metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m856-m857

Bis(μ-4-nitro­phthalato)bis­­[di­aqua­(1,10-phenanthroline)manganese(II)]

aSchool of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550014, People's Republic of China, and bNational Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang, Guizhou, 550014, People's Republic of China
*Correspondence e-mail: dearweili@gmail.com

(Received 8 June 2009; accepted 23 June 2009; online 1 July 2009)

In the title compound, [Mn2(C8H3NO6)2(C12H8N2)2(H2O)4], the MnII atom in the centrosymmetric binuclear unit has a distorted octa­hedral geometry and is coordinated by a chelating 1,10-phenanthroline ligand, two monodentate carboxyl­ate anions from two 4-nitro­phthalates and two coordinated water mol­ecules. The two MnII ions in the mol­ecule are bridged by two 4-nitro­phthalate anions, both in a bis-monodentate mode, which finally leads to the formation of the binuclear unit. Intra­molecular O—H⋯O hydrogen bonds between the coordinated and uncoordinated O atoms of one monodentate carboxyl­ate group and the corresponding coordinated water mol­ecules result in an eight-membered and two six-membered rings. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the dinuclear mol­ecules into supra­molecular chains propagating parallel to [100].

Related literature

For general background to self-assembly coordination complexes with metal ions and 4-nitro­phthalic acid, see: Guo & Guo (2007[Guo, M.-L. & Guo, C.-H. (2007). Acta Cryst. C63, m595-m597.]); Qi et al. (2008[Qi, Y., Che, Y., Luo, F., Batten, S. R., Liu, Y. & Zheng, J. (2008). Cryst. Growth Des. 8, 1654-1662.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C8H3NO6)2(C12H8N2)2(H2O)4]

  • Mr = 960.58

  • Orthorhombic, P b c a

  • a = 7.1601 (9) Å

  • b = 20.039 (3) Å

  • c = 26.592 (3) Å

  • V = 3815.5 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 293 K

  • 0.30 × 0.15 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.890, Tmax = 0.928

  • 27311 measured reflections

  • 3416 independent reflections

  • 2608 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.107

  • S = 1.05

  • 3416 reflections

  • 305 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O3i 2.1212 (19)
Mn1—O1 2.1524 (18)
Mn1—O1W 2.1969 (19)
Mn1—O2W 2.2413 (19)
Mn1—N2 2.284 (2)
Mn1—N3 2.287 (2)
Symmetry code: (i) -x+1, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2A⋯O2 0.845 (10) 2.25 (3) 2.935 (3) 139 (3)
O2W—H2B⋯O4ii 0.845 (10) 2.012 (13) 2.844 (3) 167 (4)
O1W—H1A⋯O1i 0.845 (10) 1.896 (12) 2.732 (2) 170 (4)
O1W—H1B⋯O4ii 0.845 (10) 2.07 (2) 2.827 (3) 149 (3)
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The self-assembly of complexes from phthalic acid ligand and transition metal ions has attracted considerable attention in recent years because these complexes have various intriguing topological structures and potential applications in material chemistry. However, only a few metal-nitrophthalate complexes have been reported to date in contrast with the abundance of metal-phthalate complexes (Guo et al., 2007; Qi et al., 2008). In order to enrich the metal-nitrophthalate complexes, we utilized the 4-nitrophthalic acid to assemble with manganese ions in the presence of ancillary 1,10-phenanthroline ligand and obtained the title binuclear MnII complex [Mn(1,10-phenanthroline)(C8H3NO6)(H2O)2]2.

As depicted in Fig. 1, the title complex exhibits a binuclear structure and in the dimer each MnII ion has a distorted octahedral geometry and was coordinated by a chelating 1,10-phenanthroline, two monodentate carboxylates from two 4-nitrophthalates and two coordinated water molecules. And it is noteworthy that the two MnII ions in the complex are bridged by two 4-nitrophthalates both in a bis-monodentate mode to lead to the formation of a dinuclear unit because of the presence of an inversion center in the crystal structure. Intramolecular O—H···O hydrogen bonds between the coordinated and uncoordinated oxygen atoms of one monodentate carboxylate in a 4-nitrophthalate and corresponding coordinated water molecules result in an eight-membered and two six-membered rings (Table 2). Furthermore, the intermolecular O—H···O hydrogen bonds between two water molecules and another monodentate carboxylate in the same 4-nitrophthalate link the dinuclear molecules into a one-dimensional supramolecular chain, as shown in Fig. 2.

Related literature top

For general background to self-assembly coordination complexes with metal ions and 4-nitrophthalic acid, see: Guo et al. (2007); Qi et al. (2008).

Experimental top

Mn(CH3COO)2.4H2O (0.50 mmol, 0.122 g), 4-nitrophthalic acid (0.50 mmol, 0.103 g), 1,10-phenanthroline (0.50 mmol, 0.099 g) and NaOH (1.0 mmol, 0.040 g) were well mixed in 8 ml distilled water, and the solution was stirred for 15 min and then transferred into a 23 ml Teflon-lined bomb at 398 K for 3 days and slowly cooled to room temperature. Light yellow sheet crystals which were suitable for X-ray analysis were obtained.

Refinement top

H atoms of water molecules were located in difference Fourier maps and refined isotropically with restraints of O1W—H1A = 0.845 (10), O1W—H1B = 0.846 (10), O2W—H2A = 0.845 (10), O2W—H2B = 0.846 (10) Å and H1A—O1W—H1B = 107 (3) and H2A—O2W—H2B = 112 (4)°. The remaining H atoms of aromatic rings were positioned geometrically with C—H = 0.95 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title dinuclear complex with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) –x+1, –y, –z].
[Figure 2] Fig. 2. The one-dimensional supramolecular chain of the title complex. Hydrogen bonds are shown as dashed line. Hydrogen atoms are omitted for clarity.
Bis(µ-4-nitrophthalato)bis[diaqua(1,10-phenanthroline)manganese(II)] top
Crystal data top
[Mn2(C8H3NO6)2(C12H8N2)2(H2O)4]F(000) = 1960
Mr = 960.58Dx = 1.672 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4478 reflections
a = 7.1601 (9) Åθ = 2.5–23.3°
b = 20.039 (3) ŵ = 0.75 mm1
c = 26.592 (3) ÅT = 293 K
V = 3815.5 (9) Å3Sheet, yellow
Z = 40.30 × 0.15 × 0.05 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3416 independent reflections
Radiation source: fine-focus sealed tube2608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ϕ and ω scansθmax = 25.2°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.890, Tmax = 0.928k = 2322
27311 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.06P)2 + 0.8459P]
where P = (Fo2 + 2Fc2)/3
3416 reflections(Δ/σ)max = 0.001
305 parametersΔρmax = 0.39 e Å3
4 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Mn2(C8H3NO6)2(C12H8N2)2(H2O)4]V = 3815.5 (9) Å3
Mr = 960.58Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 7.1601 (9) ŵ = 0.75 mm1
b = 20.039 (3) ÅT = 293 K
c = 26.592 (3) Å0.30 × 0.15 × 0.05 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3416 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2608 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.928Rint = 0.075
27311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0384 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.39 e Å3
3416 reflectionsΔρmin = 0.34 e Å3
305 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.60706 (5)0.01188 (2)0.092001 (13)0.02468 (15)
O10.5576 (2)0.07756 (9)0.04921 (6)0.0285 (4)
O30.6721 (3)0.04306 (9)0.07937 (7)0.0316 (4)
O40.9042 (3)0.06002 (10)0.02534 (7)0.0373 (5)
O1W0.7016 (3)0.06823 (10)0.02586 (7)0.0319 (5)
O20.7356 (3)0.15076 (10)0.09074 (7)0.0426 (5)
O2W0.9075 (3)0.01824 (10)0.09875 (7)0.0313 (5)
O50.6617 (3)0.36361 (11)0.11306 (9)0.0513 (6)
N30.6745 (3)0.10062 (11)0.14296 (7)0.0280 (5)
N20.5723 (3)0.02382 (11)0.17303 (8)0.0273 (5)
N10.6741 (3)0.30363 (12)0.11986 (10)0.0405 (6)
C130.6103 (3)0.02215 (12)0.20908 (9)0.0228 (6)
C20.6986 (3)0.14993 (12)0.04068 (9)0.0230 (6)
C70.6488 (4)0.13194 (13)0.05290 (9)0.0260 (6)
C120.5995 (3)0.00806 (14)0.26127 (10)0.0298 (6)
C140.6635 (3)0.08850 (13)0.19318 (9)0.0258 (6)
C10.6516 (3)0.17594 (13)0.00669 (9)0.0232 (6)
C50.6125 (4)0.28622 (14)0.02963 (10)0.0298 (6)
H50.58390.33130.02630.036*
C30.7018 (4)0.19241 (14)0.08173 (9)0.0285 (6)
H30.73120.17580.11340.034*
C60.6077 (3)0.24341 (13)0.01140 (10)0.0267 (6)
H60.57440.26020.04280.032*
C110.5484 (4)0.05711 (15)0.27502 (10)0.0347 (7)
H110.54000.06880.30880.042*
C150.7010 (4)0.13834 (14)0.22946 (10)0.0306 (6)
C80.7626 (4)0.07836 (12)0.04821 (9)0.0244 (6)
C100.5110 (4)0.10331 (15)0.23861 (11)0.0373 (7)
H100.47720.14660.24740.045*
C90.5241 (4)0.08472 (13)0.18791 (10)0.0327 (6)
H90.49790.11660.16350.039*
C40.6617 (4)0.25922 (13)0.07580 (10)0.0285 (6)
C190.6417 (4)0.05922 (16)0.29694 (10)0.0370 (7)
H190.63590.04970.33110.044*
C170.7581 (4)0.21389 (15)0.16140 (11)0.0428 (7)
H170.78880.25610.14940.051*
C200.6903 (4)0.12145 (16)0.28170 (10)0.0376 (7)
H200.71710.15380.30570.045*
C180.7211 (4)0.16194 (14)0.12807 (11)0.0362 (7)
H180.72930.17040.09380.043*
C160.7488 (4)0.20209 (14)0.21190 (11)0.0407 (7)
H160.77400.23620.23460.049*
O60.6997 (5)0.27861 (13)0.16128 (8)0.0716 (8)
H2A0.918 (5)0.0602 (6)0.0986 (13)0.061 (12)*
H2B0.976 (5)0.0003 (17)0.0769 (11)0.067 (12)*
H1A0.632 (4)0.0697 (19)0.0003 (9)0.073 (13)*
H1B0.809 (2)0.0579 (18)0.0155 (13)0.066 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0297 (2)0.0251 (3)0.0193 (2)0.00034 (16)0.00131 (15)0.00056 (15)
O10.0308 (10)0.0279 (11)0.0269 (10)0.0050 (8)0.0032 (7)0.0050 (8)
O30.0317 (10)0.0265 (11)0.0365 (11)0.0016 (8)0.0007 (8)0.0079 (8)
O40.0309 (11)0.0372 (12)0.0438 (12)0.0112 (9)0.0071 (9)0.0026 (9)
O1W0.0303 (12)0.0402 (13)0.0252 (11)0.0035 (9)0.0001 (9)0.0074 (9)
O20.0658 (15)0.0358 (12)0.0261 (11)0.0102 (11)0.0095 (10)0.0010 (8)
O2W0.0310 (11)0.0314 (13)0.0315 (11)0.0004 (9)0.0026 (8)0.0031 (9)
O50.0666 (15)0.0287 (13)0.0587 (14)0.0087 (10)0.0136 (12)0.0166 (10)
N30.0328 (12)0.0301 (13)0.0212 (11)0.0041 (10)0.0001 (9)0.0022 (9)
N20.0275 (12)0.0294 (13)0.0249 (12)0.0005 (9)0.0007 (9)0.0004 (9)
N10.0475 (15)0.0311 (16)0.0430 (16)0.0012 (11)0.0003 (12)0.0127 (12)
C130.0201 (13)0.0266 (15)0.0218 (13)0.0017 (10)0.0003 (10)0.0020 (10)
C20.0237 (13)0.0208 (14)0.0244 (13)0.0009 (10)0.0021 (10)0.0007 (10)
C70.0301 (14)0.0263 (15)0.0217 (14)0.0033 (12)0.0033 (11)0.0010 (11)
C120.0223 (13)0.0428 (18)0.0243 (15)0.0040 (12)0.0010 (10)0.0012 (12)
C140.0230 (13)0.0309 (15)0.0234 (14)0.0026 (11)0.0001 (10)0.0010 (11)
C10.0218 (13)0.0250 (15)0.0228 (13)0.0013 (10)0.0005 (10)0.0002 (10)
C50.0283 (14)0.0224 (15)0.0387 (16)0.0000 (11)0.0004 (11)0.0009 (12)
C30.0345 (15)0.0292 (16)0.0217 (13)0.0008 (12)0.0010 (11)0.0013 (11)
C60.0264 (13)0.0265 (15)0.0272 (14)0.0007 (11)0.0013 (10)0.0040 (11)
C110.0338 (15)0.0428 (18)0.0276 (15)0.0040 (13)0.0030 (12)0.0110 (13)
C150.0271 (14)0.0355 (17)0.0293 (15)0.0032 (12)0.0035 (11)0.0072 (12)
C80.0240 (13)0.0251 (14)0.0241 (13)0.0002 (11)0.0057 (11)0.0008 (11)
C100.0364 (16)0.0346 (17)0.0409 (17)0.0008 (13)0.0060 (13)0.0146 (13)
C90.0318 (15)0.0289 (16)0.0373 (16)0.0021 (12)0.0014 (12)0.0007 (12)
C40.0324 (14)0.0262 (16)0.0270 (14)0.0013 (11)0.0024 (11)0.0056 (11)
C190.0377 (17)0.053 (2)0.0202 (14)0.0070 (14)0.0001 (11)0.0009 (13)
C170.0522 (19)0.0273 (16)0.0489 (19)0.0080 (14)0.0047 (14)0.0019 (14)
C200.0400 (17)0.048 (2)0.0249 (15)0.0035 (14)0.0047 (12)0.0123 (13)
C180.0451 (17)0.0308 (17)0.0325 (16)0.0062 (13)0.0013 (12)0.0073 (12)
C160.0436 (17)0.0333 (18)0.0452 (18)0.0032 (14)0.0067 (14)0.0111 (14)
O60.137 (3)0.0484 (15)0.0296 (13)0.0022 (16)0.0067 (13)0.0073 (11)
Geometric parameters (Å, º) top
Mn1—O3i2.1212 (19)C7—C11.513 (3)
Mn1—O12.1524 (18)C12—C111.405 (4)
Mn1—O1W2.1969 (19)C12—C191.429 (4)
Mn1—O2W2.2413 (19)C14—C151.414 (4)
Mn1—N22.284 (2)C1—C61.394 (4)
Mn1—N32.287 (2)C5—C41.387 (4)
O1—C71.274 (3)C5—C61.388 (4)
O3—C81.267 (3)C5—H50.9300
O3—Mn1i2.1212 (19)C3—C41.378 (4)
O4—C81.238 (3)C3—H30.9300
O1W—H1A0.845 (10)C6—H60.9300
O1W—H1B0.845 (10)C11—C101.366 (4)
O2—C71.241 (3)C11—H110.9300
O2W—H2A0.845 (10)C15—C161.402 (4)
O2W—H2B0.845 (10)C15—C201.432 (4)
O5—N11.219 (3)C10—C91.402 (4)
N3—C181.333 (3)C10—H100.9300
N3—C141.360 (3)C9—H90.9300
N2—C91.329 (3)C19—C201.356 (4)
N2—C131.357 (3)C19—H190.9300
N1—O61.224 (3)C17—C161.365 (4)
N1—C41.474 (3)C17—C181.393 (4)
C13—C121.418 (4)C17—H170.9300
C13—C141.446 (4)C20—H200.9300
C2—C31.385 (4)C18—H180.9300
C2—C11.404 (3)C16—H160.9300
C2—C81.519 (3)
O3i—Mn1—O190.38 (7)C15—C14—C13120.0 (2)
O3i—Mn1—O1W90.70 (7)C6—C1—C2119.7 (2)
O1—Mn1—O1W93.18 (7)C6—C1—C7119.3 (2)
O3i—Mn1—O2W175.18 (7)C2—C1—C7121.0 (2)
O1—Mn1—O2W88.61 (7)C4—C5—C6117.4 (3)
O1W—Mn1—O2W84.66 (7)C4—C5—H5121.3
O3i—Mn1—N297.98 (7)C6—C5—H5121.3
O1—Mn1—N2102.71 (7)C4—C3—C2120.2 (2)
O1W—Mn1—N2161.78 (8)C4—C3—H3119.9
O2W—Mn1—N286.83 (7)C2—C3—H3119.9
O3i—Mn1—N393.66 (8)C5—C6—C1121.5 (2)
O1—Mn1—N3174.46 (7)C5—C6—H6119.2
O1W—Mn1—N390.56 (7)C1—C6—H6119.2
O2W—Mn1—N387.67 (8)C10—C11—C12119.8 (3)
N2—Mn1—N373.00 (7)C10—C11—H11120.1
C7—O1—Mn1125.97 (16)C12—C11—H11120.1
C8—O3—Mn1i138.54 (16)C16—C15—C14117.5 (2)
Mn1—O1W—H1A119 (3)C16—C15—C20123.5 (3)
Mn1—O1W—H1B115 (3)C14—C15—C20119.0 (3)
H1A—O1W—H1B107 (3)O4—C8—O3125.0 (2)
Mn1—O2W—H2A111 (3)O4—C8—C2117.5 (2)
Mn1—O2W—H2B113 (3)O3—C8—C2117.3 (2)
H2A—O2W—H2B112 (4)C11—C10—C9119.2 (3)
C18—N3—C14118.1 (2)C11—C10—H10120.4
C18—N3—Mn1126.39 (17)C9—C10—H10120.4
C14—N3—Mn1115.52 (17)N2—C9—C10123.2 (3)
C9—N2—C13117.7 (2)N2—C9—H9118.4
C9—N2—Mn1126.66 (18)C10—C9—H9118.4
C13—N2—Mn1115.60 (16)C3—C4—C5122.2 (2)
O5—N1—O6123.3 (2)C3—C4—N1118.9 (2)
O5—N1—C4118.2 (2)C5—C4—N1118.9 (2)
O6—N1—C4118.5 (2)C20—C19—C12121.0 (3)
N2—C13—C12123.0 (2)C20—C19—H19119.5
N2—C13—C14118.0 (2)C12—C19—H19119.5
C12—C13—C14118.9 (2)C16—C17—C18119.2 (3)
C3—C2—C1118.9 (2)C16—C17—H17120.4
C3—C2—C8118.1 (2)C18—C17—H17120.4
C1—C2—C8122.8 (2)C19—C20—C15121.4 (3)
O2—C7—O1125.4 (2)C19—C20—H20119.3
O2—C7—C1118.4 (2)C15—C20—H20119.3
O1—C7—C1116.3 (2)N3—C18—C17123.2 (3)
C11—C12—C13117.0 (2)N3—C18—H18118.4
C11—C12—C19123.3 (3)C17—C18—H18118.4
C13—C12—C19119.7 (3)C17—C16—C15119.8 (3)
N3—C14—C15122.2 (2)C17—C16—H16120.1
N3—C14—C13117.8 (2)C15—C16—H16120.1
O3i—Mn1—O1—C7156.7 (2)C8—C2—C1—C74.5 (4)
O1W—Mn1—O1—C7112.6 (2)O2—C7—C1—C650.6 (3)
O2W—Mn1—O1—C728.0 (2)O1—C7—C1—C6130.2 (2)
N2—Mn1—O1—C758.4 (2)O2—C7—C1—C2129.1 (3)
N3—Mn1—O1—C719.8 (9)O1—C7—C1—C250.2 (3)
O3i—Mn1—N3—C1881.4 (2)C1—C2—C3—C40.8 (4)
O1—Mn1—N3—C18141.8 (7)C8—C2—C3—C4174.0 (2)
O1W—Mn1—N3—C189.4 (2)C4—C5—C6—C10.4 (4)
O2W—Mn1—N3—C1894.0 (2)C2—C1—C6—C51.2 (4)
N2—Mn1—N3—C18178.6 (2)C7—C1—C6—C5178.4 (2)
O3i—Mn1—N3—C1498.02 (18)C13—C12—C11—C100.3 (4)
O1—Mn1—N3—C1438.8 (9)C19—C12—C11—C10179.7 (3)
O1W—Mn1—N3—C14171.24 (18)N3—C14—C15—C160.8 (4)
O2W—Mn1—N3—C1486.61 (18)C13—C14—C15—C16178.9 (2)
N2—Mn1—N3—C140.79 (17)N3—C14—C15—C20178.7 (2)
O3i—Mn1—N2—C989.3 (2)C13—C14—C15—C201.6 (4)
O1—Mn1—N2—C92.9 (2)Mn1i—O3—C8—O4127.8 (2)
O1W—Mn1—N2—C9153.0 (2)Mn1i—O3—C8—C255.9 (3)
O2W—Mn1—N2—C990.8 (2)C3—C2—C8—O4115.6 (3)
N3—Mn1—N2—C9179.3 (2)C1—C2—C8—O459.0 (3)
O3i—Mn1—N2—C1392.61 (17)C3—C2—C8—O361.0 (3)
O1—Mn1—N2—C13175.18 (16)C1—C2—C8—O3124.5 (3)
O1W—Mn1—N2—C1325.1 (3)C12—C11—C10—C90.1 (4)
O2W—Mn1—N2—C1387.32 (17)C13—N2—C9—C100.0 (4)
N3—Mn1—N2—C131.20 (16)Mn1—N2—C9—C10178.07 (19)
C9—N2—C13—C120.4 (3)C11—C10—C9—N20.2 (4)
Mn1—N2—C13—C12178.70 (17)C2—C3—C4—C51.7 (4)
C9—N2—C13—C14179.8 (2)C2—C3—C4—N1177.5 (2)
Mn1—N2—C13—C141.5 (3)C6—C5—C4—C31.0 (4)
Mn1—O1—C7—O225.1 (4)C6—C5—C4—N1178.1 (2)
Mn1—O1—C7—C1154.09 (16)O5—N1—C4—C3170.9 (3)
N2—C13—C12—C110.6 (4)O6—N1—C4—C37.8 (4)
C14—C13—C12—C11179.6 (2)O5—N1—C4—C58.3 (4)
N2—C13—C12—C19180.0 (2)O6—N1—C4—C5173.0 (3)
C14—C13—C12—C190.2 (3)C11—C12—C19—C20179.9 (3)
C18—N3—C14—C150.5 (4)C13—C12—C19—C200.7 (4)
Mn1—N3—C14—C15179.98 (19)C12—C19—C20—C150.0 (4)
C18—N3—C14—C13179.1 (2)C16—C15—C20—C19179.4 (3)
Mn1—N3—C14—C130.3 (3)C14—C15—C20—C191.2 (4)
N2—C13—C14—N30.8 (3)C14—N3—C18—C170.2 (4)
C12—C13—C14—N3179.4 (2)Mn1—N3—C18—C17179.2 (2)
N2—C13—C14—C15178.9 (2)C16—C17—C18—N30.7 (5)
C12—C13—C14—C150.9 (3)C18—C17—C16—C150.5 (4)
C3—C2—C1—C60.6 (3)C14—C15—C16—C170.2 (4)
C8—C2—C1—C6175.1 (2)C20—C15—C16—C17179.2 (3)
C3—C2—C1—C7179.0 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2A···O20.85 (1)2.25 (3)2.935 (3)139 (3)
O2W—H2B···O4ii0.85 (1)2.01 (1)2.844 (3)167 (4)
O1W—H1A···O1i0.85 (1)1.90 (1)2.732 (2)170 (4)
O1W—H1B···O4ii0.85 (1)2.07 (2)2.827 (3)149 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Mn2(C8H3NO6)2(C12H8N2)2(H2O)4]
Mr960.58
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)7.1601 (9), 20.039 (3), 26.592 (3)
V3)3815.5 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.30 × 0.15 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.890, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
27311, 3416, 2608
Rint0.075
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.107, 1.05
No. of reflections3416
No. of parameters305
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Mn1—O3i2.1212 (19)Mn1—N22.284 (2)
Mn1—O12.1524 (18)Mn1—N32.287 (2)
Mn1—O1W2.1969 (19)O3—Mn1i2.1212 (19)
Mn1—O2W2.2413 (19)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2A···O20.845 (10)2.25 (3)2.935 (3)139 (3)
O2W—H2B···O4ii0.845 (10)2.012 (13)2.844 (3)167 (4)
O1W—H1A···O1i0.845 (10)1.896 (12)2.732 (2)170 (4)
O1W—H1B···O4ii0.845 (10)2.07 (2)2.827 (3)149 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z.
 

Acknowledgements

This work was supported by the Science and Technology Foundation of Guizhou Province (No. [2008]2216).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, M.-L. & Guo, C.-H. (2007). Acta Cryst. C63, m595–m597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQi, Y., Che, Y., Luo, F., Batten, S. R., Liu, Y. & Zheng, J. (2008). Cryst. Growth Des. 8, 1654–1662.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m856-m857
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds