metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(1H-imidazole-κN3)(7-oxabi­cyclo­[2.2.1]heptane-2,3-di­carboxyl­ato-κ3O2,O3,O7)cobalt(II) 3.35-hydrate

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky51@zjnu.cn

(Received 25 May 2009; accepted 23 June 2009; online 1 July 2009)

In the crystal structure of the title compound, [Co(C8H8O5)(C3H4N2)3]·3.35H2O, the central CoII ion is in a slightly distorted octa­hedral environment, coordinated by the bridg­ing O atom from the bicyclo­[2.2.1]heptane ligand, by two carboxyl­ate O atoms from two different carboxyl­ate groups and by three N atoms from imidazole ligands. Uncoordinated water mol­ecules, some of them disordered, are present in the crystal structure. In the crystal structure, mol­ecules are linked by O—H⋯O, N—H⋯O and O—H⋯N hydrogen-bonding inter­actions.

Related literature

For several cobalt complexes of norcantharidin, see: Wang et al. (1988[Wang, H.-H., Zhu, N.-J., Fu, H., Li, R. C. & Wang, K. (1988). Sci. Sin. Ser. B, 31, 20-27.]) and of imidazole, see: Furenlid et al. (1986[Furenlid, L. R., Van Derveer, D. G. & Felton, R. H. (1986). Acta Cryst. C42, 806-809.]); Zhu et al. (2003[Zhu, H.-L., Yang, S., Qiu, X.-Y., Xiong, Z.-D., You, Z.-L. & Wang, D.-Q. (2003). Acta Cryst. E59, m1089-m1090.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H8O5)(C3H4N2)3]·3.35H2O

  • Mr = 507.67

  • Triclinic, [P \overline 1]

  • a = 8.2666 (2) Å

  • b = 12.6522 (5) Å

  • c = 12.7200 (3) Å

  • α = 109.912 (2)°

  • β = 104.394 (1)°

  • γ = 95.354 (2)°

  • V = 1188.23 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 296 K

  • 0.41 × 0.36 × 0.29 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.735, Tmax = 0.798

  • 18153 measured reflections

  • 5402 independent reflections

  • 4712 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.241

  • S = 1.11

  • 5402 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 1.54 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2Wi 0.85 2.33 3.161 (6) 167
O2W—H2WA⋯N5ii 0.85 2.59 3.133 (5) 123
O2W—H2WB⋯O2Wi 0.85 2.69 3.084 (7) 110
O1W—H1WB⋯O4 0.85 2.17 2.690 (6) 119
N5—H5B⋯O2Wii 0.86 2.29 3.133 (5) 165
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

7-Oxabicyclo(2,2,1) heptane-2,3-dicarboxylic anhydride (norcantharidin), a traditional Chinese drug, has a great inhibitive effect on common cancer cells. Imidazole is reputed as biocatalyst and biological ligand. Several cobalt complexes of norcantharidin (Wang et al., 1988) and of imidazole (Furenlid et al., 1986; Zhu et al., 2003) have been reported. However, there are no ternary complexes reported about them. So a novel cobalt(II) ternary complex of norcantharidin with imidazole has been synthesized and its single crystals were obtained.

In the title complex, each CoII ion is six-coordinated by one bridge oxygen, two carboxylate oxygen atoms in two different carboxylate groups and three nitrogen atom from imidazoles. O1, O5, N3 and N2 lie in the equatorial plane with the torsion angle 0.06 °. O2 and the nitrogen atom N1 from imidazole are in the axial positions. The bond angle of O2—Co1—N1 is 172.12 (13)°, so it forms a distorted octahedral. Owing to the binding of the bridge oxygen atom with Co, two six-membered rings (Co1/O5/C5/C6/C8/O2 and Co1/O5/C2/C1/C7/O1) are created. In addition, a seven-membered ring (Co1/O2/C8/C6/C1/C7/O1) is formed because of the coordination of carboxylate oxygen atoms O1 and O2, which makes the compound more stable.

In the crystal structure, there are O—H···O and N—H···O and O—H···N hydrogen bonds interactions (Table 1).

Related literature top

For several cobalt complexes of norcantharidin, see: Wang et al. (1988) and of imidazole, see: Furenlid et al. (1986); Zhu et al. (2003).

Experimental top

A mixture of 0.5 mmol norcantharidin, 0.5 mmol CoCl26H2O, 2.5 mmol imidazole and 15 mL distilled water was sealed in a 25 mL Teflon-lined stainless vessel and heated at 443 K for 3 d, then cooled slowly to room temperature. The solution was filtered and after two weeks block orange single crystals were obtained.

Refinement top

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, aliphatic C—H = 0.97 (2) Å and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C)]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability.
Tris(1H-imidazole-κN3)(7-oxabicyclo[2.2.1]heptane-2,3- dicarboxylato-κ3O2,O3,O7)cobalt(II) top
Crystal data top
[Co(C8H8O5)(C3H4N2)3]·3.35H2OZ = 2
Mr = 507.67F(000) = 529
Triclinic, P1Dx = 1.419 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2666 (2) ÅCell parameters from 8576 reflections
b = 12.6522 (5) Åθ = 1.8–27.7°
c = 12.7200 (3) ŵ = 0.78 mm1
α = 109.912 (2)°T = 296 K
β = 104.394 (1)°Block, orange
γ = 95.354 (2)°0.41 × 0.36 × 0.29 mm
V = 1188.23 (6) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
5402 independent reflections
Radiation source: fine-focus sealed tube4712 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 27.7°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.735, Tmax = 0.798k = 1516
18153 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.241H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.1424P)2 + 2.537P]
where P = (Fo2 + 2Fc2)/3
5402 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 1.54 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Co(C8H8O5)(C3H4N2)3]·3.35H2Oγ = 95.354 (2)°
Mr = 507.67V = 1188.23 (6) Å3
Triclinic, P1Z = 2
a = 8.2666 (2) ÅMo Kα radiation
b = 12.6522 (5) ŵ = 0.78 mm1
c = 12.7200 (3) ÅT = 296 K
α = 109.912 (2)°0.41 × 0.36 × 0.29 mm
β = 104.394 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
5402 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4712 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 0.798Rint = 0.024
18153 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.241H-atom parameters constrained
S = 1.11Δρmax = 1.54 e Å3
5402 reflectionsΔρmin = 0.74 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.63081 (6)0.68205 (4)0.83619 (4)0.0284 (2)
N10.7319 (4)0.7409 (3)1.0204 (3)0.0341 (7)
N20.6963 (5)0.5190 (3)0.8077 (3)0.0346 (7)
N30.3830 (4)0.6199 (3)0.8333 (3)0.0349 (7)
N40.9131 (7)0.8220 (5)1.2013 (5)0.0693 (14)
H4C1.00390.85641.25900.083*
N50.6939 (6)0.3370 (3)0.7193 (5)0.0574 (12)
H5B0.67930.27150.66380.069*
N60.1391 (6)0.5038 (5)0.7969 (5)0.0643 (13)
H6B0.06430.44370.77980.077*
O10.8683 (4)0.7508 (3)0.8304 (3)0.0391 (7)
O1W0.7281 (7)0.8341 (4)0.4258 (4)0.0742 (13)
H1WA0.73020.90310.46780.089*
H1WB0.63850.79250.42220.089*
O2W0.3268 (4)0.9162 (3)0.4450 (2)0.0376 (7)
H2WA0.29660.84980.44430.045*
H2WB0.40620.91470.41320.045*
O20.5497 (5)0.6445 (3)0.6545 (3)0.0451 (8)
O31.0444 (5)0.8533 (4)0.7804 (5)0.0725 (14)
O3W1.091 (2)0.5698 (11)0.5348 (6)0.191 (9)0.62
H3WA1.15540.52130.53520.229*0.62
H3WB1.14230.62540.52510.229*0.62
O3W'0.9060 (13)0.5536 (8)0.5087 (6)0.044 (2)0.38
H4WA0.83770.59950.51960.052*0.38
H4WB0.86260.49130.51140.052*0.38
O4W1.0657 (12)0.8869 (16)0.5732 (9)0.091 (6)0.35
H5WA1.07320.92080.64500.110*0.35
H5WB1.05880.81560.55900.110*0.35
O40.6568 (6)0.6890 (3)0.5285 (3)0.0546 (9)
O50.5636 (4)0.8523 (2)0.8560 (2)0.0317 (6)
C10.7756 (5)0.9070 (3)0.7836 (4)0.0356 (8)
H1A0.82650.97440.77300.043*
C20.7068 (5)0.9451 (3)0.8892 (4)0.0362 (9)
H2A0.79140.95840.96400.043*
C30.6172 (7)1.0455 (4)0.8901 (5)0.0495 (12)
H3A0.68531.10390.87720.059*
H3B0.59161.07980.96340.059*
C40.4520 (7)0.9865 (4)0.7860 (5)0.0472 (11)
H4A0.35100.99530.81140.057*
H4B0.44641.01630.72460.057*
C50.4739 (5)0.8612 (3)0.7458 (4)0.0343 (8)
H5A0.36610.80600.70380.041*
C60.6067 (5)0.8427 (3)0.6801 (4)0.0342 (8)
H6A0.58870.88100.62410.041*
C70.9075 (5)0.8317 (4)0.7984 (4)0.0385 (9)
C80.6040 (6)0.7161 (4)0.6169 (4)0.0371 (9)
C90.3052 (6)0.5083 (4)0.8036 (5)0.0453 (11)
H9A0.35890.44570.79010.054*
C100.1132 (5)0.6143 (4)0.8230 (4)0.0339 (8)
H10A0.01100.63850.82610.041*
C110.2615 (5)0.6804 (4)0.8431 (4)0.0380 (9)
H11A0.27760.75910.86170.046*
C120.6597 (6)0.4343 (4)0.7060 (5)0.0455 (10)
H12A0.61590.44060.63410.055*
C130.7553 (8)0.3606 (5)0.8352 (6)0.0592 (15)
H13A0.79000.30960.87030.071*
C140.7564 (7)0.4729 (4)0.8902 (5)0.0479 (11)
H14A0.79210.51280.97090.057*
C150.8950 (6)0.7955 (5)1.0852 (4)0.0519 (12)
H15A0.98100.81221.05480.062*
C160.7597 (6)0.7835 (4)1.2069 (3)0.0349 (8)
H16A0.73210.78901.27490.042*
C170.6539 (6)0.7360 (4)1.0978 (4)0.0404 (9)
H17A0.53970.70351.07870.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0262 (3)0.0286 (3)0.0308 (3)0.0069 (2)0.0089 (2)0.0113 (2)
N10.0325 (17)0.0372 (17)0.0323 (17)0.0075 (14)0.0079 (14)0.0141 (14)
N20.0330 (17)0.0310 (16)0.0418 (18)0.0094 (13)0.0126 (14)0.0142 (14)
N30.0270 (16)0.0350 (17)0.0418 (18)0.0065 (13)0.0086 (14)0.0148 (15)
N40.070 (3)0.075 (3)0.048 (3)0.001 (3)0.001 (2)0.019 (2)
N50.059 (3)0.0284 (19)0.078 (3)0.0115 (18)0.023 (2)0.009 (2)
N60.046 (2)0.061 (3)0.086 (4)0.000 (2)0.021 (2)0.030 (3)
O10.0350 (15)0.0425 (16)0.0522 (18)0.0137 (13)0.0216 (14)0.0251 (14)
O1W0.099 (4)0.078 (3)0.060 (3)0.020 (3)0.043 (3)0.029 (2)
O2W0.0422 (16)0.0350 (14)0.0265 (13)0.0221 (13)0.0029 (12)0.0021 (11)
O20.066 (2)0.0317 (15)0.0354 (16)0.0101 (14)0.0132 (15)0.0111 (12)
O30.040 (2)0.081 (3)0.134 (4)0.0207 (19)0.043 (2)0.071 (3)
O3W0.271 (17)0.180 (11)0.027 (3)0.178 (12)0.009 (6)0.020 (5)
O3W'0.069 (6)0.063 (5)0.022 (3)0.060 (5)0.029 (4)0.021 (3)
O4W0.027 (5)0.205 (17)0.031 (5)0.031 (7)0.004 (4)0.054 (8)
O40.080 (3)0.050 (2)0.0413 (18)0.0216 (18)0.0306 (18)0.0152 (15)
O50.0320 (14)0.0287 (13)0.0330 (14)0.0067 (11)0.0086 (11)0.0103 (11)
C10.037 (2)0.0283 (18)0.044 (2)0.0063 (15)0.0145 (17)0.0140 (16)
C20.035 (2)0.0288 (18)0.038 (2)0.0029 (15)0.0080 (17)0.0069 (16)
C30.057 (3)0.027 (2)0.059 (3)0.0092 (19)0.019 (2)0.0073 (19)
C40.052 (3)0.040 (2)0.055 (3)0.024 (2)0.018 (2)0.019 (2)
C50.034 (2)0.0325 (19)0.035 (2)0.0105 (15)0.0073 (16)0.0122 (16)
C60.041 (2)0.0323 (19)0.0319 (19)0.0131 (16)0.0100 (16)0.0139 (16)
C70.032 (2)0.038 (2)0.046 (2)0.0063 (16)0.0137 (18)0.0167 (18)
C80.044 (2)0.037 (2)0.0276 (18)0.0141 (17)0.0061 (16)0.0104 (16)
C90.038 (2)0.038 (2)0.067 (3)0.0092 (18)0.022 (2)0.024 (2)
C100.0213 (16)0.040 (2)0.040 (2)0.0085 (15)0.0111 (15)0.0134 (17)
C110.033 (2)0.039 (2)0.041 (2)0.0093 (17)0.0128 (17)0.0109 (17)
C120.046 (3)0.037 (2)0.049 (3)0.0099 (19)0.014 (2)0.0108 (19)
C130.069 (4)0.046 (3)0.086 (4)0.026 (3)0.036 (3)0.041 (3)
C140.054 (3)0.049 (3)0.055 (3)0.022 (2)0.022 (2)0.030 (2)
C150.036 (2)0.071 (3)0.041 (2)0.004 (2)0.0040 (19)0.021 (2)
C160.047 (2)0.035 (2)0.0255 (17)0.0134 (17)0.0125 (16)0.0135 (15)
C170.043 (2)0.041 (2)0.041 (2)0.0109 (18)0.0162 (19)0.0179 (19)
Geometric parameters (Å, º) top
Co1—O12.101 (3)O4W—H5WB0.8502
Co1—O22.107 (3)O4—C81.258 (5)
Co1—N32.112 (3)O5—C21.453 (5)
Co1—N12.113 (3)O5—C51.461 (5)
Co1—N22.116 (3)C1—C71.531 (6)
Co1—O52.222 (3)C1—C21.534 (6)
N1—C171.319 (6)C1—C61.578 (6)
N1—C151.364 (6)C1—H1A0.9800
N2—C121.310 (6)C2—C31.528 (6)
N2—C141.378 (6)C2—H2A0.9800
N3—C111.323 (5)C3—C41.553 (8)
N3—C91.377 (6)C3—H3A0.9700
N4—C161.343 (7)C3—H3B0.9700
N4—C151.363 (7)C4—C51.534 (6)
N4—H4C0.8600C4—H4A0.9700
N5—C121.344 (7)C4—H4B0.9700
N5—C131.350 (8)C5—C61.526 (6)
N5—H5B0.8600C5—H5A0.9800
N6—C91.349 (7)C6—C81.523 (6)
N6—C101.374 (7)C6—H6A0.9800
N6—H6B0.8600C9—H9A0.9300
O1—C71.268 (5)C10—C111.333 (6)
O1W—H1WA0.8501C10—H10A0.9300
O1W—H1WB0.8499C11—H11A0.9300
O2W—H2WA0.8500C12—H12A0.9300
O2W—H2WB0.8503C13—C141.351 (7)
O2—C81.257 (6)C13—H13A0.9300
O3—C71.234 (6)C14—H14A0.9300
O3W—H3WA0.8500C15—H15A0.9300
O3W—H3WB0.8498C16—C171.336 (6)
O3W'—H4WA0.8499C16—H16A0.9300
O3W'—H4WB0.8502C17—H17A0.9300
O4W—H5WA0.8500
O1—Co1—O285.20 (14)C2—C3—H3A111.4
O1—Co1—N3175.35 (12)C4—C3—H3A111.4
O2—Co1—N391.49 (15)C2—C3—H3B111.4
O1—Co1—N188.60 (14)C4—C3—H3B111.4
O2—Co1—N1172.12 (13)H3A—C3—H3B109.2
N3—Co1—N194.41 (14)C5—C4—C3101.3 (4)
O1—Co1—N291.64 (13)C5—C4—H4A111.5
O2—Co1—N291.04 (13)C3—C4—H4A111.5
N3—Co1—N291.68 (14)C5—C4—H4B111.5
N1—Co1—N293.99 (14)C3—C4—H4B111.5
O1—Co1—O586.79 (11)H4A—C4—H4B109.3
O2—Co1—O585.90 (11)O5—C5—C6101.7 (3)
N3—Co1—O589.72 (12)O5—C5—C4102.2 (3)
N1—Co1—O588.91 (12)C6—C5—C4111.2 (4)
N2—Co1—O5176.67 (12)O5—C5—H5A113.5
C17—N1—C15104.9 (4)C6—C5—H5A113.5
C17—N1—Co1128.7 (3)C4—C5—H5A113.5
C15—N1—Co1126.4 (3)C8—C6—C5112.3 (4)
C12—N2—C14105.6 (4)C8—C6—C1113.4 (3)
C12—N2—Co1125.7 (3)C5—C6—C1101.0 (3)
C14—N2—Co1127.8 (3)C8—C6—H6A110.0
C11—N3—C9105.4 (4)C5—C6—H6A110.0
C11—N3—Co1125.4 (3)C1—C6—H6A110.0
C9—N3—Co1128.4 (3)O3—C7—O1124.0 (4)
C16—N4—C15105.8 (5)O3—C7—C1119.2 (4)
C16—N4—H4C127.1O1—C7—C1116.9 (4)
C15—N4—H4C127.1O2—C8—O4123.3 (4)
C12—N5—C13107.7 (4)O2—C8—C6119.2 (4)
C12—N5—H5B126.2O4—C8—C6117.4 (4)
C13—N5—H5B126.2N6—C9—N3109.5 (4)
C9—N6—C10106.3 (4)N6—C9—H9A125.2
C9—N6—H6B126.9N3—C9—H9A125.2
C10—N6—H6B126.9C11—C10—N6107.3 (4)
C7—O1—Co1129.5 (3)C11—C10—H10A126.3
H1WA—O1W—H1WB108.4N6—C10—H10A126.3
H2WA—O2W—H2WB108.8N3—C11—C10111.4 (4)
C8—O2—Co1118.5 (3)N3—C11—H11A124.3
H3WA—O3W—H3WB108.3C10—C11—H11A124.3
H4WA—O3W'—H4WB108.1N2—C12—N5111.1 (5)
H5WA—O4W—H5WB108.2N2—C12—H12A124.5
C2—O5—C596.4 (3)N5—C12—H12A124.5
C2—O5—Co1115.2 (2)N5—C13—C14106.5 (5)
C5—O5—Co1114.1 (2)N5—C13—H13A126.8
C7—C1—C2111.4 (4)C14—C13—H13A126.8
C7—C1—C6114.2 (3)C13—C14—N2109.2 (5)
C2—C1—C6101.4 (3)C13—C14—H14A125.4
C7—C1—H1A109.9N2—C14—H14A125.4
C2—C1—H1A109.9N4—C15—N1109.9 (5)
C6—C1—H1A109.9N4—C15—H15A125.1
O5—C2—C3101.6 (3)N1—C15—H15A125.1
O5—C2—C1102.2 (3)C17—C16—N4108.0 (4)
C3—C2—C1110.4 (4)C17—C16—H16A126.0
O5—C2—H2A113.8N4—C16—H16A126.0
C3—C2—H2A113.8N1—C17—C16111.4 (4)
C1—C2—H2A113.8N1—C17—H17A124.3
C2—C3—C4102.0 (3)C16—C17—H17A124.3
O1—Co1—N1—C17176.2 (4)C1—C2—C3—C471.7 (5)
N3—Co1—N1—C170.2 (4)C2—C3—C4—C51.5 (5)
N2—Co1—N1—C1792.2 (4)C2—O5—C5—C658.6 (3)
O5—Co1—N1—C1789.4 (4)Co1—O5—C5—C662.7 (3)
O1—Co1—N1—C152.2 (4)C2—O5—C5—C456.5 (4)
N3—Co1—N1—C15178.6 (4)Co1—O5—C5—C4177.8 (3)
N2—Co1—N1—C1589.4 (4)C3—C4—C5—O533.4 (5)
O5—Co1—N1—C1589.0 (4)C3—C4—C5—C674.5 (5)
O1—Co1—N2—C1294.7 (4)O5—C5—C6—C884.1 (4)
O2—Co1—N2—C129.4 (4)C4—C5—C6—C8167.7 (4)
N3—Co1—N2—C1282.1 (4)O5—C5—C6—C137.0 (4)
N1—Co1—N2—C12176.6 (4)C4—C5—C6—C171.2 (4)
O1—Co1—N2—C1498.0 (4)C7—C1—C6—C82.1 (5)
O2—Co1—N2—C14176.7 (4)C2—C1—C6—C8117.8 (4)
N3—Co1—N2—C1485.2 (4)C7—C1—C6—C5122.4 (4)
N1—Co1—N2—C149.3 (4)C2—C1—C6—C52.4 (4)
O2—Co1—N3—C1186.7 (4)Co1—O1—C7—O3167.8 (4)
N1—Co1—N3—C1188.1 (4)Co1—O1—C7—C113.2 (6)
N2—Co1—N3—C11177.7 (4)C2—C1—C7—O3131.4 (5)
O5—Co1—N3—C110.8 (4)C6—C1—C7—O3114.4 (5)
O2—Co1—N3—C982.4 (4)C2—C1—C7—O147.7 (5)
N1—Co1—N3—C9102.9 (4)C6—C1—C7—O166.4 (5)
N2—Co1—N3—C98.7 (4)Co1—O2—C8—O4135.3 (4)
O5—Co1—N3—C9168.3 (4)Co1—O2—C8—C644.8 (5)
O2—Co1—O1—C759.9 (4)C5—C6—C8—O225.7 (5)
N1—Co1—O1—C7115.3 (4)C1—C6—C8—O288.0 (5)
N2—Co1—O1—C7150.8 (4)C5—C6—C8—O4154.1 (4)
O5—Co1—O1—C726.3 (4)C1—C6—C8—O492.2 (5)
O1—Co1—O2—C838.7 (3)C10—N6—C9—N30.0 (6)
N3—Co1—O2—C8138.0 (4)C11—N3—C9—N60.5 (6)
N2—Co1—O2—C8130.3 (3)Co1—N3—C9—N6171.2 (4)
O5—Co1—O2—C848.4 (3)C9—N6—C10—C110.5 (6)
O1—Co1—O5—C216.1 (3)C9—N3—C11—C100.8 (5)
O2—Co1—O5—C2101.6 (3)Co1—N3—C11—C10171.9 (3)
N3—Co1—O5—C2166.9 (3)N6—C10—C11—N30.9 (6)
N1—Co1—O5—C272.5 (3)C14—N2—C12—N50.2 (6)
O1—Co1—O5—C594.0 (3)Co1—N2—C12—N5169.8 (3)
O2—Co1—O5—C58.6 (3)C13—N5—C12—N20.0 (6)
N3—Co1—O5—C582.9 (3)C12—N5—C13—C140.2 (6)
N1—Co1—O5—C5177.3 (3)N5—C13—C14—N20.3 (6)
C5—O5—C2—C357.3 (4)C12—N2—C14—C130.4 (6)
Co1—O5—C2—C3177.8 (3)Co1—N2—C14—C13169.7 (4)
C5—O5—C2—C156.8 (3)C16—N4—C15—N10.2 (7)
Co1—O5—C2—C163.7 (3)C17—N1—C15—N40.4 (6)
C7—C1—C2—O588.8 (4)Co1—N1—C15—N4179.2 (4)
C6—C1—C2—O533.1 (4)C15—N4—C16—C170.2 (6)
C7—C1—C2—C3163.7 (4)C15—N1—C17—C160.6 (5)
C6—C1—C2—C374.4 (4)Co1—N1—C17—C16179.2 (3)
O5—C2—C3—C436.2 (5)N4—C16—C17—N10.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2Wi0.852.333.161 (6)167
O2W—H2WA···N5ii0.852.593.133 (5)123
O2W—H2WB···O2Wi0.852.693.084 (7)110
O1W—H1WB···O40.852.172.690 (6)119
N5—H5B···O2Wii0.862.293.133 (5)165
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(C8H8O5)(C3H4N2)3]·3.35H2O
Mr507.67
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.2666 (2), 12.6522 (5), 12.7200 (3)
α, β, γ (°)109.912 (2), 104.394 (1), 95.354 (2)
V3)1188.23 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.41 × 0.36 × 0.29
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.735, 0.798
No. of measured, independent and
observed [I > 2σ(I)] reflections
18153, 5402, 4712
Rint0.024
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.241, 1.11
No. of reflections5402
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.54, 0.74

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2Wi0.852.333.161 (6)167.0
O2W—H2WA···N5ii0.852.593.133 (5)123.2
O2W—H2WB···O2Wi0.852.693.084 (7)110.1
O1W—H1WB···O40.852.172.690 (6)119.4
N5—H5B···O2Wii0.862.293.133 (5)165.3
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge financial support from the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFurenlid, L. R., Van Derveer, D. G. & Felton, R. H. (1986). Acta Cryst. C42, 806–809.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-H., Zhu, N.-J., Fu, H., Li, R. C. & Wang, K. (1988). Sci. Sin. Ser. B, 31, 20–27.  CAS Google Scholar
First citationZhu, H.-L., Yang, S., Qiu, X.-Y., Xiong, Z.-D., You, Z.-L. & Wang, D.-Q. (2003). Acta Cryst. E59, m1089–m1090.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds