)0.0183 (2)
O90.33324 (9)0.00330 (7)0.12982 (6)0.0162 (2)
O100.38215 (10)0.02601 (8)0.25398 (6)0.0234 (2)
O110.50108 (10)0.13929 (8)0.04816 (7)0.0213 (2)
O120.26888 (9)0.04325 (8)0.02596 (7)0.0210 (2)
N0.79454 (11)0.02206 (9)0.06929 (8)0.0169 (3)
C10.73828 (12)0.16204 (9)0.03752 (8)0.0145 (3)
H1A0.72610.21520.00760.017*
C20.85921 (13)0.16088 (10)0.06393 (9)0.0170 (3)
H2A0.87920.21760.08340.020*
H2B0.86730.12020.10660.020*
C30.93799 (12)0.13616 (10)0.00116 (9)0.0163 (3)
H3A0.93470.18070.04180.020*
C40.90603 (12)0.04888 (9)0.03803 (9)0.0157 (3)
C50.79025 (12)0.06011 (9)0.07794 (8)0.0143 (3)
H5A0.79350.10390.11920.017*
C60.74394 (13)0.02751 (10)0.11062 (9)0.0170 (3)
H6A0.69660.01460.15580.020*
C70.66856 (12)0.06323 (9)0.04426 (8)0.0155 (3)
H7A0.68740.12330.03200.019*
C80.54779 (12)0.05540 (9)0.07171 (8)0.0147 (3)
C90.52897 (12)0.03713 (10)0.10283 (8)0.0140 (3)
H9A0.55780.04230.15620.017*
C100.58311 (13)0.10691 (9)0.04910 (8)0.0143 (3)
C110.70101 (12)0.08482 (10)0.01411 (8)0.0137 (3)
C120.49078 (12)0.12252 (10)0.01330 (8)0.0147 (3)
H12A0.51520.10180.06400.018*
H12B0.47460.18370.01750.018*
C130.38627 (12)0.07295 (10)0.01320 (8)0.0156 (3)
C140.40634 (12)0.06253 (9)0.10058 (8)0.0151 (3)
H14A0.39410.11720.12810.018*
C150.45606 (12)0.08664 (10)0.01258 (8)0.0157 (3)
H15A0.40530.12360.04240.019*
C160.38277 (13)0.01688 (10)0.02702 (8)0.0167 (3)
H16A0.40660.01040.08150.020*
C170.69192 (12)0.00319 (9)0.02677 (9)0.0149 (3)
H17A0.62840.00350.06270.018*
C180.99741 (13)0.02636 (10)0.09801 (9)0.0177 (3)
H18A1.07030.03400.07470.021*
H18B0.99020.03330.11430.021*
C190.89793 (13)0.02424 (10)0.02277 (9)0.0181 (3)
H19A0.90250.07930.00410.022*
H19B0.96100.02030.05790.022*
C200.78363 (14)0.09877 (11)0.11883 (10)0.0221 (3)
H20A0.79800.14990.08780.026*
H20B0.70800.10240.13840.026*
C210.86362 (17)0.09632 (14)0.18710 (11)0.0345 (4)
H21A0.85410.04330.21530.052*
H21B0.93860.10000.16810.052*
H21C0.84890.14420.22130.052*
C220.65941 (14)0.24944 (10)0.13754 (9)0.0204 (3)
H22A0.72740.26440.16360.031*
H22B0.59910.25100.17430.031*
H22C0.64540.29000.09630.031*
C231.06760 (15)0.06738 (12)0.22176 (10)0.0264 (4)
H23A1.06600.00780.23710.040*
H23B1.13960.08110.20090.040*
H23C1.05300.10310.26650.040*
C240.84230 (16)0.09095 (14)0.21572 (11)0.0320 (4)
H24A0.77500.10510.24310.048*
H24B0.89870.13270.22800.048*
H24C0.86700.03460.23130.048*
C250.54687 (13)0.19314 (10)0.14337 (10)0.0206 (3)
C260.55057 (18)0.22808 (12)0.22522 (11)0.0316 (4)
H26A0.60430.19640.25520.047*
H26B0.47860.22230.24890.047*
H26C0.57110.28790.22390.047*
C270.33426 (13)0.01855 (10)0.20752 (9)0.0170 (3)
C280.26739 (12)0.09676 (10)0.22593 (9)0.0170 (3)
C290.26246 (13)0.12388 (11)0.30387 (9)0.0198 (3)
H290.30070.09370.34240.024*
C300.19980 (14)0.19638 (11)0.32318 (9)0.0223 (3)
H300.19620.21470.37490.027*
C310.14270 (14)0.24149 (10)0.26579 (10)0.0227 (3)
H310.10150.29020.27900.027*
C320.14703 (14)0.21384 (11)0.18828 (10)0.0221 (3)
H320.10800.24370.15000.027*
C330.20932 (13)0.14203 (11)0.16821 (9)0.0195 (3)
H330.21250.12390.11640.023*
C340.24229 (16)0.10857 (13)0.08130 (11)0.0303 (4)
H34A0.28360.16000.06940.045*
H34B0.16410.12080.07900.045*
H34C0.26130.08900.13290.045*
H21.061 (2)0.1796 (17)0.0539 (15)0.032 (6)*
H70.640 (2)0.1782 (18)0.1299 (17)0.040 (7)*
H80.237 (2)0.0881 (15)0.0020 (13)0.023 (5)*
H110.519 (2)0.1832 (19)0.0238 (17)0.041 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0172 (5)0.0198 (5)0.0158 (5)0.0027 (4)0.0020 (4)0.0033 (4)
O20.0136 (5)0.0231 (6)0.0259 (5)0.0012 (4)0.0028 (4)0.0038 (5)
O30.0188 (5)0.0242 (6)0.0221 (5)0.0053 (5)0.0068 (4)0.0021 (5)
O40.0197 (6)0.0220 (5)0.0280 (6)0.0039 (5)0.0034 (4)0.0074 (5)
O50.0278 (6)0.0180 (5)0.0294 (6)0.0022 (5)0.0028 (5)0.0010 (5)
O60.0167 (5)0.0162 (5)0.0183 (5)0.0002 (4)0.0021 (4)0.0033 (4)
O70.0168 (5)0.0162 (5)0.0196 (5)0.0005 (4)0.0001 (4)0.0022 (4)
O80.0109 (5)0.0204 (5)0.0237 (5)0.0001 (5)0.0016 (4)0.0030 (4)
O90.0136 (5)0.0195 (5)0.0155 (5)0.0026 (4)0.0018 (4)0.0008 (4)
O100.0243 (6)0.0280 (6)0.0180 (5)0.0066 (5)0.0015 (4)0.0020 (5)
O110.0229 (6)0.0199 (5)0.0210 (5)0.0006 (5)0.0027 (4)0.0060 (5)
O120.0165 (5)0.0228 (6)0.0238 (5)0.0051 (4)0.0029 (4)0.0014 (5)
N0.0148 (6)0.0172 (6)0.0188 (6)0.0009 (5)0.0032 (5)0.0030 (5)
C10.0131 (7)0.0155 (6)0.0148 (6)0.0004 (5)0.0011 (5)0.0012 (5)
C20.0146 (7)0.0193 (7)0.0171 (6)0.0023 (6)0.0007 (5)0.0032 (5)
C30.0115 (6)0.0177 (7)0.0197 (7)0.0005 (5)0.0006 (5)0.0006 (6)
C40.0112 (6)0.0161 (7)0.0199 (6)0.0009 (6)0.0005 (5)0.0006 (5)
C50.0116 (6)0.0149 (6)0.0163 (6)0.0017 (5)0.0005 (5)0.0002 (5)
C60.0134 (7)0.0175 (7)0.0201 (7)0.0005 (6)0.0007 (5)0.0019 (5)
C70.0139 (7)0.0149 (6)0.0178 (6)0.0017 (5)0.0012 (5)0.0004 (5)
C80.0144 (6)0.0135 (6)0.0163 (6)0.0002 (5)0.0002 (5)0.0019 (5)
C90.0128 (7)0.0152 (6)0.0140 (6)0.0012 (5)0.0011 (5)0.0001 (5)
C100.0136 (7)0.0138 (6)0.0153 (6)0.0004 (5)0.0010 (5)0.0006 (5)
C110.0106 (6)0.0154 (6)0.0152 (6)0.0004 (5)0.0006 (5)0.0001 (5)
C120.0113 (6)0.0162 (7)0.0167 (6)0.0001 (5)0.0005 (5)0.0023 (5)
C130.0129 (6)0.0170 (7)0.0170 (6)0.0009 (6)0.0001 (5)0.0011 (5)
C140.0137 (7)0.0149 (6)0.0166 (6)0.0005 (5)0.0012 (5)0.0015 (5)
C150.0153 (6)0.0146 (6)0.0173 (6)0.0018 (6)0.0015 (5)0.0032 (5)
C160.0165 (7)0.0184 (7)0.0151 (6)0.0032 (6)0.0005 (5)0.0008 (5)
C170.0124 (6)0.0150 (6)0.0173 (6)0.0004 (5)0.0010 (5)0.0006 (5)
C180.0138 (6)0.0175 (7)0.0217 (7)0.0024 (6)0.0002 (5)0.0017 (6)
C190.0146 (7)0.0172 (7)0.0225 (7)0.0010 (6)0.0034 (6)0.0022 (6)
C200.0224 (8)0.0220 (8)0.0217 (7)0.0003 (6)0.0033 (6)0.0056 (6)
C210.0328 (10)0.0407 (11)0.0299 (9)0.0001 (8)0.0118 (8)0.0116 (8)
C220.0215 (7)0.0204 (7)0.0194 (7)0.0025 (6)0.0008 (6)0.0023 (6)
C230.0236 (8)0.0293 (9)0.0263 (8)0.0067 (7)0.0086 (6)0.0000 (7)
C240.0226 (8)0.0441 (11)0.0294 (9)0.0014 (8)0.0025 (6)0.0159 (8)
C250.0158 (7)0.0168 (7)0.0291 (8)0.0004 (6)0.0020 (6)0.0034 (6)
C260.0426 (11)0.0229 (8)0.0293 (9)0.0017 (8)0.0006 (8)0.0095 (7)
C270.0155 (7)0.0184 (7)0.0171 (7)0.0026 (6)0.0027 (5)0.0007 (5)
C280.0131 (7)0.0190 (7)0.0190 (6)0.0017 (6)0.0030 (5)0.0006 (6)
C290.0194 (7)0.0213 (7)0.0188 (7)0.0001 (6)0.0010 (5)0.0006 (6)
C300.0205 (8)0.0246 (8)0.0216 (7)0.0034 (7)0.0036 (6)0.0048 (6)
C310.0217 (7)0.0179 (7)0.0287 (8)0.0011 (6)0.0053 (6)0.0042 (6)
C320.0207 (8)0.0212 (8)0.0245 (8)0.0014 (6)0.0016 (6)0.0024 (6)
C330.0192 (7)0.0215 (7)0.0178 (6)0.0017 (6)0.0024 (5)0.0001 (6)
C340.0267 (9)0.0285 (9)0.0358 (9)0.0051 (7)0.0108 (7)0.0074 (8)
Geometric parameters (Å, º) top
O1—C221.4167 (18)C10—C111.5762 (19)
O1—C11.4365 (17)C11—C171.536 (2)
O2—C31.4346 (17)C12—C131.5406 (19)
O2—H20.87 (3)C12—H12A0.9700
O3—C231.4211 (19)C12—H12B0.9700
O3—C181.4301 (19)C13—C141.5225 (19)
O4—C61.4187 (19)C13—C161.553 (2)
O4—C241.429 (2)C14—H14A0.9800
O5—C251.206 (2)C15—C161.550 (2)
O6—C251.3476 (19)C15—H15A0.9800
O6—C81.4852 (17)C16—H16A0.9800
O7—C101.4484 (17)C17—H17A0.9800
O7—H70.89 (3)C18—H18A0.9700
O8—C131.4118 (18)C18—H18B0.9700
O8—H80.83 (3)C19—H19A0.9700
O9—C271.3500 (17)C19—H19B0.9700
O9—C141.4362 (18)C20—C211.513 (2)
O10—C271.200 (2)C20—H20A0.9700
O11—C151.4275 (18)C20—H20B0.9700
O11—H110.83 (3)C21—H21A0.9600
O12—C341.422 (2)C21—H21B0.9600
O12—C161.4289 (18)C21—H21C0.9600
N—C171.4615 (18)C22—H22A0.9600
N—C201.466 (2)C22—H22B0.9600
N—C191.476 (2)C22—H22C0.9600
C1—C21.522 (2)C23—H23A0.9600
C1—C111.553 (2)C23—H23B0.9600
C1—H1A0.9800C23—H23C0.9600
C2—C31.511 (2)C24—H24A0.9600
C2—H2A0.9700C24—H24B0.9600
C2—H2B0.9700C24—H24C0.9600
C3—C41.541 (2)C25—C261.502 (2)
C3—H3A0.9800C26—H26A0.9600
C4—C191.541 (2)C26—H26B0.9600
C4—C181.543 (2)C26—H26C0.9600
C4—C51.5599 (19)C27—C281.488 (2)
C5—C61.570 (2)C28—C331.398 (2)
C5—C111.5778 (19)C28—C291.399 (2)
C5—H5A0.9800C29—C301.392 (2)
C6—C71.554 (2)C29—H290.9300
C6—H6A0.9800C30—C311.387 (3)
C7—C81.531 (2)C30—H300.9300
C7—C171.5557 (19)C31—C321.394 (2)
C7—H7A0.9800C31—H310.9300
C8—C91.546 (2)C32—C331.384 (2)
C8—C151.573 (2)C32—H320.9300
C9—C141.526 (2)C33—H330.9300
C9—C101.561 (2)C34—H34A0.9600
C9—H9A0.9800C34—H34B0.9600
C10—C121.5588 (19)C34—H34C0.9600
C22—O1—C1112.97 (11)O11—C15—C16107.21 (12)
C3—O2—H2107.0 (17)O11—C15—C8112.21 (12)
C23—O3—C18112.14 (12)C16—C15—C8117.71 (12)
C6—O4—C24112.32 (14)O11—C15—H15A106.3
C25—O6—C8120.55 (12)C16—C15—H15A106.3
C10—O7—H7106.2 (18)C8—C15—H15A106.3
C13—O8—H8106.3 (16)O12—C16—C15109.86 (12)
C27—O9—C14117.48 (12)O12—C16—C13106.06 (12)
C15—O11—H11102 (2)C15—C16—C13114.58 (12)
C34—O12—C16114.23 (13)O12—C16—H16A108.7
C17—N—C20111.98 (12)C15—C16—H16A108.7
C17—N—C19116.56 (12)C13—C16—H16A108.7
C20—N—C19111.61 (12)N—C17—C11110.11 (11)
O1—C1—C2108.40 (11)N—C17—C7114.92 (12)
O1—C1—C11108.72 (11)C11—C17—C7100.84 (11)
C2—C1—C11115.78 (12)N—C17—H17A110.2
O1—C1—H1A107.9C11—C17—H17A110.2
C2—C1—H1A107.9C7—C17—H17A110.2
C11—C1—H1A107.9O3—C18—C4108.21 (12)
C3—C2—C1112.51 (12)O3—C18—H18A110.1
C3—C2—H2A109.1C4—C18—H18A110.1
C1—C2—H2A109.1O3—C18—H18B110.1
C3—C2—H2B109.1C4—C18—H18B110.1
C1—C2—H2B109.1H18A—C18—H18B108.4
H2A—C2—H2B107.8N—C19—C4113.58 (12)
O2—C3—C2109.83 (12)N—C19—H19A108.8
O2—C3—C4109.72 (12)C4—C19—H19A108.8
C2—C3—C4111.57 (12)N—C19—H19B108.8
O2—C3—H3A108.6C4—C19—H19B108.8
C2—C3—H3A108.6H19A—C19—H19B107.7
C4—C3—H3A108.6N—C20—C21111.65 (15)
C3—C4—C19112.64 (12)N—C20—H20A109.3
C3—C4—C18107.04 (12)C21—C20—H20A109.3
C19—C4—C18109.11 (12)N—C20—H20B109.3
C3—C4—C5107.68 (11)C21—C20—H20B109.3
C19—C4—C5108.72 (12)H20A—C20—H20B108.0
C18—C4—C5111.68 (12)C20—C21—H21A109.5
C4—C5—C6112.07 (12)C20—C21—H21B109.5
C4—C5—C11109.32 (11)H21A—C21—H21B109.5
C6—C5—C11102.42 (11)C20—C21—H21C109.5
C4—C5—H5A110.9H21A—C21—H21C109.5
C6—C5—H5A110.9H21B—C21—H21C109.5
C11—C5—H5A110.9O1—C22—H22A109.5
O4—C6—C7109.63 (12)O1—C22—H22B109.5
O4—C6—C5117.99 (12)H22A—C22—H22B109.5
C7—C6—C5104.75 (12)O1—C22—H22C109.5
O4—C6—H6A108.0H22A—C22—H22C109.5
C7—C6—H6A108.0H22B—C22—H22C109.5
C5—C6—H6A108.0O3—C23—H23A109.5
C8—C7—C6107.51 (11)O3—C23—H23B109.5
C8—C7—C17111.31 (12)H23A—C23—H23B109.5
C6—C7—C17104.61 (12)O3—C23—H23C109.5
C8—C7—H7A111.1H23A—C23—H23C109.5
C6—C7—H7A111.1H23B—C23—H23C109.5
C17—C7—H7A111.1O4—C24—H24A109.5
O6—C8—C7107.49 (11)O4—C24—H24B109.5
O6—C8—C9101.06 (11)H24A—C24—H24B109.5
C7—C8—C9108.54 (12)O4—C24—H24C109.5
O6—C8—C15108.32 (11)H24A—C24—H24C109.5
C7—C8—C15116.32 (12)H24B—C24—H24C109.5
C9—C8—C15113.84 (12)O5—C25—O6124.70 (15)
C14—C9—C8111.83 (12)O5—C25—C26125.10 (15)
C14—C9—C10102.08 (11)O6—C25—C26110.20 (14)
C8—C9—C10112.24 (11)C25—C26—H26A109.5
C14—C9—H9A110.1C25—C26—H26B109.5
C8—C9—H9A110.1H26A—C26—H26B109.5
C10—C9—H9A110.1C25—C26—H26C109.5
O7—C10—C12105.10 (11)H26A—C26—H26C109.5
O7—C10—C9107.18 (11)H26B—C26—H26C109.5
C12—C10—C9102.33 (11)O10—C27—O9123.76 (14)
O7—C10—C11110.21 (12)O10—C27—C28126.00 (14)
C12—C10—C11114.45 (11)O9—C27—C28110.24 (13)
C9—C10—C11116.62 (12)C33—C28—C29120.07 (14)
C17—C11—C1116.46 (12)C33—C28—C27121.94 (14)
C17—C11—C10107.55 (11)C29—C28—C27117.98 (14)
C1—C11—C10107.94 (12)C30—C29—C28119.43 (15)
C17—C11—C598.50 (11)C30—C29—H29120.3
C1—C11—C5112.60 (12)C28—C29—H29120.3
C10—C11—C5113.66 (11)C31—C30—C29120.43 (15)
C13—C12—C10107.57 (11)C31—C30—H30119.8
C13—C12—H12A110.2C29—C30—H30119.8
C10—C12—H12A110.2C30—C31—C32119.99 (15)
C13—C12—H12B110.2C30—C31—H31120.0
C10—C12—H12B110.2C32—C31—H31120.0
H12A—C12—H12B108.5C33—C32—C31120.20 (15)
O8—C13—C14113.43 (12)C33—C32—H32119.9
O8—C13—C12109.50 (12)C31—C32—H32119.9
C14—C13—C12102.26 (11)C32—C33—C28119.88 (14)
O8—C13—C16111.35 (12)C32—C33—H33120.1
C14—C13—C16110.12 (12)C28—C33—H33120.1
C12—C13—C16109.79 (12)O12—C34—H34A109.5
O9—C14—C13108.67 (11)O12—C34—H34B109.5
O9—C14—C9113.52 (12)H34A—C34—H34B109.5
C13—C14—C9101.84 (11)O12—C34—H34C109.5
O9—C14—H14A110.8H34A—C34—H34C109.5
C13—C14—H14A110.8H34B—C34—H34C109.5
C9—C14—H14A110.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O50.83 (3)2.07 (3)2.791 (2)146 (3)
O8—H8···O120.83 (3)2.11 (3)2.598 (2)117 (3)
O2—H2···O7i0.87 (3)2.21 (3)3.066 (2)168 (3)
O8—H8···O2ii0.83 (3)2.39 (3)2.928 (2)123 (3)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC34H47NO12
Mr661.73
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)12.0213 (3), 15.4938 (6), 17.1038 (4)
V3)3185.68 (16)
Z4
Radiation typeCu Kα
µ (mm1)0.87
Crystal size (mm)0.40 × 0.30 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.767, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
11111, 6334, 6050
Rint0.024
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.06
No. of reflections6334
No. of parameters451
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.22
Absolute structureFlack (1983), 2633 Friedel pairs
Absolute structure parameter0.04 (10)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O50.83 (3)2.07 (3)2.791 (2)146 (3)
O8—H8···O120.83 (3)2.11 (3)2.598 (2)117 (3)
O2—H2···O7i0.87 (3)2.21 (3)3.066 (2)168 (3)
O8—H8···O2ii0.83 (3)2.39 (3)2.928 (2)123 (3)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1, y, z.
 

Acknowledgements

We thank the Academy of Sciences of Uzbekistan for supporting this study.

References

First citationDzhakhangirov, F. N. (1976). Dokl. Akad. Nauk UzSSR, pp. 32–33.  Google Scholar
First citationDzhakhangirov, F. N., Sultankhodzhaev, M. N., Tashkhodjaev, B. & Salimov, B. T. (1997). Khim. Prir. Soedin. pp. 254–270.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJoshi, B. S. & Pelletier, S. W. (1987). Heterocycles, 26, 2503–2518.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSultankhodzhaev, M. N., Beshitaishvili, L. V., Yagudaev, M. R., Yunusov, M. S. & Yunusov, S. Yu. (1980). Khim. Prir. Soedin. pp. 665–672.  Google Scholar
First citationSultankhodzhaev, M. N., Yunusov, M. S. & Yunusov, S. Yu. (1973). Khim. Prir. Soedin. pp. 127–129.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1543-o1544
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds