organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Methyl­phen­yl)-6-(1H-pyrazol-1-yl)pyridazin-3-amine

aDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, and, Applied Chemistry Research Center, PCSIR Laboratories complex, Lahore 54600, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, cDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, and dInstitute of Chemistry, University of the Punjab, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 4 June 2009; accepted 14 June 2009; online 20 June 2009)

The title compound, C14H13N5, crystallizes with two crystallographically independent mol­ecules in the unit cell. The two mol­ecules form dimers through inter­molecular N—H⋯N and C—H⋯N hydrogen bonds. The hydrogen-bonding motifs are R22(8) for both the N—H⋯N and C—H⋯N inter­actions. The pyrazole and pyrimidine rings form dihedral angles of 6.2 (3) and 8.3 (3)° with each other and the dihedral angles between the pyrazole and benzene rings are 54.9 (2) and 58.6 (2)°. The benzene rings of neighbouring dimers also exhibit C—H⋯π inter­actions.

Related literature

A docking study of pyrazololylpyridazine has shown inhibitory action against glycogen synthase kinase 3, see: Xiao et al. (2006[Xiao, J., Guo, Z., Guo, Y., Chu, F. & Sun, P. (2006). Protein Eng. Des. Select. 19, 47-54.]); For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N5

  • Mr = 251.29

  • Monoclinic, C c

  • a = 16.548 (5) Å

  • b = 19.639 (4) Å

  • c = 8.015 (5) Å

  • β = 99.619 (5)°

  • V = 2568.1 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.988

  • 13833 measured reflections

  • 3209 independent reflections

  • 1716 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.167

  • S = 1.02

  • 3209 reflections

  • 303 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N7i 0.86 2.26 3.086 (5) 162
N6—H6A⋯N2ii 0.86 2.26 3.065 (6) 156
C7—H7C⋯N8i 0.96 2.53 3.482 (8) 175
C21—H21C⋯N3ii 0.96 2.59 3.519 (10) 163
C6—H6⋯Cg1 0.93 2.80 3.529 (6) 136
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg1 is the centroid of benzene ring (C15–C20).

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Pyrazolylpyridazine derivatives are potential anticholestromic and antihypertensive agents. A docking study of pyrazololylpyridazine has shown inhibitory action against glycogen synthase kinase 3 (Xiao et al., 2006). In continuation of our work on the synthesis and reactions of azolylpyridazines, we have isolated crystals of the title compound, (Fig. 1).

The title compound contains pyrazole, pyridazine and benzene rings. In the asymmetric unit there are two molecules which differ from one another crystallographically.

In one molecule (containing C1—C14), the pyrazole ring is oriented at dihedral angles of 6.16 (30)° and 54.91 (21)° with the pyridazine and benzene rings, respectively. In the second molecule, the pyrazole ring exhibits dihedral angles of 8.26 (34)° and 58.57 (20)° with the pyridazine and benzene rings, respectively. Through intermolecular N–H···N and C–H···N hydrogen bonds the two molecules form dimers with hydrogen bonding ring motifs of R22(8) (Bernstein et al., 1995). C—H···π interactions between the benzene rings are also observed in the structure of the title compound (Table 1, Cg1 is the centroid of benzene ring (C15—C20)).

Related literature top

A docking study of pyrazololylpyridazine has shown

inhibitory action against glycogen synthase kinase 3, see: Xiao et al. (2006); For graph-set notation, see: Bernstein et al. (1995). Cg1 is the centroid of benzene ring (C15–C20).

Experimental top

3-Chloro-6-(1H-pyrazol-1-yl)pyridazine (1.68 g, 9.33 mmol) and 2-toluidine (1 g, 9.34 mmol) were refluxed in dimethylformamide (DMF) for 2 h. The reaction mixture was concentrated under vacuum and poured in cold water. The precipitates obtained were filtered, washed with distilled water and dried to give 51.28% yield. The product obtained was purified by column chromatography and recrystallized in benzene.

Refinement top

In the absence of significant anomalous scattering effects, Friedel pairs were merged. The atoms of one of the benzene rings were refined with equal anisotropic thermal parameters.

H-atoms were positioned geometrically, with N—H = 0.86 Å, C—H = 0.93 and 0.96 Å for aromatic rings and metyl H-atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram of the title compound (PLATON: Spek, 2009) showing the dimers and ring motifs. Hydrogen bonds are symbolized by dashed lines.
N-(2-Methylphenyl)-6-(1H-pyrazol-1-yl)pyridazin-3-amine top
Crystal data top
C14H13N5F(000) = 1056
Mr = 251.29Dx = 1.300 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2920 reflections
a = 16.548 (5) Åθ = 2.1–28.4°
b = 19.639 (4) ŵ = 0.08 mm1
c = 8.015 (5) ÅT = 296 K
β = 99.619 (5)°Prismatic, white
V = 2568.1 (19) Å30.24 × 0.20 × 0.18 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3209 independent reflections
Radiation source: fine-focus sealed tube1716 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 7.40 pixels mm-1θmax = 28.4°, θmin = 2.1°
ω scansh = 2222
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2426
Tmin = 0.982, Tmax = 0.988l = 810
13833 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.056P)2 + 2.2381P]
where P = (Fo2 + 2Fc2)/3
3209 reflections(Δ/σ)max < 0.001
303 parametersΔρmax = 0.40 e Å3
2 restraintsΔρmin = 0.32 e Å3
Crystal data top
C14H13N5V = 2568.1 (19) Å3
Mr = 251.29Z = 8
Monoclinic, CcMo Kα radiation
a = 16.548 (5) ŵ = 0.08 mm1
b = 19.639 (4) ÅT = 296 K
c = 8.015 (5) Å0.24 × 0.20 × 0.18 mm
β = 99.619 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3209 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1716 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.988Rint = 0.042
13833 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0632 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.02Δρmax = 0.40 e Å3
3209 reflectionsΔρmin = 0.32 e Å3
303 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3430 (2)0.3434 (2)0.7950 (6)0.0617 (12)
H10.38870.36490.80340.074*
N20.4170 (2)0.2448 (2)0.8037 (6)0.0629 (12)
N30.4249 (2)0.1762 (2)0.8272 (6)0.0640 (12)
N40.3754 (3)0.0702 (2)0.8745 (6)0.0615 (12)
N50.3154 (3)0.0302 (3)0.9209 (8)0.0904 (18)
N60.0751 (3)0.1921 (2)0.2213 (6)0.0609 (12)
H6A0.02880.21290.21210.073*
N70.0075 (2)0.0924 (2)0.2451 (5)0.0562 (11)
N80.0015 (2)0.0239 (2)0.2363 (6)0.0544 (10)
N90.0521 (2)0.08308 (18)0.1990 (5)0.0522 (10)
N100.1036 (3)0.1245 (2)0.1338 (6)0.0680 (13)
C10.2696 (3)0.3825 (2)0.7595 (6)0.0499 (11)
C20.2655 (3)0.4452 (2)0.8362 (6)0.0567 (13)
C30.1903 (4)0.4801 (3)0.7933 (8)0.0714 (16)
H30.18500.52290.84010.086*
C40.1249 (4)0.4537 (3)0.6860 (9)0.0779 (17)
H40.07620.47810.66310.093*
C50.1306 (3)0.3920 (3)0.6125 (8)0.0714 (15)
H50.08630.37390.53900.086*
C60.2032 (3)0.3570 (3)0.6494 (7)0.0556 (12)
H60.20780.31490.59880.067*
C70.3362 (4)0.4739 (3)0.9540 (8)0.0779 (18)
H7A0.34610.44691.05520.117*
H7B0.32410.51990.98230.117*
H7C0.38400.47350.90080.117*
C80.3467 (3)0.2744 (2)0.8169 (6)0.0521 (12)
C90.2804 (3)0.2371 (3)0.8593 (7)0.0613 (14)
H90.23250.25900.87520.074*
C100.2878 (3)0.1693 (3)0.8763 (7)0.0599 (14)
H100.24430.14250.89790.072*
C110.3625 (3)0.1409 (3)0.8603 (7)0.0556 (12)
C120.4397 (4)0.0335 (3)0.8451 (9)0.0790 (17)
H120.48710.05040.81180.095*
C130.4230 (5)0.0330 (3)0.8729 (11)0.098 (2)
H130.45600.07070.86360.117*
C140.3461 (5)0.0318 (4)0.9180 (11)0.105 (3)
H140.31870.07070.94370.126*
C150.1471 (2)0.23170 (19)0.2472 (5)0.0810 (8)
C160.1493 (2)0.2952 (2)0.1713 (5)0.0810 (8)
C170.2214 (2)0.33286 (16)0.1961 (5)0.0810 (8)
H170.22290.37530.14530.097*
C180.2913 (2)0.30707 (19)0.2966 (6)0.0810 (8)
H180.33950.33230.31310.097*
C190.2891 (2)0.2436 (2)0.3724 (5)0.0810 (8)
H190.33580.22630.43970.097*
C200.2170 (2)0.20591 (16)0.3477 (5)0.0810 (8)
H200.21550.16340.39840.097*
C210.0748 (5)0.3242 (3)0.0633 (10)0.104 (3)
H21A0.05270.29150.02120.156*
H21B0.08940.36490.00930.156*
H21C0.03440.33470.13260.156*
C220.0745 (3)0.1232 (2)0.2100 (6)0.0515 (12)
C230.1379 (3)0.0856 (3)0.1572 (7)0.0599 (13)
H230.18290.10760.12640.072*
C240.1322 (3)0.0166 (3)0.1517 (6)0.0551 (13)
H240.17340.01020.12020.066*
C250.0619 (3)0.0118 (2)0.1954 (6)0.0466 (11)
C260.0083 (4)0.1183 (3)0.2518 (9)0.084 (2)
H260.05110.10020.29950.101*
C270.0043 (4)0.1848 (3)0.2232 (10)0.085 (2)
H270.02700.22180.24700.102*
C280.0737 (4)0.1854 (3)0.1509 (9)0.0819 (19)
H280.09730.22500.11730.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.045 (2)0.044 (2)0.096 (3)0.0036 (19)0.011 (2)0.006 (2)
N20.045 (2)0.044 (2)0.100 (4)0.0009 (18)0.010 (2)0.001 (2)
N30.046 (2)0.048 (3)0.098 (3)0.001 (2)0.011 (2)0.003 (2)
N40.050 (2)0.050 (3)0.082 (3)0.005 (2)0.002 (2)0.005 (2)
N50.067 (3)0.064 (4)0.136 (5)0.015 (3)0.005 (3)0.024 (3)
N60.054 (2)0.038 (2)0.091 (3)0.001 (2)0.013 (2)0.002 (2)
N70.047 (2)0.043 (3)0.079 (3)0.0015 (19)0.015 (2)0.006 (2)
N80.042 (2)0.041 (2)0.081 (3)0.0020 (18)0.014 (2)0.005 (2)
N90.050 (2)0.040 (2)0.067 (3)0.0012 (19)0.010 (2)0.003 (2)
N100.068 (3)0.044 (3)0.097 (4)0.006 (2)0.027 (3)0.007 (2)
C10.052 (3)0.039 (3)0.062 (3)0.000 (2)0.020 (2)0.002 (2)
C20.074 (3)0.042 (3)0.063 (3)0.005 (3)0.037 (3)0.001 (2)
C30.099 (5)0.046 (3)0.079 (4)0.013 (3)0.043 (4)0.000 (3)
C40.069 (4)0.078 (4)0.090 (5)0.023 (3)0.024 (3)0.017 (4)
C50.060 (3)0.069 (4)0.087 (4)0.003 (3)0.018 (3)0.005 (3)
C60.056 (3)0.044 (3)0.069 (3)0.004 (2)0.018 (2)0.001 (2)
C70.096 (4)0.064 (4)0.080 (4)0.021 (3)0.032 (3)0.016 (3)
C80.048 (3)0.047 (3)0.059 (3)0.006 (2)0.004 (2)0.001 (2)
C90.057 (3)0.056 (3)0.076 (4)0.009 (3)0.027 (3)0.008 (3)
C100.052 (3)0.062 (3)0.068 (4)0.008 (3)0.016 (3)0.010 (3)
C110.052 (3)0.047 (3)0.068 (3)0.005 (2)0.010 (2)0.006 (2)
C120.069 (4)0.059 (4)0.108 (5)0.004 (3)0.011 (3)0.008 (3)
C130.094 (5)0.060 (4)0.126 (6)0.008 (4)0.018 (4)0.007 (4)
C140.083 (5)0.053 (4)0.166 (8)0.017 (4)0.019 (5)0.033 (4)
C150.0806 (16)0.0625 (15)0.112 (2)0.0139 (12)0.0506 (16)0.0222 (14)
C160.0806 (16)0.0625 (15)0.112 (2)0.0139 (12)0.0506 (16)0.0222 (14)
C170.0806 (16)0.0625 (15)0.112 (2)0.0139 (12)0.0506 (16)0.0222 (14)
C180.0806 (16)0.0625 (15)0.112 (2)0.0139 (12)0.0506 (16)0.0222 (14)
C190.0806 (16)0.0625 (15)0.112 (2)0.0139 (12)0.0506 (16)0.0222 (14)
C200.0806 (16)0.0625 (15)0.112 (2)0.0139 (12)0.0506 (16)0.0222 (14)
C210.154 (7)0.066 (4)0.103 (6)0.021 (5)0.053 (5)0.023 (4)
C220.048 (3)0.047 (3)0.061 (3)0.006 (2)0.013 (2)0.001 (2)
C230.055 (3)0.054 (3)0.077 (4)0.005 (3)0.028 (3)0.002 (3)
C240.047 (3)0.052 (3)0.071 (3)0.003 (2)0.022 (2)0.008 (3)
C250.042 (2)0.046 (3)0.051 (3)0.003 (2)0.007 (2)0.005 (2)
C260.070 (4)0.052 (4)0.139 (6)0.005 (3)0.044 (4)0.011 (3)
C270.079 (4)0.043 (3)0.136 (6)0.003 (3)0.025 (4)0.001 (3)
C280.077 (4)0.046 (4)0.123 (6)0.008 (3)0.017 (4)0.011 (3)
Geometric parameters (Å, º) top
N1—C81.366 (6)C8—C91.406 (7)
N1—C11.426 (6)C9—C101.342 (7)
N1—H10.8600C9—H90.9300
N2—C81.321 (6)C10—C111.383 (7)
N2—N31.364 (6)C10—H100.9300
N3—C111.306 (6)C12—C131.362 (8)
N4—C121.338 (7)C12—H120.9300
N4—N51.366 (6)C13—C141.380 (11)
N4—C111.406 (6)C13—H130.9300
N5—C141.321 (9)C14—H140.9300
N6—C221.356 (6)C15—C161.3900
N6—C151.407 (5)C15—C201.3900
N6—H6A0.8600C16—C171.3900
N7—C221.335 (6)C16—C211.495 (8)
N7—N81.349 (5)C17—C181.3900
N8—C251.306 (6)C17—H170.9300
N9—C261.341 (7)C18—C191.3900
N9—N101.345 (6)C18—H180.9300
N9—C251.411 (5)C19—C201.3900
N10—C281.310 (7)C19—H190.9300
C1—C61.383 (7)C20—H200.9300
C1—C21.383 (6)C21—H21A0.9600
C2—C31.412 (8)C21—H21B0.9600
C2—C71.485 (8)C21—H21C0.9600
C3—C41.367 (9)C22—C231.404 (7)
C3—H30.9300C23—C241.358 (7)
C4—C51.356 (8)C23—H230.9300
C4—H40.9300C24—C251.387 (7)
C5—C61.372 (7)C24—H240.9300
C5—H50.9300C26—C271.347 (8)
C6—H60.9300C26—H260.9300
C7—H7A0.9600C27—C281.371 (9)
C7—H7B0.9600C27—H270.9300
C7—H7C0.9600C28—H280.9300
C8—N1—C1125.3 (4)N4—C12—C13107.4 (6)
C8—N1—H1117.3N4—C12—H12126.3
C1—N1—H1117.3C13—C12—H12126.3
C8—N2—N3119.3 (4)C12—C13—C14104.4 (6)
C11—N3—N2119.5 (4)C12—C13—H13127.8
C12—N4—N5112.0 (5)C14—C13—H13127.8
C12—N4—C11129.1 (5)N5—C14—C13113.3 (6)
N5—N4—C11118.9 (5)N5—C14—H14123.4
C14—N5—N4103.1 (6)C13—C14—H14123.4
C22—N6—C15123.9 (4)C16—C15—C20120.0
C22—N6—H6A118.1C16—C15—N6120.9 (3)
C15—N6—H6A118.1C20—C15—N6119.0 (3)
C22—N7—N8119.8 (4)C17—C16—C15120.0
C25—N8—N7119.7 (4)C17—C16—C21119.0 (4)
C26—N9—N10111.4 (4)C15—C16—C21121.0 (4)
C26—N9—C25127.8 (4)C16—C17—C18120.0
N10—N9—C25120.7 (4)C16—C17—H17120.0
C28—N10—N9103.7 (5)C18—C17—H17120.0
C6—C1—C2120.9 (5)C17—C18—C19120.0
C6—C1—N1119.5 (4)C17—C18—H18120.0
C2—C1—N1119.6 (4)C19—C18—H18120.0
C1—C2—C3115.5 (5)C20—C19—C18120.0
C1—C2—C7121.9 (5)C20—C19—H19120.0
C3—C2—C7122.6 (5)C18—C19—H19120.0
C4—C3—C2122.8 (5)C19—C20—C15120.0
C4—C3—H3118.6C19—C20—H20120.0
C2—C3—H3118.6C15—C20—H20120.0
C5—C4—C3120.5 (6)C16—C21—H21A109.5
C5—C4—H4119.7C16—C21—H21B109.5
C3—C4—H4119.7H21A—C21—H21B109.5
C4—C5—C6118.3 (6)C16—C21—H21C109.5
C4—C5—H5120.8H21A—C21—H21C109.5
C6—C5—H5120.8H21B—C21—H21C109.5
C5—C6—C1122.0 (5)N7—C22—N6115.8 (4)
C5—C6—H6119.0N7—C22—C23120.9 (4)
C1—C6—H6119.0N6—C22—C23123.2 (5)
C2—C7—H7A109.5C24—C23—C22118.9 (5)
C2—C7—H7B109.5C24—C23—H23120.5
H7A—C7—H7B109.5C22—C23—H23120.5
C2—C7—H7C109.5C23—C24—C25116.7 (5)
H7A—C7—H7C109.5C23—C24—H24121.7
H7B—C7—H7C109.5C25—C24—H24121.7
N2—C8—N1116.6 (4)N8—C25—C24123.8 (4)
N2—C8—C9121.5 (5)N8—C25—N9115.6 (4)
N1—C8—C9121.8 (5)C24—C25—N9120.6 (4)
C10—C9—C8118.7 (5)N9—C26—C27107.6 (6)
C10—C9—H9120.7N9—C26—H26126.2
C8—C9—H9120.7C27—C26—H26126.2
C9—C10—C11117.3 (5)C26—C27—C28104.1 (6)
C9—C10—H10121.4C26—C27—H27127.9
C11—C10—H10121.4C28—C27—H27127.9
N3—C11—C10123.6 (5)N10—C28—C27113.2 (6)
N3—C11—N4115.2 (5)N10—C28—H28123.4
C10—C11—N4121.1 (5)C27—C28—H28123.4
C8—N2—N3—C110.8 (8)N4—C12—C13—C140.4 (8)
C12—N4—N5—C140.1 (7)N4—N5—C14—C130.4 (8)
C11—N4—N5—C14178.6 (5)C12—C13—C14—N50.5 (9)
C22—N7—N8—C250.8 (7)C22—N6—C15—C16144.5 (4)
C26—N9—N10—C281.0 (7)C22—N6—C15—C2034.3 (6)
C25—N9—N10—C28176.7 (5)C20—C15—C16—C170.0
C8—N1—C1—C639.5 (7)N6—C15—C16—C17178.8 (4)
C8—N1—C1—C2140.1 (5)C20—C15—C16—C21179.7 (5)
C6—C1—C2—C30.3 (7)N6—C15—C16—C211.5 (5)
N1—C1—C2—C3179.9 (4)C15—C16—C17—C180.0
C6—C1—C2—C7179.6 (5)C21—C16—C17—C18179.7 (5)
N1—C1—C2—C70.8 (7)C16—C17—C18—C190.0
C1—C2—C3—C41.2 (8)C17—C18—C19—C200.0
C7—C2—C3—C4179.5 (6)C18—C19—C20—C150.0
C2—C3—C4—C51.2 (9)C16—C15—C20—C190.0
C3—C4—C5—C60.3 (9)N6—C15—C20—C19178.8 (4)
C4—C5—C6—C10.6 (8)N8—N7—C22—N6179.7 (4)
C2—C1—C6—C50.6 (8)N8—N7—C22—C232.7 (7)
N1—C1—C6—C5179.0 (5)C15—N6—C22—N7157.2 (4)
N3—N2—C8—N1178.9 (4)C15—N6—C22—C2325.8 (8)
N3—N2—C8—C91.8 (8)N7—C22—C23—C243.9 (8)
C1—N1—C8—N2162.4 (5)N6—C22—C23—C24179.3 (5)
C1—N1—C8—C920.5 (8)C22—C23—C24—C251.6 (8)
N2—C8—C9—C104.1 (8)N7—N8—C25—C243.1 (8)
N1—C8—C9—C10179.0 (5)N7—N8—C25—N9176.5 (4)
C8—C9—C10—C113.6 (8)C23—C24—C25—N81.8 (8)
N2—N3—C11—C101.2 (8)C23—C24—C25—N9177.7 (5)
N2—N3—C11—N4177.1 (5)C26—N9—C25—N85.7 (8)
C9—C10—C11—N31.2 (8)N10—N9—C25—N8169.3 (5)
C9—C10—C11—N4179.3 (5)C26—N9—C25—C24173.9 (6)
C12—N4—C11—N36.2 (9)N10—N9—C25—C2411.1 (7)
N5—N4—C11—N3175.3 (5)N10—N9—C26—C271.0 (8)
C12—N4—C11—C10172.1 (6)C25—N9—C26—C27176.3 (5)
N5—N4—C11—C106.3 (8)N9—C26—C27—C280.5 (8)
N5—N4—C12—C130.2 (8)N9—N10—C28—C270.6 (7)
C11—N4—C12—C13178.7 (6)C26—C27—C28—N100.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N7i0.862.263.086 (5)162
N6—H6A···N2ii0.862.263.065 (6)156
C7—H7C···N8i0.962.533.482 (8)175
C21—H21C···N3ii0.962.593.519 (10)163
C6—H6···Cg10.932.803.529 (6)136
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H13N5
Mr251.29
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)16.548 (5), 19.639 (4), 8.015 (5)
β (°) 99.619 (5)
V3)2568.1 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.982, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
13833, 3209, 1716
Rint0.042
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.167, 1.02
No. of reflections3209
No. of parameters303
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N7i0.862.263.086 (5)162
N6—H6A···N2ii0.862.263.065 (6)156
C7—H7C···N8i0.962.533.482 (8)175
C21—H21C···N3ii0.962.593.519 (10)163
C6—H6···Cg10.932.803.529 (6)136
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore and for technical support, respectively.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, J., Guo, Z., Guo, Y., Chu, F. & Sun, P. (2006). Protein Eng. Des. Select. 19, 47–54.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds