organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1637-o1638

4-Chloro-N-(2,6-di­chloro­phen­yl)benzamide

aFaculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, bDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: miroslav.tokarcik@stuba.sk

(Received 5 June 2009; accepted 12 June 2009; online 20 June 2009)

The title compound, C13H8Cl3NO, crystallizes with four mol­ecules in the asymmetric unit. In the mol­ecular structure, the conformations of the central amide –CONH group show a wide range of dihedral angles with respect to the attached aromatic rings (benzoyl and anilino). The dihedral angles between the amide group and the benzoyl ring are 8.1 (3), 4.3 (3), 27.8 (1) and 32.7 (2)° in the four mol­ecules. The amide group is twisted out of the plane of the anilino ring, as shown by the dihedral angles of 85.4 (1), 74.3 (1), 88.1 (1) and 77.6 (1)° in the four mol­ecules. The aromatic rings are oriented at dihedral angles of 86.6 (1), 78.0 (1), 60.3 (1) and 69.8 (1)° in the four mol­ecules. The crystal structure is stabilized via inter­molecular N—H⋯O hydrogen bonds, aromatic aromatic inter­actions, short Cl⋯Cl contacts and C—H⋯Cl hydrogen bonds. Inter­molecular hydrogen bonds connect the mol­ecules into two distinct chains running along the c axis of the crystal. One mol­ecule forms an inversion dimer in which the main inter­actions are ππ stacking [centroid–centroid distances = 3.749 (1) and 3.760 (1) Å] and a short Cl⋯Cl contact of 3.408 (1) Å.

Related literature

For the biological activity of benzamide and benzanilide derivatives, see: Glaser (2007[Glaser, K. B. (2007). Biochem. Pharmacol. 74, 659-671.]); Pasha et al. (2008[Pasha, F. A., Muddassar, M., Lee, C. & Cho, S. J. (2008). Environ. Toxicol. Pharmacol. 26, 128-135.]); Brunhofer et al. (2008[Brunhofer, G., Handler, N., Leisser, K., Studenik, C. R. & Erker, T. (2008). Bioorg. Med. Chem. 16, 5974-5981.]); Calderone et al. (2006[Calderone, V., Coi, A., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem. 41, 1421-1429.]); Stauffer et al. (2000[Stauffer, S. R., Sun, J., Katzenellenbogen, B. S. & Katzenellenbogen, J. A. (2000). Bioorg. Med. Chem. 8, 1293-1316.]); Lindgren et al. (2001[Lindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol. 38, 267-277.]). For anion recognition, see: Kang et al. (2006[Kang, S. O., Hossain, Md. A. & Bowman-James, K. (2006). Coord. Chem. Rev. 250, 3038-3052.]); Sun et al. (2009[Sun, Y., Wang, G. & Guo, W. (2009). Tetrahedron, 65, 3480-3485.]). For theoretical study of inter­nal rotations, see: Nishikawa et al. (2005[Nishikawa, J., Imase, T., Koike, M., Fukuda, K., Tokita, M., Watanabe, J. & Kawauchi, S. (2005). J. Mol. Struct. 741, 221-228.]). For related structures, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]); Saeed et al. (2008[Saeed, A., Khera, R. A., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o1934.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8Cl3NO

  • Mr = 300.55

  • Monoclinic, P 21 /c

  • a = 16.9411 (3) Å

  • b = 16.3246 (2) Å

  • c = 19.5505 (3) Å

  • β = 95.3678 (13)°

  • V = 5383.11 (14) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 295 K

  • 0.51 × 0.11 × 0.09 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]), based on Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.754, Tmax = 0.944

  • 180094 measured reflections

  • 10264 independent reflections

  • 5984 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 0.98

  • 10278 reflections

  • 670 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1N⋯O1Di 0.855 (16) 2.066 (17) 2.882 (2) 159 (2)
N1B—H2N⋯O1Cii 0.816 (15) 2.117 (17) 2.880 (2) 156 (2)
N1C—H3N⋯O1B 0.842 (15) 2.054 (16) 2.875 (2) 165 (2)
N1D—H4N⋯O1Aiii 0.844 (16) 1.942 (19) 2.728 (2) 154 (2)
C7A—H7A⋯O1Di 0.93 2.59 3.489 (3) 164
C10C—H10C⋯Cl2Biv 0.93 2.82 3.599 (3) 142
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z; (iv) -x+1, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Various biological activities of benzamide and benzanilide derivatives have been reported in the literature: benzamide based histone deacetylase inhibitors (Glaser 2007), N-phenylbenzamides as antimicrobial agents (Pasha et al., 2008), benzanilides with spasmolytic activity (Brunhofer et al., 2008), benzanilide derivatives as effective potassium channel openers (Calderone et al., 2006), N-phenyl benzamides as estrogen receptor ligands (Stauffer et al., 2000), N-substituted benzamides with immuno-modulatory activity (Lindgren et al., 2001). In supramolecular chemistry, aromatic amides are widely used for anion recognition (Kang et al., 2006). Sun et al. (2009) reported nitrophenylbenzamide based chemosensors toward cyanide in aqueous environment. Nishikawa et al. (2005) performed DFT-calculations of barriers to internal rotations in aromatic polyamides, including benzanilide.

The title compound, C13H8Cl3NO, (Fig.1), has four unique molecules in the asymmetric unit (further marked as A, B, C and D). In the molecular structure, the conformations of the central amide group CONH with respect to the attached aromatic rings (benzoyl C2/C7, anilino C8/C13) show a wide range of dihedral angle values, which is an indication that the energy of intermolecular interactions is comparable to the barriers of internal rotations. The dihedral angle between the amide group and the benzoyl ring is 8.1 (3), 4.3 (3), 27.8 (1) and 32.7 (2)° in the molecules A, B, C and D, respectively. The amide group is heavily twisted out of the plane of the anilino ring, with dihedral angles of 85.4 (1), 74.3 (1), 88.1 (1), 77.6 (1)° for the molecules A, B, C and D, respectively. This conformation can be attributed to the steric effect of the bulky chloro groups in ortho positions. We recall that the corresponding dihedral angle in the parent molecule benzanilide is ca 31° (Bowes, et al., 2003). The aromatic rings (benzoyl and anilino) are oriented at dihedral angles of 86.6 (1), 78.0 (1), 60.3 (1) and 69.8 (1)° in the molecules A, B, C and D, respectively. In benzanilide, the aromatic rings make a dihedral angle of ca 61°. The bond lengths and bond angles lie within the ranges expected for similar compounds. The endocyclic bond angles in both aromatic rings are sligtly distorted from the ideal value of 120°, reflecting the chloro-substitution effect on the benzene rings. The orientation of an amide group with respect to aromatic rings strongly depends on the local crystal field, which is manifested by significant differences in the torsion angles describing the conformations in the molecules A, B, C and D.

The crystal structure is stabilized by intermolecular N—H···O hydrogen bonds, aromatic aromatic interactions, short Cl···Cl contacts and weak C—H···Cl hydrogen bonds. Intermolecular N—H···O hydrogen bonds connect the molecules into two distinct chains running along the c axis of the crystal (Fig. 2). The first chain is linked by hydrogen bonds arising between amidic N, O atoms of the molecules A and D. The second chain is linked by hydrogen bonds arising between amidic N, O atoms of the molecules B and C. The chains are coupled via stacking interactions. The two most important π - π stacking formations, which we found using the PLATON software (Spek, 2009), are: The stacking between the benzoyl rings of the molecule C at the positions (x,y,z) and (1 - x,1 - y,1 - z). The interplanar distance is 3.538 Å, offset 1.241 Å and ring-centroids separation 3.749 Å. The second stacking is between the anilino rings of the molecule C at the positions (x, y, z) and (1 - x, -y, 1 - z). The interplanar distance is 3.411 Å, offset 1.582 Å and ring-centroids separation 3.760 Å. The molecule C forms an interesting inversion dimer (Fig. 3), with a head-to-tail arrangement. The dimer is stabilized by π - π interaction, a short Cl···Cl contact of 3.408 (1) Å, and possibly dipolar interaction between carbonyl group dipoles. A non-conventional C—H···Cl hydrogen bond (C10c—H10c···Cl2b) adds to the mosaic of interactions in the crystal structure of the title compound. The H10c···Cl2b distance of 2.82 Å is 0.13 Å shorter than the the sum of van der Waals radii for H and Cl.

Related literature top

For the biological activity of benzamide and benzanilide derivatives, see: Glaser (2007); Pasha et al. (2008); Brunhofer et al. (2008); Calderone et al. (2006); Stauffer et al. (2000); Lindgren et al. (2001). For anion recognition, see: Kang et al. (2006); Sun et al. (2009). For theoretical study of internal rotations, see: Nishikawa et al. (2005). For related structures, see: Bowes et al. (2003); Gowda et al. (2003); Saeed et al. (2008).

Experimental top

The title compound was prepared according to the method of Gowda et al. (2003). Single crystals used in X-ray diffraction studies were obtained by slow evaporation of its ethanolic solution at room temperature. The purity of the compound was checked by determining its melting point (172–173 °C). The compound was characterized via IR and NMR spectroscopy. IR (KBr, cm-1): 3271.0 m (N–H stretch), 1654.8 s (C=O stretch), 1299.9 m (C–N stretch). [s = strong band, m = medium band]. 1H NMR (CDCl3, 300 MHz, p.p.m.): 7.67 (H–N), 7.40 d (H-3,7), 7.23 d (H-11), 7.88 d (H-3,7), 7.46 d (H-4,6). 13C NMR (CDCl3, 75.5 MHz, p.p.m.): 164.8 (C=O), 132.0 (C-2), 128.9 (C-3,7), 129.1 (C-4,6), 133.7 (C-5), 138.7 (C-8), 131.6 (C-9,13), 128.8 (C-10,12), 128.6 (C-11).

Refinement top

Most of hydrogen atoms were placed in calculated positions with C–H distances in the range 0.93–0.96 Å and constrained to ride on their parent atoms. Amide H atoms were seen in difference maps and were refined with the N–H distances restrained to 0.85 (2) Å. Hydrogen atoms H10, H11 and H12 in the molecule D were refined with C–H distance restrained to 0.94 (3) Å with the aim to remove a Hirschfeld test alert. The U values of 8 carbon atoms and 2 chlorine atoms were subject to a rigid bond restraint (DELU command), i.e. the components of the displacement parameters in the direction of the bond were restrained to be equal within an effective standard deviation (e.s.d. = 0.007 for atoms C2a, C3a, C8c, C9c, C13c, Cl3c, C10d, C11d and e.s.d. = 0.004 for atoms C13d and Cl3d). The Uiso(H) values were set at 1.2Ueq(C-aromatic,N).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing the formation of the hydrogen-bonded chains running along the c axis. Symmetry codes: (i) x - 1, -y + 1/2, z - 1/2, (ii) x, -y + 1/2, z - 1/2, (iii) x + 1, y, z. H atoms not involved in hydrogen bonding are omitted.
[Figure 3] Fig. 3. The inversion dimer of the molecule C. The main interaction is π-stacking of benzoyl rings, marked via their centroids Cg1, Cg1(v). Symmetry code: (v) 1 - x, 1 - y, 1 - z. Ring-centroid separation and short Cl···Cl contacts are shown as dashed lines.
4-Chloro-N-(2,6-dichlorophenyl)benzamide top
Crystal data top
C13H8Cl3NOF(000) = 2432
Mr = 300.55Dx = 1.483 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 40513 reflections
a = 16.9411 (3) Åθ = 3.0–29.6°
b = 16.3246 (2) ŵ = 0.67 mm1
c = 19.5505 (3) ÅT = 295 K
β = 95.3678 (13)°Needle, colourless
V = 5383.11 (14) Å30.51 × 0.11 × 0.09 mm
Z = 16
Data collection top
Oxford Diffraction Xcalibur
diffractometer
Rint = 0.053
Graphite monochromatorθmax = 25.8°, θmin = 2.3°
ω scans with κ offsetsh = 2020
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2008), based on Clark & Reid (1995)]
k = 1919
Tmin = 0.754, Tmax = 0.944l = 2323
180094 measured reflections3 standard reflections every 120 min
10264 independent reflections intensity decay: 0.5%
5984 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0583P)2]
where P = (Fo2 + 2Fc2)/3
10278 reflections(Δ/σ)max < 0.001
670 parametersΔρmax = 0.33 e Å3
15 restraintsΔρmin = 0.23 e Å3
Crystal data top
C13H8Cl3NOV = 5383.11 (14) Å3
Mr = 300.55Z = 16
Monoclinic, P21/cMo Kα radiation
a = 16.9411 (3) ŵ = 0.67 mm1
b = 16.3246 (2) ÅT = 295 K
c = 19.5505 (3) Å0.51 × 0.11 × 0.09 mm
β = 95.3678 (13)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
5984 reflections with I > 2σ(I)
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2008), based on Clark & Reid (1995)]
Rint = 0.053
Tmin = 0.754, Tmax = 0.9443 standard reflections every 120 min
180094 measured reflections intensity decay: 0.5%
10264 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04115 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.33 e Å3
10278 reflectionsΔρmin = 0.23 e Å3
670 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.01521 (12)0.24995 (13)0.20152 (9)0.0679 (6)
H1N0.0020 (14)0.2564 (15)0.1607 (9)0.081*
O1A0.00098 (11)0.27519 (12)0.31328 (7)0.0872 (6)
Cl1A0.34739 (5)0.42659 (5)0.23734 (4)0.1008 (3)
Cl2A0.02618 (5)0.06753 (5)0.21458 (4)0.1059 (3)
Cl3A0.14461 (5)0.37320 (5)0.19803 (4)0.1009 (3)
C1A0.02724 (13)0.27901 (14)0.25719 (10)0.0578 (6)
C2A0.10565 (13)0.31648 (13)0.24908 (9)0.0517 (5)
C3A0.15350 (15)0.33685 (15)0.30778 (11)0.0658 (6)
H3A0.13540.32750.35050.079*
C4A0.22717 (16)0.37056 (15)0.30429 (12)0.0711 (7)
H4A0.25860.38380.34430.085*
C5A0.25378 (14)0.38453 (14)0.24193 (12)0.0643 (6)
C6A0.20812 (16)0.36548 (17)0.18329 (12)0.0800 (8)
H6A0.22640.37570.14070.096*
C7A0.13480 (15)0.33111 (16)0.18723 (11)0.0735 (7)
H7A0.10410.31740.14690.088*
C8A0.09215 (14)0.21751 (17)0.20417 (10)0.0627 (6)
C9A0.10499 (15)0.13470 (18)0.20852 (11)0.0702 (7)
C10A0.18105 (19)0.10314 (19)0.20735 (12)0.0800 (8)
H10A0.18880.0470.21090.096*
C11A0.24487 (17)0.1553 (2)0.20087 (12)0.0820 (8)
H11A0.2960.13420.19870.098*
C12A0.23399 (16)0.2376 (2)0.19764 (11)0.0807 (8)
H12A0.27750.27260.19390.097*
C13A0.15816 (16)0.26914 (17)0.19990 (10)0.0712 (7)
N1B0.54004 (11)0.25961 (12)0.28954 (8)0.0578 (5)
H2N0.5318 (13)0.2534 (14)0.2481 (8)0.069*
O1B0.49853 (9)0.25248 (11)0.39413 (7)0.0762 (5)
Cl1B0.17328 (5)0.09853 (6)0.22580 (6)0.1275 (3)
Cl2B0.65068 (5)0.13398 (5)0.35411 (4)0.1043 (3)
Cl3B0.56847 (5)0.43598 (5)0.26545 (4)0.1017 (3)
C1B0.48504 (13)0.24196 (13)0.33249 (10)0.0517 (5)
C2B0.40793 (12)0.20796 (12)0.30239 (10)0.0484 (5)
C3B0.35060 (15)0.19335 (15)0.34661 (12)0.0658 (6)
H3B0.36060.20640.39290.079*
C4B0.27899 (16)0.15970 (16)0.32283 (16)0.0787 (7)
H4B0.24070.14970.3530.094*
C5B0.26417 (15)0.14095 (15)0.25493 (17)0.0753 (7)
C6B0.31894 (17)0.15589 (18)0.21067 (14)0.0841 (8)
H6B0.3080.14380.16430.101*
C7B0.39097 (15)0.18910 (15)0.23434 (11)0.0700 (7)
H7B0.42870.19890.20370.084*
C8B0.61598 (13)0.28835 (14)0.31361 (9)0.0520 (5)
C9B0.67220 (15)0.23618 (16)0.34592 (11)0.0665 (6)
C10B0.74665 (17)0.2637 (2)0.36897 (13)0.0840 (8)
H10B0.78350.22830.39120.101*
C11B0.76574 (18)0.3435 (2)0.35883 (14)0.0883 (9)
H11B0.81620.36210.3740.106*
C12B0.71239 (18)0.39649 (18)0.32688 (13)0.0803 (8)
H12B0.72630.45070.31990.096*
C13B0.63704 (14)0.36865 (15)0.30494 (10)0.0630 (6)
N1C0.54579 (11)0.23320 (10)0.53835 (8)0.0508 (4)
H3N0.5371 (12)0.2468 (13)0.4968 (8)0.061*
O1C0.56197 (9)0.27476 (9)0.64809 (7)0.0632 (4)
Cl1C0.62723 (4)0.63315 (4)0.49957 (4)0.0881 (2)
Cl2C0.38314 (4)0.16952 (5)0.55737 (4)0.0940 (2)
Cl3C0.69772 (5)0.14330 (5)0.54692 (4)0.1055 (3)
C1C0.56049 (11)0.29103 (13)0.58689 (10)0.0459 (5)
C2C0.57685 (11)0.37500 (12)0.56292 (9)0.0441 (5)
C3C0.56156 (13)0.44075 (14)0.60366 (10)0.0588 (6)
H3C0.54060.43160.64530.071*
C4C0.57648 (14)0.51957 (15)0.58425 (12)0.0656 (6)
H4C0.56450.56330.61190.079*
C5C0.60899 (12)0.53327 (13)0.52411 (11)0.0554 (6)
C6C0.62633 (14)0.46970 (14)0.48319 (11)0.0638 (6)
H6C0.64920.47950.44260.077*
C7C0.60982 (13)0.39061 (13)0.50214 (10)0.0566 (6)
H7C0.6210.34730.47370.068*
C8C0.54059 (15)0.14968 (13)0.55637 (9)0.0543 (6)
C9C0.46937 (16)0.11342 (14)0.56777 (11)0.0653 (6)
C10C0.4646 (2)0.03189 (16)0.58582 (12)0.0832 (8)
H10C0.4160.00850.5930.1*
C11C0.5325 (3)0.01375 (18)0.59289 (13)0.0975 (10)
H11C0.52980.06850.60570.117*
C12C0.6042 (2)0.01942 (19)0.58145 (13)0.0915 (9)
H12C0.64990.01250.58590.11*
C13C0.60779 (16)0.10095 (15)0.56319 (11)0.0683 (6)
N1D1.00625 (13)0.21879 (12)0.44495 (8)0.0716 (6)
H4N0.9902 (15)0.2400 (14)0.4068 (10)0.086*
O1D0.98706 (12)0.21685 (11)0.55695 (7)0.0870 (6)
Cl1D0.82750 (6)0.58103 (5)0.47748 (5)0.1224 (3)
Cl2D1.17656 (5)0.21164 (5)0.49982 (4)0.1061 (3)
Cl3D0.90147 (6)0.08528 (6)0.38692 (4)0.1133 (3)
C1D0.98079 (14)0.25205 (15)0.50152 (10)0.0637 (6)
C2D0.94263 (13)0.33420 (15)0.49198 (10)0.0574 (6)
C3D0.88233 (16)0.35364 (17)0.53201 (11)0.0741 (7)
H3D0.8660.31530.56290.089*
C4D0.84624 (16)0.42912 (18)0.52672 (12)0.0783 (8)
H4D0.80520.44170.55340.094*
C5D0.87110 (15)0.48473 (16)0.48241 (14)0.0705 (7)
C6D0.93043 (15)0.46719 (15)0.44139 (12)0.0681 (6)
H6D0.94640.5060.41070.082*
C7D0.96600 (13)0.39125 (15)0.44644 (11)0.0589 (6)
H7D1.00610.37860.41880.071*
C8D1.04163 (19)0.14073 (17)0.44522 (11)0.0743 (8)
C9D1.12048 (19)0.12862 (17)0.47012 (12)0.0820 (8)
C10D1.1547 (2)0.0528 (2)0.47083 (15)0.0975 (10)
H10D1.2093 (14)0.046 (2)0.4889 (15)0.117*
C11D1.1102 (3)0.0126 (2)0.44464 (17)0.1084 (12)
H11D1.1308 (19)0.0659 (15)0.4433 (16)0.13*
C12D1.0336 (3)0.0034 (2)0.41819 (16)0.1030 (11)
H12D0.9978 (18)0.0453 (18)0.4045 (16)0.124*
C13D0.99924 (19)0.07337 (19)0.41871 (12)0.0846 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0625 (13)0.1037 (16)0.0392 (10)0.0228 (11)0.0139 (9)0.0045 (10)
O1A0.0911 (13)0.1352 (16)0.0365 (8)0.0286 (11)0.0115 (8)0.0063 (9)
Cl1A0.0782 (5)0.1158 (6)0.1075 (5)0.0385 (4)0.0039 (4)0.0079 (4)
Cl2A0.0891 (6)0.1078 (6)0.1235 (6)0.0028 (4)0.0240 (4)0.0029 (5)
Cl3A0.1086 (6)0.0957 (6)0.1020 (5)0.0071 (4)0.0295 (4)0.0193 (4)
C1A0.0626 (16)0.0715 (16)0.0393 (12)0.0033 (12)0.0053 (11)0.0076 (10)
C2A0.0569 (14)0.0571 (14)0.0402 (11)0.0003 (11)0.0006 (10)0.0020 (9)
C3A0.0697 (18)0.0791 (17)0.0480 (13)0.0042 (14)0.0024 (11)0.0017 (11)
C4A0.0731 (19)0.0763 (18)0.0609 (15)0.0083 (14)0.0096 (13)0.0054 (12)
C5A0.0612 (16)0.0586 (15)0.0724 (16)0.0085 (12)0.0024 (13)0.0040 (12)
C6A0.0740 (19)0.108 (2)0.0592 (15)0.0269 (16)0.0118 (13)0.0024 (13)
C7A0.0689 (17)0.104 (2)0.0466 (13)0.0254 (15)0.0023 (11)0.0026 (12)
C8A0.0577 (17)0.095 (2)0.0373 (11)0.0174 (15)0.0132 (10)0.0008 (11)
C9A0.0646 (18)0.092 (2)0.0552 (14)0.0106 (15)0.0143 (11)0.0032 (13)
C10A0.085 (2)0.092 (2)0.0653 (15)0.0261 (19)0.0156 (14)0.0031 (13)
C11A0.0604 (19)0.122 (3)0.0647 (16)0.0252 (19)0.0140 (13)0.0002 (16)
C12A0.0644 (19)0.117 (3)0.0627 (15)0.0042 (17)0.0148 (12)0.0089 (15)
C13A0.0693 (19)0.098 (2)0.0487 (13)0.0138 (16)0.0171 (11)0.0058 (12)
N1B0.0569 (12)0.0811 (14)0.0355 (9)0.0187 (10)0.0055 (9)0.0068 (9)
O1B0.0692 (11)0.1225 (15)0.0375 (9)0.0120 (10)0.0079 (7)0.0091 (8)
Cl1B0.0605 (5)0.1105 (7)0.2077 (10)0.0205 (4)0.0065 (5)0.0284 (6)
Cl2B0.1170 (7)0.0748 (5)0.1224 (6)0.0019 (4)0.0172 (5)0.0197 (4)
Cl3B0.1091 (6)0.0838 (5)0.1127 (5)0.0075 (4)0.0135 (5)0.0211 (4)
C1B0.0559 (14)0.0576 (14)0.0418 (12)0.0010 (11)0.0066 (10)0.0015 (10)
C2B0.0500 (13)0.0466 (12)0.0490 (12)0.0026 (10)0.0069 (10)0.0033 (9)
C3B0.0592 (17)0.0748 (17)0.0650 (14)0.0039 (13)0.0139 (12)0.0040 (12)
C4B0.0545 (18)0.0732 (18)0.112 (2)0.0007 (14)0.0272 (15)0.0118 (16)
C5B0.0510 (16)0.0578 (16)0.116 (2)0.0005 (12)0.0007 (16)0.0101 (15)
C6B0.0687 (19)0.101 (2)0.0806 (17)0.0128 (16)0.0032 (15)0.0196 (15)
C7B0.0613 (17)0.0889 (19)0.0600 (14)0.0165 (14)0.0065 (12)0.0091 (12)
C8B0.0546 (15)0.0651 (16)0.0367 (10)0.0110 (12)0.0069 (10)0.0084 (10)
C9B0.0646 (17)0.0793 (17)0.0552 (13)0.0067 (14)0.0043 (12)0.0062 (12)
C10B0.067 (2)0.107 (2)0.0757 (17)0.0041 (17)0.0062 (14)0.0021 (15)
C11B0.0616 (19)0.123 (3)0.0793 (18)0.0240 (19)0.0015 (14)0.0253 (18)
C12B0.085 (2)0.0799 (19)0.0788 (17)0.0300 (17)0.0223 (16)0.0221 (15)
C13B0.0664 (17)0.0700 (17)0.0537 (13)0.0098 (13)0.0116 (11)0.0087 (11)
N1C0.0691 (12)0.0469 (11)0.0359 (9)0.0005 (9)0.0015 (8)0.0018 (8)
O1C0.0834 (11)0.0681 (10)0.0381 (8)0.0007 (8)0.0063 (7)0.0022 (7)
Cl1C0.0757 (5)0.0547 (4)0.1344 (6)0.0027 (3)0.0129 (4)0.0078 (4)
Cl2C0.0776 (5)0.0817 (5)0.1262 (6)0.0045 (4)0.0272 (4)0.0300 (4)
Cl3C0.0733 (5)0.1196 (7)0.1222 (6)0.0188 (5)0.0019 (4)0.0090 (5)
C1C0.0435 (13)0.0566 (14)0.0376 (12)0.0071 (10)0.0036 (9)0.0021 (10)
C2C0.0412 (12)0.0520 (13)0.0379 (10)0.0028 (9)0.0020 (9)0.0048 (9)
C3C0.0686 (16)0.0580 (16)0.0507 (12)0.0006 (12)0.0103 (11)0.0080 (11)
C4C0.0674 (16)0.0563 (16)0.0736 (16)0.0035 (12)0.0087 (12)0.0192 (12)
C5C0.0429 (13)0.0490 (14)0.0728 (15)0.0009 (10)0.0029 (11)0.0017 (11)
C6C0.0750 (17)0.0552 (16)0.0639 (14)0.0062 (13)0.0208 (12)0.0013 (12)
C7C0.0664 (16)0.0504 (14)0.0546 (13)0.0009 (11)0.0143 (11)0.0089 (10)
C8C0.0742 (16)0.0479 (14)0.0405 (11)0.0069 (12)0.0031 (10)0.0007 (9)
C9C0.0870 (18)0.0528 (15)0.0570 (13)0.0039 (13)0.0107 (12)0.0090 (11)
C10C0.116 (2)0.0564 (18)0.0794 (17)0.0065 (17)0.0226 (16)0.0112 (13)
C11C0.166 (4)0.0521 (18)0.0757 (18)0.017 (2)0.018 (2)0.0114 (13)
C12C0.129 (3)0.068 (2)0.0773 (18)0.040 (2)0.0069 (18)0.0011 (15)
C13C0.0857 (18)0.0654 (17)0.0529 (13)0.0140 (14)0.0008 (12)0.0059 (11)
N1D0.1072 (17)0.0729 (14)0.0357 (10)0.0363 (12)0.0129 (10)0.0074 (9)
O1D0.1234 (16)0.1011 (13)0.0381 (8)0.0518 (12)0.0168 (8)0.0132 (8)
Cl1D0.1094 (7)0.0829 (6)0.1709 (8)0.0390 (5)0.0071 (6)0.0135 (5)
Cl2D0.1100 (6)0.1067 (6)0.1018 (5)0.0202 (5)0.0107 (4)0.0049 (4)
Cl3D0.1341 (8)0.1160 (7)0.0871 (5)0.0134 (5)0.0045 (5)0.0027 (4)
C1D0.0775 (17)0.0775 (17)0.0357 (12)0.0244 (13)0.0039 (11)0.0003 (11)
C2D0.0624 (15)0.0749 (16)0.0336 (10)0.0183 (12)0.0028 (10)0.0047 (11)
C3D0.0843 (19)0.093 (2)0.0461 (12)0.0298 (16)0.0099 (12)0.0066 (12)
C4D0.0760 (19)0.102 (2)0.0575 (14)0.0329 (17)0.0070 (13)0.0023 (15)
C5D0.0596 (17)0.0672 (17)0.0802 (17)0.0184 (13)0.0173 (14)0.0169 (14)
C6D0.0598 (16)0.0634 (17)0.0788 (16)0.0047 (13)0.0056 (13)0.0020 (12)
C7D0.0469 (14)0.0691 (16)0.0599 (13)0.0048 (12)0.0010 (10)0.0093 (12)
C8D0.116 (2)0.0710 (19)0.0386 (12)0.0345 (18)0.0239 (13)0.0051 (12)
C9D0.109 (2)0.080 (2)0.0606 (15)0.0398 (18)0.0284 (15)0.0092 (13)
C10D0.118 (3)0.100 (3)0.0791 (19)0.048 (2)0.0332 (18)0.0100 (17)
C11D0.160 (4)0.083 (2)0.088 (2)0.058 (2)0.042 (2)0.0066 (18)
C12D0.151 (4)0.082 (3)0.080 (2)0.024 (2)0.028 (2)0.0053 (16)
C13D0.120 (2)0.086 (2)0.0501 (14)0.0349 (19)0.0186 (14)0.0024 (14)
Geometric parameters (Å, º) top
N1A—C1A1.334 (3)N1C—C1C1.345 (2)
N1A—C8A1.412 (3)N1C—C8C1.413 (3)
N1A—H1N0.855 (16)N1C—H3N0.842 (15)
O1A—C1A1.223 (2)O1C—C1C1.224 (2)
Cl1A—C5A1.738 (2)Cl1C—C5C1.736 (2)
Cl2A—C9A1.723 (3)Cl2C—C9C1.720 (3)
Cl3A—C13A1.715 (3)Cl3C—C13C1.729 (3)
C1A—C2A1.484 (3)C1C—C2C1.483 (3)
C2A—C7A1.369 (3)C2C—C3C1.376 (3)
C2A—C3A1.382 (3)C2C—C7C1.383 (3)
C3A—C4A1.371 (3)C3C—C4C1.372 (3)
C3A—H3A0.93C3C—H3C0.93
C4A—C5A1.358 (3)C4C—C5C1.363 (3)
C4A—H4A0.93C4C—H4C0.93
C5A—C6A1.358 (3)C5C—C6C1.359 (3)
C6A—C7A1.372 (3)C6C—C7C1.379 (3)
C6A—H6A0.93C6C—H6C0.93
C7A—H7A0.93C7C—H7C0.93
C8A—C9A1.373 (3)C8C—C9C1.381 (3)
C8A—C13A1.397 (4)C8C—C13C1.385 (3)
C9A—C10A1.386 (4)C9C—C10C1.381 (3)
C10A—C11A1.373 (4)C10C—C11C1.366 (4)
C10A—H10A0.93C10C—H10C0.93
C11A—C12A1.358 (4)C11C—C12C1.368 (4)
C11A—H11A0.93C11C—H11C0.93
C12A—C13A1.381 (4)C12C—C13C1.381 (4)
C12A—H12A0.93C12C—H12C0.93
N1B—C1B1.343 (3)N1D—C1D1.339 (3)
N1B—C8B1.408 (3)N1D—C8D1.408 (3)
N1B—H2N0.816 (15)N1D—H4N0.844 (16)
O1B—C1B1.218 (2)O1D—C1D1.222 (2)
Cl1B—C5B1.735 (3)Cl1D—C5D1.736 (2)
Cl2B—C9B1.718 (3)Cl2D—C9D1.724 (3)
Cl3B—C13B1.728 (3)Cl3D—C13D1.725 (3)
C1B—C2B1.489 (3)C1D—C2D1.493 (3)
C2B—C7B1.370 (3)C2D—C7D1.372 (3)
C2B—C3B1.380 (3)C2D—C3D1.381 (3)
C3B—C4B1.373 (4)C3D—C4D1.375 (3)
C3B—H3B0.93C3D—H3D0.93
C4B—C5B1.363 (4)C4D—C5D1.349 (4)
C4B—H4B0.93C4D—H4D0.93
C5B—C6B1.349 (4)C5D—C6D1.373 (3)
C6B—C7B1.375 (3)C6D—C7D1.378 (3)
C6B—H6B0.93C6D—H6D0.93
C7B—H7B0.93C7D—H7D0.93
C8B—C13B1.373 (3)C8D—C13D1.387 (4)
C8B—C9B1.385 (3)C8D—C9D1.392 (4)
C9B—C10B1.375 (3)C9D—C10D1.366 (4)
C10B—C11B1.360 (4)C10D—C11D1.378 (5)
C10B—H10B0.93C10D—H10D0.96 (2)
C11B—C12B1.361 (4)C11D—C12D1.360 (5)
C11B—H11B0.93C11D—H11D0.94 (2)
C12B—C13B1.385 (3)C12D—C13D1.382 (4)
C12B—H12B0.93C12D—H12D0.94 (2)
C1A—N1A—C8A122.16 (17)C1C—N1C—C8C120.87 (16)
C1A—N1A—H1N123.3 (17)C1C—N1C—H3N119.9 (15)
C8A—N1A—H1N113.8 (17)C8C—N1C—H3N119.1 (15)
O1A—C1A—N1A120.0 (2)O1C—C1C—N1C121.53 (19)
O1A—C1A—C2A121.40 (19)O1C—C1C—C2C121.48 (17)
N1A—C1A—C2A118.61 (18)N1C—C1C—C2C116.97 (16)
C7A—C2A—C3A117.3 (2)C3C—C2C—C7C117.8 (2)
C7A—C2A—C1A124.51 (19)C3C—C2C—C1C119.17 (18)
C3A—C2A—C1A118.14 (19)C7C—C2C—C1C122.96 (18)
C4A—C3A—C2A121.4 (2)C4C—C3C—C2C121.5 (2)
C4A—C3A—H3A119.3C4C—C3C—H3C119.3
C2A—C3A—H3A119.3C2C—C3C—H3C119.3
C5A—C4A—C3A119.5 (2)C5C—C4C—C3C119.5 (2)
C5A—C4A—H4A120.3C5C—C4C—H4C120.3
C3A—C4A—H4A120.3C3C—C4C—H4C120.3
C6A—C5A—C4A120.6 (2)C6C—C5C—C4C120.6 (2)
C6A—C5A—Cl1A119.8 (2)C6C—C5C—Cl1C120.05 (18)
C4A—C5A—Cl1A119.59 (19)C4C—C5C—Cl1C119.30 (18)
C5A—C6A—C7A119.6 (2)C5C—C6C—C7C119.7 (2)
C5A—C6A—H6A120.2C5C—C6C—H6C120.1
C7A—C6A—H6A120.2C7C—C6C—H6C120.1
C2A—C7A—C6A121.6 (2)C6C—C7C—C2C120.78 (19)
C2A—C7A—H7A119.2C6C—C7C—H7C119.6
C6A—C7A—H7A119.2C2C—C7C—H7C119.6
C9A—C8A—C13A117.9 (2)C9C—C8C—C13C117.5 (2)
C9A—C8A—N1A121.6 (2)C9C—C8C—N1C122.0 (2)
C13A—C8A—N1A120.5 (2)C13C—C8C—N1C120.6 (2)
C8A—C9A—C10A121.1 (3)C8C—C9C—C10C121.8 (2)
C8A—C9A—Cl2A120.3 (2)C8C—C9C—Cl2C119.87 (17)
C10A—C9A—Cl2A118.5 (2)C10C—C9C—Cl2C118.3 (2)
C11A—C10A—C9A119.6 (3)C11C—C10C—C9C118.8 (3)
C11A—C10A—H10A120.2C11C—C10C—H10C120.6
C9A—C10A—H10A120.2C9C—C10C—H10C120.6
C12A—C11A—C10A120.6 (3)C10C—C11C—C12C121.3 (3)
C12A—C11A—H11A119.7C10C—C11C—H11C119.3
C10A—C11A—H11A119.7C12C—C11C—H11C119.3
C11A—C12A—C13A119.8 (3)C11C—C12C—C13C119.0 (3)
C11A—C12A—H12A120.1C11C—C12C—H12C120.5
C13A—C12A—H12A120.1C13C—C12C—H12C120.5
C12A—C13A—C8A121.0 (3)C12C—C13C—C8C121.5 (3)
C12A—C13A—Cl3A119.6 (2)C12C—C13C—Cl3C119.6 (2)
C8A—C13A—Cl3A119.4 (2)C8C—C13C—Cl3C118.9 (2)
C1B—N1B—C8B121.88 (16)C1D—N1D—C8D122.27 (18)
C1B—N1B—H2N122.1 (16)C1D—N1D—H4N117.4 (17)
C8B—N1B—H2N116.1 (16)C8D—N1D—H4N118.5 (17)
O1B—C1B—N1B120.78 (19)O1D—C1D—N1D122.2 (2)
O1B—C1B—C2B121.35 (19)O1D—C1D—C2D122.27 (19)
N1B—C1B—C2B117.86 (17)N1D—C1D—C2D115.48 (18)
C7B—C2B—C3B118.3 (2)C7D—C2D—C3D119.0 (2)
C7B—C2B—C1B124.35 (19)C7D—C2D—C1D122.9 (2)
C3B—C2B—C1B117.37 (18)C3D—C2D—C1D118.1 (2)
C4B—C3B—C2B120.6 (2)C4D—C3D—C2D120.7 (2)
C4B—C3B—H3B119.7C4D—C3D—H3D119.6
C2B—C3B—H3B119.7C2D—C3D—H3D119.6
C5B—C4B—C3B119.8 (2)C5D—C4D—C3D119.2 (2)
C5B—C4B—H4B120.1C5D—C4D—H4D120.4
C3B—C4B—H4B120.1C3D—C4D—H4D120.4
C6B—C5B—C4B120.6 (2)C4D—C5D—C6D121.6 (2)
C6B—C5B—Cl1B120.3 (2)C4D—C5D—Cl1D119.2 (2)
C4B—C5B—Cl1B119.1 (2)C6D—C5D—Cl1D119.2 (2)
C5B—C6B—C7B119.8 (2)C5D—C6D—C7D119.0 (2)
C5B—C6B—H6B120.1C5D—C6D—H6D120.5
C7B—C6B—H6B120.1C7D—C6D—H6D120.5
C2B—C7B—C6B121.0 (2)C2D—C7D—C6D120.4 (2)
C2B—C7B—H7B119.5C2D—C7D—H7D119.8
C6B—C7B—H7B119.5C6D—C7D—H7D119.8
C13B—C8B—C9B117.9 (2)C13D—C8D—C9D117.7 (2)
C13B—C8B—N1B121.1 (2)C13D—C8D—N1D120.7 (3)
C9B—C8B—N1B121.0 (2)C9D—C8D—N1D121.6 (3)
C10B—C9B—C8B121.3 (2)C10D—C9D—C8D121.6 (3)
C10B—C9B—Cl2B118.9 (2)C10D—C9D—Cl2D119.2 (3)
C8B—C9B—Cl2B119.77 (19)C8D—C9D—Cl2D119.1 (2)
C11B—C10B—C9B119.3 (3)C9D—C10D—C11D118.8 (3)
C11B—C10B—H10B120.4C9D—C10D—H10D120 (2)
C9B—C10B—H10B120.4C11D—C10D—H10D121 (2)
C10B—C11B—C12B121.3 (3)C12D—C11D—C10D121.6 (3)
C10B—C11B—H11B119.4C12D—C11D—H11D116 (2)
C12B—C11B—H11B119.4C10D—C11D—H11D123 (2)
C11B—C12B—C13B119.1 (3)C11D—C12D—C13D119.1 (3)
C11B—C12B—H12B120.4C11D—C12D—H12D127 (2)
C13B—C12B—H12B120.4C13D—C12D—H12D114 (2)
C8B—C13B—C12B121.2 (2)C12D—C13D—C8D121.2 (3)
C8B—C13B—Cl3B119.39 (19)C12D—C13D—Cl3D119.4 (3)
C12B—C13B—Cl3B119.4 (2)C8D—C13D—Cl3D119.4 (2)
C8A—N1A—C1A—O1A2.8 (4)C8C—N1C—C1C—O1C7.4 (3)
C8A—N1A—C1A—C2A176.4 (2)C8C—N1C—C1C—C2C171.07 (18)
O1A—C1A—C2A—C7A172.4 (2)O1C—C1C—C2C—C3C27.0 (3)
N1A—C1A—C2A—C7A6.9 (4)N1C—C1C—C2C—C3C154.53 (19)
O1A—C1A—C2A—C3A8.9 (3)O1C—C1C—C2C—C7C150.5 (2)
N1A—C1A—C2A—C3A171.9 (2)N1C—C1C—C2C—C7C28.0 (3)
C7A—C2A—C3A—C4A0.2 (4)C7C—C2C—C3C—C4C1.6 (3)
C1A—C2A—C3A—C4A179.0 (2)C1C—C2C—C3C—C4C179.2 (2)
C2A—C3A—C4A—C5A0.2 (4)C2C—C3C—C4C—C5C1.6 (3)
C3A—C4A—C5A—C6A0.0 (4)C3C—C4C—C5C—C6C0.3 (3)
C3A—C4A—C5A—Cl1A179.6 (2)C3C—C4C—C5C—Cl1C179.65 (17)
C4A—C5A—C6A—C7A0.6 (4)C4C—C5C—C6C—C7C1.0 (3)
Cl1A—C5A—C6A—C7A179.0 (2)Cl1C—C5C—C6C—C7C178.36 (17)
C3A—C2A—C7A—C6A0.8 (4)C5C—C6C—C7C—C2C1.0 (3)
C1A—C2A—C7A—C6A179.5 (2)C3C—C2C—C7C—C6C0.3 (3)
C5A—C6A—C7A—C2A1.0 (4)C1C—C2C—C7C—C6C177.8 (2)
C1A—N1A—C8A—C9A97.7 (3)C1C—N1C—C8C—C9C91.7 (2)
C1A—N1A—C8A—C13A84.6 (3)C1C—N1C—C8C—C13C88.3 (2)
C13A—C8A—C9A—C10A1.3 (3)C13C—C8C—C9C—C10C0.5 (3)
N1A—C8A—C9A—C10A176.47 (19)N1C—C8C—C9C—C10C179.56 (19)
C13A—C8A—C9A—Cl2A179.50 (15)C13C—C8C—C9C—Cl2C177.83 (15)
N1A—C8A—C9A—Cl2A2.8 (3)N1C—C8C—C9C—Cl2C2.1 (3)
C8A—C9A—C10A—C11A0.8 (3)C8C—C9C—C10C—C11C0.4 (4)
Cl2A—C9A—C10A—C11A178.44 (18)Cl2C—C9C—C10C—C11C178.7 (2)
C9A—C10A—C11A—C12A1.9 (4)C9C—C10C—C11C—C12C1.0 (4)
C10A—C11A—C12A—C13A0.9 (4)C10C—C11C—C12C—C13C0.8 (4)
C11A—C12A—C13A—C8A1.2 (3)C11C—C12C—C13C—C8C0.1 (4)
C11A—C12A—C13A—Cl3A178.34 (18)C11C—C12C—C13C—Cl3C178.7 (2)
C9A—C8A—C13A—C12A2.3 (3)C9C—C8C—C13C—C12C0.7 (3)
N1A—C8A—C13A—C12A175.46 (19)N1C—C8C—C13C—C12C179.31 (19)
C9A—C8A—C13A—Cl3A177.28 (16)C9C—C8C—C13C—Cl3C178.16 (16)
N1A—C8A—C13A—Cl3A5.0 (3)N1C—C8C—C13C—Cl3C1.8 (3)
C8B—N1B—C1B—O1B2.0 (3)C8D—N1D—C1D—O1D0.4 (4)
C8B—N1B—C1B—C2B176.97 (19)C8D—N1D—C1D—C2D178.3 (3)
O1B—C1B—C2B—C7B175.1 (2)O1D—C1D—C2D—C7D147.4 (2)
N1B—C1B—C2B—C7B3.9 (3)N1D—C1D—C2D—C7D33.9 (3)
O1B—C1B—C2B—C3B3.7 (3)O1D—C1D—C2D—C3D31.2 (3)
N1B—C1B—C2B—C3B177.3 (2)N1D—C1D—C2D—C3D147.5 (2)
C7B—C2B—C3B—C4B0.9 (3)C7D—C2D—C3D—C4D0.3 (3)
C1B—C2B—C3B—C4B178.0 (2)C1D—C2D—C3D—C4D178.4 (2)
C2B—C3B—C4B—C5B0.3 (4)C2D—C3D—C4D—C5D0.8 (4)
C3B—C4B—C5B—C6B0.7 (4)C3D—C4D—C5D—C6D1.4 (4)
C3B—C4B—C5B—Cl1B180.0 (2)C3D—C4D—C5D—Cl1D178.18 (19)
C4B—C5B—C6B—C7B1.1 (4)C4D—C5D—C6D—C7D0.9 (4)
Cl1B—C5B—C6B—C7B179.6 (2)Cl1D—C5D—C6D—C7D178.70 (16)
C3B—C2B—C7B—C6B0.5 (4)C3D—C2D—C7D—C6D0.8 (3)
C1B—C2B—C7B—C6B178.3 (2)C1D—C2D—C7D—C6D177.8 (2)
C5B—C6B—C7B—C2B0.5 (4)C5D—C6D—C7D—C2D0.3 (3)
C1B—N1B—C8B—C13B107.0 (2)C1D—N1D—C8D—C13D102.9 (3)
C1B—N1B—C8B—C9B73.9 (3)C1D—N1D—C8D—C9D78.9 (3)
C13B—C8B—C9B—C10B0.3 (3)C13D—C8D—C9D—C10D2.2 (4)
N1B—C8B—C9B—C10B179.4 (2)N1D—C8D—C9D—C10D179.6 (2)
C13B—C8B—C9B—Cl2B176.64 (16)C13D—C8D—C9D—Cl2D177.01 (17)
N1B—C8B—C9B—Cl2B2.4 (3)N1D—C8D—C9D—Cl2D1.2 (3)
C8B—C9B—C10B—C11B1.0 (4)C8D—C9D—C10D—C11D1.6 (4)
Cl2B—C9B—C10B—C11B175.9 (2)Cl2D—C9D—C10D—C11D177.6 (2)
C9B—C10B—C11B—C12B0.6 (4)C9D—C10D—C11D—C12D0.1 (5)
C10B—C11B—C12B—C13B0.6 (4)C10D—C11D—C12D—C13D1.1 (5)
C9B—C8B—C13B—C12B0.9 (3)C11D—C12D—C13D—C8D0.4 (4)
N1B—C8B—C13B—C12B178.19 (19)C11D—C12D—C13D—Cl3D178.7 (2)
C9B—C8B—C13B—Cl3B179.54 (15)C9D—C8D—C13D—C12D1.2 (4)
N1B—C8B—C13B—Cl3B1.4 (3)N1D—C8D—C13D—C12D179.4 (2)
C11B—C12B—C13B—C8B1.4 (3)C9D—C8D—C13D—Cl3D179.74 (17)
C11B—C12B—C13B—Cl3B179.1 (2)N1D—C8D—C13D—Cl3D1.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1N···O1Di0.86 (2)2.07 (2)2.882 (2)159 (2)
N1B—H2N···O1Cii0.82 (2)2.12 (2)2.880 (2)156 (2)
N1C—H3N···O1B0.84 (2)2.05 (2)2.875 (2)165 (2)
N1D—H4N···O1Aiii0.84 (2)1.94 (2)2.728 (2)154 (2)
C7A—H7A···O1Di0.932.593.489 (3)164
C10C—H10C···Cl2Biv0.932.823.599 (3)142
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y, z; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H8Cl3NO
Mr300.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)16.9411 (3), 16.3246 (2), 19.5505 (3)
β (°) 95.3678 (13)
V3)5383.11 (14)
Z16
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.51 × 0.11 × 0.09
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2008), based on Clark & Reid (1995)]
Tmin, Tmax0.754, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
180094, 10264, 5984
Rint0.053
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 0.98
No. of reflections10278
No. of parameters670
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.23

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2001), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1N···O1Di0.855 (16)2.066 (17)2.882 (2)159 (2)
N1B—H2N···O1Cii0.816 (15)2.117 (17)2.880 (2)156 (2)
N1C—H3N···O1B0.842 (15)2.054 (16)2.875 (2)165 (2)
N1D—H4N···O1Aiii0.844 (16)1.942 (19)2.728 (2)154 (2)
C7A—H7A···O1Di0.932.593.489 (3)164
C10C—H10C···Cl2Biv0.932.823.599 (3)142
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y, z; (iv) x+1, y, z+1.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrunhofer, G., Handler, N., Leisser, K., Studenik, C. R. & Erker, T. (2008). Bioorg. Med. Chem. 16, 5974–5981.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCalderone, V., Coi, A., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem. 41, 1421–1429.  Web of Science CrossRef PubMed CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGlaser, K. B. (2007). Biochem. Pharmacol. 74, 659–671.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationKang, S. O., Hossain, Md. A. & Bowman-James, K. (2006). Coord. Chem. Rev. 250, 3038–3052.  Web of Science CrossRef CAS Google Scholar
First citationLindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol. 38, 267–277.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNishikawa, J., Imase, T., Koike, M., Fukuda, K., Tokita, M., Watanabe, J. & Kawauchi, S. (2005). J. Mol. Struct. 741, 221–228.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPasha, F. A., Muddassar, M., Lee, C. & Cho, S. J. (2008). Environ. Toxicol. Pharmacol. 26, 128–135.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSaeed, A., Khera, R. A., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o1934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStauffer, S. R., Sun, J., Katzenellenbogen, B. S. & Katzenellenbogen, J. A. (2000). Bioorg. Med. Chem. 8, 1293–1316.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSun, Y., Wang, G. & Guo, W. (2009). Tetrahedron, 65, 3480–3485.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1637-o1638
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds