organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1682-o1683

(1α,8β)-6β-Benzo­yl­oxy-6-de­hydroxy­heteratisine from Aconitum zeravschanicum

aS.Yunusov Institute of Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, M. Ulugbek Str. 77, Tashkent 100170, Uzbekistan
*Correspondence e-mail: tashkhodjaev@rambler.ru

(Received 17 June 2009; accepted 22 June 2009; online 27 June 2009)

The title compound, C29H37NO6, was isolated from Aconitum zeravschanicum and exhibits anti­arhythmic activity. It is a derivative of the diterpenoid alkaloid heteratisine and as such the core framework of the mol­ecule contains four six-membered, three seven-membered and one five-membered ring. The chair conformation of one of the meth­oxy-substituted six-membered rings is different from that observed in heteratisine hydro­bromide monohydrate. In the latter case, this ring adopts a boat conformation due to a stabilizing intra­molecular N—H⋯O hydrogen bond. In the crystal structure of the title compound, there is only one acidic H atom. This hydroxyl group forms an inter­molecular O—H⋯O hydrogen bond that links mol­ecules into infinite chains along the b axis.

Related literature

For the isolation and idenfication of 6-benzoyl­heteratisine, see: Aneja et al. (1973[Aneja, R., Locke, D. M. & Pelletier, S. W. (1973). Tetrahedron, 29, 3297-3308.]), Jacobs et al. (1947[Jacobs, W. A. & Heubner, C. F. (1947). J. Biol. Chem. 170, 515-520.]), Nigmatullaev et al. (2000[Nigmatullaev, A. M. & Salimov, B. T. (2000). Rastit. Resur. pp. 118-121.]). For anti­arhythmic activity, see: Salimov et al. (1996[Salimov, B. T., Kuzibaeva, J. Kh. & Dzhakhangirov, F. N. (1996). Khim. Prir. Soedin. pp. 384-387.]). For the structure of heteratisine hydro­bromide monohydrate, see: Przybylska (1965[Przybylska, M. (1965). Acta Cryst. 18, 536-540.]).

[Scheme 1]

Experimental

Crystal data
  • C29H37NO6

  • Mr = 495.60

  • Orthorhombic, P 21 21 21

  • a = 10.039 (5) Å

  • b = 14.107 (8) Å

  • c = 17.512 (6) Å

  • V = 2480 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 300 K

  • 0.50 × 0.30 × 0.15 mm

Data collection
  • Stoe Stadi-4 four-circle diffractometer

  • Absorption correction: none

  • 2481 measured reflections

  • 2481 independent reflections

  • 1667 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 6.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.142

  • S = 1.22

  • 2481 reflections

  • 330 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.82 2.25 3.056 (8) 166
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: STADI4 (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound of this study, 6-benzoylheteratisine, C29H37NO6, was first obtained synthetically in 1973 (Aneja et al., 1973) and found to be a derivative of a naturally occuring compound (Jacobs et al. 1947). Later it was isolated from Aconitum zeravschanicum Steinb (Nigmatullaev et al. 2000). 6-Benzoylheteratisine exibits antiarhythmic activity that exceeds other antiarrhythmic drugs of the quinidine groups (Salimov et al. 1996). The crystal structure of the parent compound was previously established as a salt in the form of heteratisine hydrobromide monohydrate (Przbylslka, 1965).

The molecular structure of the title compound is shown in Fig. 1. The heteratisine skeleton contains four six-membered rings, (A, C, D and F), one five-membered ring (B), and three seven-membered rings (e.g. E, others not labeled for clarity) (Fig. 2). Ring B has an envelope and ring Ca more or less regular chair conformation. Ring F shows a significant distortion and rings D and E adopt a boat conformations. The chair conformation of ring A in the title molecule is different from that observed in heteratisine hydrobromide monohydrate (Przybylska, 1965). For the salt of the parent compound ring A adopts a boat conformation due to a stabilizing intramolecular N—H···O hydrogen bond between the protonated amine towards the oxygen atom, an interaction not present in the title compound.

The aromatic ring and the acyl-group are rotated against each other, the dihedral angle of their respective planes is 32.6 (9)°. There is only one acidic hydrogen atom in the crystal structure of the title compound. This hydroxyl group forms an intermolecular O—H···O hydrogen bond that links the molecules into infinite chains along the b-axis. (Table 1; Fig.3)

Related literature top

For the isolation and idenfication of 6-benzoylheteratisine, see: Aneja et al. (1973), Jacobs et al. (1947), Nigmatullaev et al. (2000). For antiarhythmic activity, see: Salimov et al. (1996). For the structure of heteratisine hydrobromide monohydrate, see: Przybylska (1965).

Experimental top

The title compound was isolated from the chloroform fraction of the leaves of Aconitum zeravschanicum by a known method (Nigmatullaev et al., 2000). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 485–487 K).

Refinement top

The hydroxyl H atom was located in a difference Fourier map but was ultimately placed geometrically (with an O—H distance of 0.82 Å). The H atoms bonded to C atoms were placed geometrically (with C—H distances of 0.98 Å for CH; 0.97 Å for CH2; 0.96 Å for CH3; and 0.93 Å for Car) and included in the refinement in a riding motion approximation with Uiso=1.2Ueq(C) [Uiso=1.5Ueq(C,O) for methyl and hydroxyl H atoms].

Computing details top

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4 (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of 6-benzoylheteratisine, showing the atomic numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Ring assigments in 6-benzoylheteratisine.
[Figure 3] Fig. 3. View along the c direction of the crystal packing of 6-benzoylheteratisine, showing the formation of hydrogen bonds (dashed lines). H-atoms not involved in hydrogen bonding have been removed for clarity.
(1α,8β)-6β-Benzoyloxy-6-dehydroxyheteratisine top
Crystal data top
C29H37NO6Dx = 1.327 Mg m3
Mr = 495.60Melting point: 486(2) K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 30 reflections
a = 10.039 (5) Åθ = 10–20°
b = 14.107 (8) ŵ = 0.09 mm1
c = 17.512 (6) ÅT = 300 K
V = 2480 (2) Å3Prizmatic, colourless
Z = 40.50 × 0.30 × 0.15 mm
F(000) = 1064
Data collection top
Stoe Stadi-4 four-circle
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.9°
Graphite monochromatorh = 011
Scan width (ω) = 1.56 – 1.68, scan ratio 2θ:ω = 1.00 I(Net) and sigma(I) calculated according to Blessing (1987)k = 016
2481 measured reflectionsl = 020
2481 independent reflections3 standard reflections every 200 reflections
1667 reflections with I > 2σ(I) intensity decay: 6.8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0342P)2 + 1.8083P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max = 0.001
2481 reflectionsΔρmax = 0.22 e Å3
330 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0056 (10)
Crystal data top
C29H37NO6V = 2480 (2) Å3
Mr = 495.60Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.039 (5) ŵ = 0.09 mm1
b = 14.107 (8) ÅT = 300 K
c = 17.512 (6) Å0.50 × 0.30 × 0.15 mm
Data collection top
Stoe Stadi-4 four-circle
diffractometer
Rint = 0.000
2481 measured reflections3 standard reflections every 200 reflections
2481 independent reflections intensity decay: 6.8%
1667 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.22Δρmax = 0.22 e Å3
2481 reflectionsΔρmin = 0.21 e Å3
330 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6593 (4)0.5430 (3)0.3119 (3)0.0562 (12)
O20.6307 (4)0.1410 (3)0.4078 (2)0.0416 (10)
O30.6046 (4)0.1087 (3)0.2572 (2)0.0520 (12)
H30.54110.09050.23170.062*
O40.8674 (5)0.2617 (4)0.1608 (3)0.0634 (13)
O50.9303 (5)0.1410 (4)0.2317 (3)0.0797 (17)
O60.4463 (5)0.0591 (4)0.4323 (4)0.099 (2)
N10.4096 (5)0.4035 (4)0.3632 (3)0.0437 (13)
C10.6830 (6)0.4820 (4)0.3766 (4)0.0473 (17)
H1A0.77850.48500.38790.057*
C20.6104 (7)0.5245 (5)0.4445 (4)0.062 (2)
H2A0.65670.58130.46090.075*
H2B0.52120.54260.42900.075*
C30.6020 (7)0.4566 (5)0.5099 (4)0.062 (2)
H3A0.54910.48440.55050.074*
H3B0.69060.44460.52970.074*
C40.5388 (6)0.3628 (5)0.4847 (3)0.0456 (16)
C50.6284 (6)0.3133 (4)0.4264 (3)0.0413 (15)
H5A0.71350.29470.44950.050*
C60.5531 (6)0.2269 (4)0.3963 (3)0.0416 (15)
H6A0.47080.22070.42590.050*
C70.5146 (6)0.2506 (4)0.3142 (3)0.0385 (14)
H7A0.42420.22790.30370.046*
C80.6122 (6)0.2102 (4)0.2542 (3)0.0420 (15)
C90.7520 (6)0.2353 (4)0.2812 (3)0.0417 (15)
H9A0.76900.19730.32710.050*
C100.7671 (6)0.3403 (4)0.3048 (3)0.0436 (16)
H10A0.84650.34260.33730.052*
C110.6509 (6)0.3782 (4)0.3553 (3)0.0373 (14)
C120.8015 (8)0.3998 (5)0.2341 (4)0.068 (2)
H12A0.74410.45510.23300.082*
H12B0.89260.42200.23870.082*
C130.7873 (7)0.3479 (6)0.1600 (4)0.067 (2)
H13A0.82440.38900.12020.080*
C140.8569 (7)0.2086 (5)0.2239 (4)0.0540 (18)
C150.5827 (7)0.2387 (5)0.1723 (4)0.0566 (19)
H15A0.48680.24510.16780.068*
H15B0.60850.18590.14000.068*
C160.6447 (7)0.3279 (5)0.1382 (4)0.070 (2)
H16A0.63990.32320.08300.084*
H16B0.59090.38190.15330.084*
C170.5155 (5)0.3605 (4)0.3181 (3)0.0377 (14)
H17A0.51490.38690.26640.045*
C180.5181 (7)0.3020 (5)0.5555 (3)0.066 (2)
H18C0.60060.29680.58290.098*
H18D0.48860.24000.54060.098*
H18E0.45220.33090.58770.098*
C190.4026 (6)0.3801 (5)0.4445 (3)0.0461 (16)
H19A0.34850.32350.45040.055*
H19B0.35720.43130.47080.055*
C200.2808 (6)0.3924 (5)0.3252 (4)0.061 (2)
H20A0.25410.32640.32770.073*
H20B0.29040.40910.27180.073*
C210.1728 (7)0.4528 (6)0.3602 (5)0.081 (3)
H21A0.09720.45440.32670.122*
H21B0.20570.51610.36760.122*
H21C0.14700.42650.40850.122*
C220.7553 (7)0.6160 (5)0.3047 (5)0.082 (3)
H22A0.75180.64180.25400.123*
H22B0.84250.59050.31400.123*
H22C0.73680.66510.34110.123*
C230.5638 (7)0.0621 (5)0.4222 (4)0.0532 (18)
C240.6515 (7)0.0215 (4)0.4266 (4)0.0470 (16)
C250.6195 (8)0.0936 (5)0.4745 (4)0.065 (2)
H25A0.54200.08970.50340.078*
C260.7004 (10)0.1734 (6)0.4811 (5)0.083 (3)
H26A0.67960.22130.51560.100*
C270.8113 (10)0.1796 (5)0.4357 (5)0.082 (3)
H27A0.86640.23250.43880.099*
C280.8405 (8)0.1089 (5)0.3865 (5)0.073 (2)
H28A0.91480.11470.35510.087*
C290.7625 (7)0.0279 (5)0.3814 (4)0.0565 (18)
H29A0.78510.02090.34810.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.046 (3)0.045 (2)0.077 (3)0.004 (2)0.001 (3)0.009 (2)
O20.040 (2)0.036 (2)0.050 (3)0.002 (2)0.005 (2)0.008 (2)
O30.057 (3)0.043 (2)0.056 (3)0.003 (2)0.005 (2)0.008 (2)
O40.062 (3)0.075 (3)0.053 (3)0.001 (3)0.014 (3)0.005 (3)
O50.058 (3)0.093 (4)0.088 (4)0.023 (3)0.005 (3)0.024 (4)
O60.051 (3)0.059 (3)0.187 (6)0.004 (3)0.018 (4)0.014 (4)
N10.039 (3)0.049 (3)0.043 (3)0.009 (3)0.000 (3)0.003 (3)
C10.038 (3)0.043 (4)0.061 (4)0.003 (3)0.005 (3)0.002 (4)
C20.058 (4)0.049 (4)0.080 (5)0.009 (4)0.005 (4)0.023 (4)
C30.063 (5)0.072 (5)0.050 (4)0.011 (4)0.003 (4)0.022 (4)
C40.039 (3)0.057 (4)0.041 (4)0.013 (3)0.002 (3)0.007 (3)
C50.036 (3)0.044 (3)0.044 (4)0.004 (3)0.003 (3)0.001 (3)
C60.036 (3)0.043 (4)0.046 (4)0.006 (3)0.004 (3)0.000 (3)
C70.038 (3)0.038 (3)0.040 (3)0.004 (3)0.003 (3)0.000 (3)
C80.045 (4)0.037 (3)0.044 (4)0.002 (3)0.000 (3)0.005 (3)
C90.042 (3)0.047 (4)0.036 (3)0.003 (3)0.001 (3)0.008 (3)
C100.033 (3)0.054 (4)0.044 (4)0.003 (3)0.002 (3)0.003 (3)
C110.033 (3)0.039 (3)0.040 (3)0.003 (3)0.003 (3)0.003 (3)
C120.078 (5)0.068 (5)0.058 (5)0.013 (4)0.023 (4)0.001 (4)
C130.066 (5)0.082 (6)0.053 (5)0.005 (5)0.011 (4)0.012 (4)
C140.038 (4)0.062 (5)0.062 (5)0.002 (4)0.005 (4)0.013 (4)
C150.056 (4)0.062 (4)0.052 (4)0.002 (4)0.007 (4)0.005 (4)
C160.066 (5)0.093 (6)0.050 (4)0.000 (5)0.005 (4)0.006 (4)
C170.033 (3)0.045 (3)0.036 (3)0.003 (3)0.001 (3)0.000 (3)
C180.070 (5)0.089 (6)0.038 (4)0.010 (5)0.011 (4)0.002 (4)
C190.040 (3)0.049 (4)0.049 (4)0.006 (3)0.007 (3)0.002 (3)
C200.041 (4)0.087 (6)0.053 (4)0.012 (4)0.005 (4)0.000 (4)
C210.053 (5)0.094 (6)0.097 (7)0.024 (5)0.001 (5)0.004 (6)
C220.061 (5)0.050 (4)0.136 (8)0.014 (4)0.012 (6)0.010 (5)
C230.049 (4)0.046 (4)0.064 (5)0.006 (4)0.002 (4)0.006 (4)
C240.056 (4)0.036 (3)0.050 (4)0.006 (3)0.009 (4)0.005 (3)
C250.076 (5)0.051 (4)0.068 (5)0.004 (5)0.004 (5)0.004 (4)
C260.106 (7)0.063 (6)0.081 (6)0.002 (5)0.017 (6)0.021 (5)
C270.108 (7)0.041 (4)0.099 (7)0.023 (5)0.042 (6)0.003 (5)
C280.073 (5)0.066 (5)0.079 (5)0.028 (5)0.021 (5)0.017 (5)
C290.068 (5)0.043 (4)0.059 (4)0.003 (4)0.013 (4)0.004 (4)
Geometric parameters (Å, º) top
O1—C221.416 (7)C10—H10A0.9800
O1—C11.443 (7)C11—C171.528 (8)
O2—C231.325 (7)C12—C131.496 (9)
O2—C61.454 (7)C12—H12A0.9700
O3—C81.434 (7)C12—H12B0.9700
O3—H30.8200C13—C161.509 (10)
O4—C141.339 (8)C13—H13A0.9800
O4—C131.458 (9)C15—C161.527 (9)
O5—C141.213 (8)C15—H15A0.9700
O6—C231.194 (8)C15—H15B0.9700
N1—C171.457 (7)C16—H16A0.9700
N1—C201.463 (7)C16—H16B0.9700
N1—C191.463 (7)C17—H17A0.9800
C1—C21.518 (8)C18—H18C0.9600
C1—C111.544 (8)C18—H18D0.9600
C1—H1A0.9800C18—H18E0.9600
C2—C31.495 (9)C19—H19A0.9700
C2—H2A0.9700C19—H19B0.9700
C2—H2B0.9700C20—C211.509 (9)
C3—C41.532 (9)C20—H20A0.9700
C3—H3A0.9700C20—H20B0.9700
C3—H3B0.9700C21—H21A0.9600
C4—C181.523 (8)C21—H21B0.9600
C4—C51.529 (8)C21—H21C0.9600
C4—C191.556 (8)C22—H22A0.9600
C5—C61.529 (8)C22—H22B0.9600
C5—C111.562 (8)C22—H22C0.9600
C5—H5A0.9800C23—C241.473 (9)
C6—C71.526 (8)C24—C251.357 (9)
C6—H6A0.9800C24—C291.370 (9)
C7—C81.546 (8)C25—C261.392 (10)
C7—C171.552 (8)C25—H25A0.9300
C7—H7A0.9800C26—C271.372 (12)
C8—C151.518 (8)C26—H26A0.9300
C8—C91.523 (8)C27—C281.351 (10)
C9—C141.504 (8)C27—H27A0.9300
C9—C101.545 (8)C28—C291.388 (9)
C9—H9A0.9800C28—H28A0.9300
C10—C121.536 (8)C29—H29A0.9300
C10—C111.559 (8)
C22—O1—C1113.0 (5)O4—C13—C12110.3 (6)
C23—O2—C6117.1 (4)O4—C13—C16111.7 (6)
C8—O3—H3109.5C12—C13—C16113.7 (7)
C14—O4—C13115.6 (5)O4—C13—H13A106.9
C17—N1—C20110.7 (5)C12—C13—H13A106.9
C17—N1—C19117.9 (5)C16—C13—H13A106.9
C20—N1—C19112.1 (5)O5—C14—O4119.0 (7)
O1—C1—C2107.5 (5)O5—C14—C9123.2 (7)
O1—C1—C11110.0 (5)O4—C14—C9117.7 (6)
C2—C1—C11117.6 (5)C8—C15—C16120.6 (6)
O1—C1—H1A107.1C8—C15—H15A107.2
C2—C1—H1A107.1C16—C15—H15A107.2
C11—C1—H1A107.1C8—C15—H15B107.2
C3—C2—C1111.9 (5)C16—C15—H15B107.2
C3—C2—H2A109.2H15A—C15—H15B106.8
C1—C2—H2A109.2C13—C16—C15116.3 (6)
C3—C2—H2B109.2C13—C16—H16A108.2
C1—C2—H2B109.2C15—C16—H16A108.2
H2A—C2—H2B107.9C13—C16—H16B108.2
C2—C3—C4110.9 (5)C15—C16—H16B108.2
C2—C3—H3A109.5H16A—C16—H16B107.4
C4—C3—H3A109.5N1—C17—C11110.5 (4)
C2—C3—H3B109.5N1—C17—C7115.8 (5)
C4—C3—H3B109.5C11—C17—C7100.8 (5)
H3A—C3—H3B108.1N1—C17—H17A109.8
C18—C4—C5111.5 (5)C11—C17—H17A109.8
C18—C4—C3107.9 (5)C7—C17—H17A109.8
C5—C4—C3110.0 (5)C4—C18—H18C109.5
C18—C4—C19109.7 (5)C4—C18—H18D109.5
C5—C4—C19106.7 (5)H18C—C18—H18D109.5
C3—C4—C19111.0 (5)C4—C18—H18E109.5
C4—C5—C6107.7 (5)H18C—C18—H18E109.5
C4—C5—C11110.4 (5)H18D—C18—H18E109.5
C6—C5—C11105.3 (5)N1—C19—C4115.6 (5)
C4—C5—H5A111.1N1—C19—H19A108.4
C6—C5—H5A111.1C4—C19—H19A108.4
C11—C5—H5A111.1N1—C19—H19B108.4
O2—C6—C7116.6 (5)C4—C19—H19B108.4
O2—C6—C5110.6 (5)H19A—C19—H19B107.4
C7—C6—C5106.0 (5)N1—C20—C21112.9 (6)
O2—C6—H6A107.8N1—C20—H20A109.0
C7—C6—H6A107.8C21—C20—H20A109.0
C5—C6—H6A107.8N1—C20—H20B109.0
C6—C7—C8113.6 (5)C21—C20—H20B109.0
C6—C7—C17100.1 (5)H20A—C20—H20B107.8
C8—C7—C17113.3 (5)C20—C21—H21A109.5
C6—C7—H7A109.8C20—C21—H21B109.5
C8—C7—H7A109.8H21A—C21—H21B109.5
C17—C7—H7A109.8C20—C21—H21C109.5
O3—C8—C15106.8 (5)H21A—C21—H21C109.5
O3—C8—C9105.6 (5)H21B—C21—H21C109.5
C15—C8—C9114.3 (5)O1—C22—H22A109.5
O3—C8—C7108.0 (5)O1—C22—H22B109.5
C15—C8—C7114.9 (5)H22A—C22—H22B109.5
C9—C8—C7106.6 (5)O1—C22—H22C109.5
C14—C9—C8112.3 (5)H22A—C22—H22C109.5
C14—C9—C10110.5 (5)H22B—C22—H22C109.5
C8—C9—C10113.4 (5)O6—C23—O2123.9 (7)
C14—C9—H9A106.7O6—C23—C24123.7 (7)
C8—C9—H9A106.7O2—C23—C24112.3 (6)
C10—C9—H9A106.7C25—C24—C29120.0 (7)
C12—C10—C9109.3 (5)C25—C24—C23119.3 (7)
C12—C10—C11116.0 (5)C29—C24—C23120.6 (6)
C9—C10—C11114.0 (5)C24—C25—C26121.3 (8)
C12—C10—H10A105.5C24—C25—H25A119.4
C9—C10—H10A105.5C26—C25—H25A119.4
C11—C10—H10A105.5C27—C26—C25118.5 (8)
C17—C11—C1116.3 (5)C27—C26—H26A120.8
C17—C11—C10111.6 (5)C25—C26—H26A120.8
C1—C11—C10107.8 (5)C28—C27—C26119.9 (8)
C17—C11—C596.6 (5)C28—C27—H27A120.0
C1—C11—C5113.2 (5)C26—C27—H27A120.0
C10—C11—C5111.1 (5)C27—C28—C29121.8 (8)
C13—C12—C10114.3 (6)C27—C28—H28A119.1
C13—C12—H12A108.7C29—C28—H28A119.1
C10—C12—H12A108.7C24—C29—C28118.4 (7)
C13—C12—H12B108.7C24—C29—H29A120.8
C10—C12—H12B108.7C28—C29—H29A120.8
H12A—C12—H12B107.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.822.253.056 (8)166
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC29H37NO6
Mr495.60
Crystal system, space groupOrthorhombic, P212121
Temperature (K)300
a, b, c (Å)10.039 (5), 14.107 (8), 17.512 (6)
V3)2480 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.30 × 0.15
Data collection
DiffractometerStoe Stadi-4 four-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2481, 2481, 1667
Rint0.000
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.142, 1.22
No. of reflections2481
No. of parameters330
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: STADI4 (Stoe & Cie, 1997), X-RED (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.822.253.056 (8)166
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

We thank the Academy of Sciences of Uzbekistan for supporting this study.

References

First citationAneja, R., Locke, D. M. & Pelletier, S. W. (1973). Tetrahedron, 29, 3297–3308.  CrossRef CAS Web of Science Google Scholar
First citationJacobs, W. A. & Heubner, C. F. (1947). J. Biol. Chem. 170, 515–520.  Google Scholar
First citationNigmatullaev, A. M. & Salimov, B. T. (2000). Rastit. Resur. pp. 118–121.  Google Scholar
First citationPrzybylska, M. (1965). Acta Cryst. 18, 536–540.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSalimov, B. T., Kuzibaeva, J. Kh. & Dzhakhangirov, F. N. (1996). Khim. Prir. Soedin. pp. 384–387.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1682-o1683
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds