organic compounds
Propiverinium picrate
aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: rbutcher99@yahoo.com
The title compound [systematic name: 4-(2,2-diphenyl-2-propoxyacetoxy)-1-methylpiperidin-1-ium picrate], C23H30NO3+·C6H2N3O7−, crystallizes as a salt with one cation–anion (propiverinium picrate) pair in the A significant number of conformational changes are observed between the crystalline environment of this cation–anion salt and that of a density functional theory (DFT) calculation of the geometry-optimized structure. The angle between the dihedral planes of the two benzyl rings in the propiverinium cation increases by 14.4 (0)° from that of the crystalline environment. The dihedral angles between the mean planes of each of the benzyl rings and the mean plane of the piperidine increase by 2.0 (8) and 12.3 (5)°. The angles between the mean plane of the acetate group and the mean planes of the interconnected piperidine group and the two benzyl rings decrease by 0.2 (1), 7.4 (6) and 3.2 (2)°, respectively. The mean plane of the phenolate group in the anion changes by +22.6 (9), +22.1 (1) and −2.8 (6)° from the mean planes of the piperidine and benzyl rings in the cation, respectively. In the crystal, a bifurcated N—H⋯(O,O) hydrogen bond and a weak C—H⋯π ring interaction help to establish the packing. The two O atoms of the p-NO2 group are disordered with occupancies 0.825 (10):0.175 (10).
Related literature
For related structures, see: Bindya et al. (2007); Harrison, Bindya et al. (2007); Harrison, Sreevidya et al. (2007); Swamy et al. (2007) Yathirajan et al. (2007). For background, see: Chapple et al. (2008); Jünemann et al. (2006); Madersbacher & Gramatté, (2006); Matsushima et al. (1997); Noguchi & Masuda, (1998); Okada & Sengodu, (1998); Rong et al. (1999). For density functional theory (DFT), see: Becke (1988, 1993); Frisch et al. (2004); Hehre et al. (1986); Lee et al. (1988); Schmidt & Polik (2007); Szumma et al. (2000). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlisPro (Oxford Diffraction, 2007); cell CrysAlisPro; data reduction: CrysAlisPro (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809022995/at2814sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809022995/at2814Isup2.hkl
Propiverine hydrochloride (4.1 g, 0.01 mol) in 25 ml of methanol and picric acid (4.8 g, 0.01 mol) in 25 ml of methanol were mixed and stirred in a beaker at 318 K for two hours. The mixture was kept aside for 3 days at room temperature. The separated bright yellow salt was filtered, washed thoroughly with chloroform and dried in vacuum desiccator over phosphorous pentoxide. The salt was recrystallized from acetonitrile [m.p: 403–406 K]) by slow evaporation.
All of the H atoms were placed in their calculated positions and then refined using the riding model with N—H = 0.93, C—H = 0.95–0.99 Å, and with Uiso(H) = 1.172–1.49Ueq(C,N).
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C23H30NO3+·C6H2N3O7− | Z = 2 |
Mr = 596.59 | F(000) = 628 |
Triclinic, P1 | Dx = 1.396 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.9379 (4) Å | Cell parameters from 8020 reflections |
b = 9.2885 (4) Å | θ = 4.7–32.6° |
c = 18.0750 (7) Å | µ = 0.11 mm−1 |
α = 97.652 (3)° | T = 110 K |
β = 97.630 (3)° | Prism, pale yellow |
γ = 104.301 (4)° | 0.55 × 0.35 × 0.27 mm |
V = 1419.54 (10) Å3 |
Oxford Diffraction Gemini R CCD diffractometer | 9328 independent reflections |
Radiation source: fine-focus sealed tube | 6353 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 32.7°, θmin = 4.8° |
ϕ and ω scans | h = −10→12 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | k = −12→14 |
Tmin = 0.910, Tmax = 0.972 | l = −25→26 |
18429 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.126 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0682P)2] where P = (Fo2 + 2Fc2)/3 |
9328 reflections | (Δ/σ)max = 0.001 |
397 parameters | Δρmax = 0.39 e Å−3 |
24 restraints | Δρmin = −0.31 e Å−3 |
C23H30NO3+·C6H2N3O7− | γ = 104.301 (4)° |
Mr = 596.59 | V = 1419.54 (10) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.9379 (4) Å | Mo Kα radiation |
b = 9.2885 (4) Å | µ = 0.11 mm−1 |
c = 18.0750 (7) Å | T = 110 K |
α = 97.652 (3)° | 0.55 × 0.35 × 0.27 mm |
β = 97.630 (3)° |
Oxford Diffraction Gemini R CCD diffractometer | 9328 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 6353 reflections with I > 2σ(I) |
Tmin = 0.910, Tmax = 0.972 | Rint = 0.022 |
18429 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 24 restraints |
wR(F2) = 0.126 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.39 e Å−3 |
9328 reflections | Δρmin = −0.31 e Å−3 |
397 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1A | 0.10752 (10) | 0.23733 (10) | 0.53343 (5) | 0.02465 (19) | |
O2A | 0.12422 (13) | 0.08237 (12) | 0.64704 (6) | 0.0414 (3) | |
O3A | 0.14903 (16) | −0.14166 (12) | 0.61794 (7) | 0.0549 (3) | |
O4AA | 0.4251 (3) | −0.2570 (3) | 0.4160 (2) | 0.0556 (8) | 0.825 (10) |
O5AA | 0.4834 (4) | −0.0983 (5) | 0.33859 (12) | 0.0463 (8) | 0.825 (10) |
O4AB | 0.4136 (17) | −0.2763 (15) | 0.4447 (10) | 0.0556 (8) | 0.175 (10) |
O5AB | 0.4388 (16) | −0.1576 (18) | 0.3475 (7) | 0.0463 (8) | 0.175 (10) |
O6A | 0.19712 (11) | 0.28535 (11) | 0.33215 (5) | 0.0302 (2) | |
O7A | 0.24781 (13) | 0.42205 (10) | 0.44357 (5) | 0.0365 (2) | |
N1A | 0.15738 (14) | −0.01478 (13) | 0.60401 (7) | 0.0341 (3) | |
N2A | 0.41627 (16) | −0.14450 (15) | 0.39320 (9) | 0.0470 (4) | |
N3A | 0.22611 (12) | 0.30132 (12) | 0.40164 (6) | 0.0234 (2) | |
C1A | 0.18060 (13) | 0.15168 (13) | 0.50522 (6) | 0.0197 (2) | |
C2A | 0.20815 (15) | 0.02039 (13) | 0.53354 (7) | 0.0251 (3) | |
C3A | 0.27856 (16) | −0.07744 (14) | 0.49621 (8) | 0.0318 (3) | |
H3AA | 0.2900 | −0.1645 | 0.5161 | 0.038* | |
C4A | 0.33233 (15) | −0.04861 (14) | 0.42997 (8) | 0.0301 (3) | |
C5A | 0.31226 (14) | 0.07552 (14) | 0.39838 (7) | 0.0245 (3) | |
H5AA | 0.3472 | 0.0938 | 0.3522 | 0.029* | |
C6A | 0.24091 (14) | 0.17030 (13) | 0.43558 (6) | 0.0193 (2) | |
O1B | 0.60822 (9) | 0.83673 (9) | 0.95805 (4) | 0.01743 (16) | |
O2B | 0.65404 (10) | 0.61445 (9) | 0.85595 (5) | 0.02139 (18) | |
O3B | 0.49768 (9) | 0.66911 (8) | 0.76153 (4) | 0.01681 (16) | |
N1B | 0.14290 (11) | 0.41809 (11) | 0.66309 (5) | 0.0195 (2) | |
H1BD | 0.1429 | 0.3307 | 0.6313 | 0.023* | |
C1B | 0.7672 (2) | 0.65985 (16) | 1.04798 (8) | 0.0374 (3) | |
H1BA | 0.6537 | 0.6194 | 1.0317 | 0.056* | |
H1BB | 0.7985 | 0.6305 | 1.0966 | 0.056* | |
H1BC | 0.8215 | 0.6193 | 1.0099 | 0.056* | |
C2B | 0.81046 (16) | 0.83003 (14) | 1.05690 (7) | 0.0266 (3) | |
H2BA | 0.9237 | 0.8703 | 1.0776 | 0.032* | |
H2BB | 0.7522 | 0.8696 | 1.0941 | 0.032* | |
C3B | 0.77559 (13) | 0.88685 (13) | 0.98354 (6) | 0.0199 (2) | |
H3BA | 0.8118 | 0.9984 | 0.9919 | 0.024* | |
H3BB | 0.8303 | 0.8461 | 0.9450 | 0.024* | |
C4B | 0.55382 (13) | 0.83591 (12) | 0.88023 (6) | 0.0144 (2) | |
C5B | 0.37558 (13) | 0.80952 (12) | 0.87150 (6) | 0.0161 (2) | |
C6B | 0.29341 (14) | 0.72390 (13) | 0.91802 (6) | 0.0210 (2) | |
H6BA | 0.3488 | 0.6901 | 0.9578 | 0.025* | |
C7B | 0.13033 (15) | 0.68740 (15) | 0.90661 (7) | 0.0270 (3) | |
H7BA | 0.0751 | 0.6295 | 0.9389 | 0.032* | |
C8B | 0.04823 (15) | 0.73485 (14) | 0.84858 (7) | 0.0273 (3) | |
H8BA | −0.0630 | 0.7092 | 0.8408 | 0.033* | |
C9B | 0.12932 (14) | 0.82027 (14) | 0.80174 (7) | 0.0252 (3) | |
H9BA | 0.0734 | 0.8531 | 0.7618 | 0.030* | |
C10B | 0.29213 (14) | 0.85778 (13) | 0.81321 (6) | 0.0195 (2) | |
H10A | 0.3470 | 0.9167 | 0.7812 | 0.023* | |
C11B | 0.63706 (13) | 0.98164 (12) | 0.85584 (6) | 0.0154 (2) | |
C12B | 0.60946 (14) | 1.11664 (13) | 0.88757 (6) | 0.0211 (2) | |
H12A | 0.5343 | 1.1146 | 0.9202 | 0.025* | |
C13B | 0.69100 (16) | 1.25303 (13) | 0.87166 (7) | 0.0256 (3) | |
H13A | 0.6711 | 1.3440 | 0.8932 | 0.031* | |
C14B | 0.80181 (16) | 1.25757 (14) | 0.82429 (7) | 0.0272 (3) | |
H14A | 0.8573 | 1.3513 | 0.8133 | 0.033* | |
C15B | 0.83122 (15) | 1.12444 (14) | 0.79297 (7) | 0.0239 (2) | |
H15A | 0.9075 | 1.1270 | 0.7609 | 0.029* | |
C16B | 0.74833 (13) | 0.98724 (12) | 0.80886 (6) | 0.0178 (2) | |
H16A | 0.7683 | 0.8964 | 0.7872 | 0.021* | |
C17B | 0.57857 (12) | 0.69440 (12) | 0.83240 (6) | 0.0154 (2) | |
C18B | 0.48344 (13) | 0.52459 (12) | 0.71359 (6) | 0.0174 (2) | |
H18A | 0.5894 | 0.5082 | 0.7114 | 0.021* | |
C19B | 0.38094 (14) | 0.39610 (12) | 0.74338 (7) | 0.0199 (2) | |
H19A | 0.3784 | 0.2990 | 0.7124 | 0.024* | |
H19B | 0.4277 | 0.3959 | 0.7962 | 0.024* | |
C20B | 0.21450 (14) | 0.40916 (13) | 0.74143 (6) | 0.0208 (2) | |
H20A | 0.1506 | 0.3204 | 0.7583 | 0.025* | |
H20B | 0.2153 | 0.5006 | 0.7767 | 0.025* | |
C21B | −0.02218 (15) | 0.42444 (16) | 0.65909 (8) | 0.0303 (3) | |
H21A | −0.0258 | 0.5157 | 0.6921 | 0.045* | |
H21B | −0.0833 | 0.3353 | 0.6758 | 0.045* | |
H21C | −0.0665 | 0.4264 | 0.6068 | 0.045* | |
C22B | 0.23950 (15) | 0.54977 (13) | 0.63493 (7) | 0.0216 (2) | |
H22A | 0.2411 | 0.6449 | 0.6675 | 0.026* | |
H22B | 0.1915 | 0.5522 | 0.5827 | 0.026* | |
C23B | 0.40595 (14) | 0.53774 (13) | 0.63573 (6) | 0.0208 (2) | |
H23A | 0.4686 | 0.6280 | 0.6195 | 0.025* | |
H23B | 0.4045 | 0.4482 | 0.5989 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1A | 0.0261 (5) | 0.0273 (5) | 0.0207 (4) | 0.0103 (4) | 0.0027 (3) | 0.0001 (3) |
O2A | 0.0526 (7) | 0.0354 (6) | 0.0290 (5) | −0.0030 (5) | 0.0071 (5) | 0.0090 (4) |
O3A | 0.0755 (9) | 0.0329 (6) | 0.0510 (7) | 0.0041 (6) | −0.0062 (6) | 0.0252 (5) |
O4AA | 0.0423 (8) | 0.0202 (8) | 0.102 (2) | 0.0160 (7) | 0.0016 (12) | −0.0015 (11) |
O5AA | 0.0380 (12) | 0.0642 (18) | 0.0363 (8) | 0.0307 (12) | −0.0025 (7) | −0.0156 (9) |
O4AB | 0.0423 (8) | 0.0202 (8) | 0.102 (2) | 0.0160 (7) | 0.0016 (12) | −0.0015 (11) |
O5AB | 0.0380 (12) | 0.0642 (18) | 0.0363 (8) | 0.0307 (12) | −0.0025 (7) | −0.0156 (9) |
O6A | 0.0272 (5) | 0.0441 (6) | 0.0212 (4) | 0.0108 (4) | 0.0046 (3) | 0.0097 (4) |
O7A | 0.0551 (7) | 0.0220 (5) | 0.0306 (5) | 0.0106 (4) | 0.0009 (4) | 0.0038 (4) |
N1A | 0.0361 (7) | 0.0246 (6) | 0.0310 (6) | −0.0054 (5) | −0.0104 (5) | 0.0102 (5) |
N2A | 0.0293 (7) | 0.0380 (8) | 0.0613 (10) | 0.0194 (6) | −0.0196 (6) | −0.0268 (7) |
N3A | 0.0211 (5) | 0.0263 (5) | 0.0227 (5) | 0.0065 (4) | 0.0027 (4) | 0.0047 (4) |
C1A | 0.0157 (6) | 0.0188 (5) | 0.0193 (5) | 0.0003 (4) | −0.0028 (4) | −0.0005 (4) |
C2A | 0.0237 (6) | 0.0188 (6) | 0.0262 (6) | −0.0017 (5) | −0.0060 (5) | 0.0046 (5) |
C3A | 0.0273 (7) | 0.0151 (6) | 0.0443 (8) | 0.0029 (5) | −0.0157 (6) | 0.0011 (5) |
C4A | 0.0218 (7) | 0.0225 (6) | 0.0391 (7) | 0.0102 (5) | −0.0103 (5) | −0.0119 (5) |
C5A | 0.0166 (6) | 0.0296 (6) | 0.0233 (6) | 0.0075 (5) | −0.0028 (4) | −0.0060 (5) |
C6A | 0.0167 (6) | 0.0183 (5) | 0.0206 (5) | 0.0051 (4) | −0.0018 (4) | −0.0003 (4) |
O1B | 0.0139 (4) | 0.0227 (4) | 0.0145 (4) | 0.0038 (3) | 0.0002 (3) | 0.0038 (3) |
O2B | 0.0182 (4) | 0.0180 (4) | 0.0274 (4) | 0.0073 (3) | −0.0006 (3) | 0.0019 (3) |
O3B | 0.0179 (4) | 0.0145 (4) | 0.0164 (4) | 0.0042 (3) | 0.0014 (3) | −0.0011 (3) |
N1B | 0.0163 (5) | 0.0198 (5) | 0.0207 (5) | 0.0043 (4) | 0.0015 (4) | −0.0001 (4) |
C1B | 0.0476 (10) | 0.0365 (8) | 0.0302 (7) | 0.0140 (7) | 0.0002 (6) | 0.0141 (6) |
C2B | 0.0267 (7) | 0.0324 (7) | 0.0197 (6) | 0.0106 (5) | −0.0027 (5) | 0.0024 (5) |
C3B | 0.0154 (6) | 0.0198 (5) | 0.0214 (5) | 0.0028 (4) | −0.0035 (4) | 0.0023 (4) |
C4B | 0.0133 (5) | 0.0153 (5) | 0.0140 (5) | 0.0038 (4) | 0.0010 (4) | 0.0018 (4) |
C5B | 0.0141 (5) | 0.0168 (5) | 0.0159 (5) | 0.0040 (4) | 0.0022 (4) | −0.0019 (4) |
C6B | 0.0179 (6) | 0.0241 (6) | 0.0201 (5) | 0.0043 (4) | 0.0050 (4) | 0.0020 (4) |
C7B | 0.0189 (6) | 0.0306 (7) | 0.0296 (6) | 0.0020 (5) | 0.0104 (5) | 0.0018 (5) |
C8B | 0.0128 (6) | 0.0315 (7) | 0.0341 (7) | 0.0058 (5) | 0.0040 (5) | −0.0059 (5) |
C9B | 0.0180 (6) | 0.0293 (6) | 0.0271 (6) | 0.0110 (5) | −0.0017 (4) | −0.0027 (5) |
C10B | 0.0170 (6) | 0.0208 (5) | 0.0206 (5) | 0.0067 (4) | 0.0025 (4) | 0.0015 (4) |
C11B | 0.0133 (5) | 0.0157 (5) | 0.0155 (5) | 0.0028 (4) | −0.0005 (4) | 0.0022 (4) |
C12B | 0.0230 (6) | 0.0185 (5) | 0.0219 (6) | 0.0068 (4) | 0.0037 (4) | 0.0012 (4) |
C13B | 0.0323 (7) | 0.0151 (5) | 0.0268 (6) | 0.0055 (5) | 0.0003 (5) | 0.0006 (4) |
C14B | 0.0324 (7) | 0.0186 (6) | 0.0248 (6) | −0.0027 (5) | −0.0005 (5) | 0.0069 (5) |
C15B | 0.0230 (6) | 0.0254 (6) | 0.0203 (6) | 0.0000 (5) | 0.0043 (4) | 0.0051 (4) |
C16B | 0.0175 (6) | 0.0170 (5) | 0.0173 (5) | 0.0029 (4) | 0.0018 (4) | 0.0017 (4) |
C17B | 0.0112 (5) | 0.0142 (5) | 0.0192 (5) | 0.0008 (4) | 0.0034 (4) | 0.0018 (4) |
C18B | 0.0156 (5) | 0.0144 (5) | 0.0202 (5) | 0.0036 (4) | 0.0031 (4) | −0.0030 (4) |
C19B | 0.0185 (6) | 0.0148 (5) | 0.0239 (6) | 0.0025 (4) | 0.0002 (4) | 0.0023 (4) |
C20B | 0.0184 (6) | 0.0209 (6) | 0.0208 (5) | 0.0011 (4) | 0.0035 (4) | 0.0039 (4) |
C21B | 0.0181 (6) | 0.0378 (7) | 0.0335 (7) | 0.0093 (5) | 0.0012 (5) | 0.0008 (6) |
C22B | 0.0249 (6) | 0.0194 (5) | 0.0194 (5) | 0.0055 (5) | 0.0010 (4) | 0.0030 (4) |
C23B | 0.0228 (6) | 0.0193 (5) | 0.0175 (5) | 0.0006 (4) | 0.0062 (4) | −0.0002 (4) |
O1A—C1A | 1.2477 (14) | C4B—C17B | 1.5543 (14) |
O2A—N1A | 1.2302 (16) | C5B—C6B | 1.3901 (16) |
O3A—N1A | 1.2241 (15) | C5B—C10B | 1.3962 (15) |
O4AA—N2A | 1.190 (4) | C6B—C7B | 1.3927 (17) |
O5AA—N2A | 1.289 (4) | C6B—H6BA | 0.9500 |
O4AB—N2A | 1.632 (16) | C7B—C8B | 1.3825 (19) |
O5AB—N2A | 0.876 (12) | C7B—H7BA | 0.9500 |
O6A—N3A | 1.2295 (12) | C8B—C9B | 1.3891 (19) |
O7A—N3A | 1.2235 (13) | C8B—H8BA | 0.9500 |
N1A—C2A | 1.4580 (18) | C9B—C10B | 1.3900 (17) |
N2A—C4A | 1.4501 (18) | C9B—H9BA | 0.9500 |
N3A—C6A | 1.4601 (15) | C10B—H10A | 0.9500 |
C1A—C2A | 1.4461 (17) | C11B—C16B | 1.3869 (16) |
C1A—C6A | 1.4481 (16) | C11B—C12B | 1.4004 (15) |
C2A—C3A | 1.3817 (19) | C12B—C13B | 1.3840 (17) |
C3A—C4A | 1.382 (2) | C12B—H12A | 0.9500 |
C3A—H3AA | 0.9500 | C13B—C14B | 1.3892 (19) |
C4A—C5A | 1.3921 (19) | C13B—H13A | 0.9500 |
C5A—C6A | 1.3665 (16) | C14B—C15B | 1.3901 (18) |
C5A—H5AA | 0.9500 | C14B—H14A | 0.9500 |
O1B—C4B | 1.4243 (12) | C15B—C16B | 1.3939 (16) |
O1B—C3B | 1.4431 (14) | C15B—H15A | 0.9500 |
O2B—C17B | 1.2013 (13) | C16B—H16A | 0.9500 |
O3B—C17B | 1.3450 (12) | C18B—C23B | 1.5180 (16) |
O3B—C18B | 1.4647 (12) | C18B—C19B | 1.5217 (16) |
N1B—C21B | 1.4838 (16) | C18B—H18A | 1.0000 |
N1B—C20B | 1.4961 (14) | C19B—C20B | 1.5183 (17) |
N1B—C22B | 1.5039 (15) | C19B—H19A | 0.9900 |
N1B—H1BD | 0.9300 | C19B—H19B | 0.9900 |
C1B—C2B | 1.5126 (19) | C20B—H20A | 0.9900 |
C1B—H1BA | 0.9800 | C20B—H20B | 0.9900 |
C1B—H1BB | 0.9800 | C21B—H21A | 0.9800 |
C1B—H1BC | 0.9800 | C21B—H21B | 0.9800 |
C2B—C3B | 1.5140 (16) | C21B—H21C | 0.9800 |
C2B—H2BA | 0.9900 | C22B—C23B | 1.5175 (17) |
C2B—H2BB | 0.9900 | C22B—H22A | 0.9900 |
C3B—H3BA | 0.9900 | C22B—H22B | 0.9900 |
C3B—H3BB | 0.9900 | C23B—H23A | 0.9900 |
C4B—C11B | 1.5259 (15) | C23B—H23B | 0.9900 |
C4B—C5B | 1.5339 (15) | ||
O3A—N1A—O2A | 122.35 (13) | C7B—C6B—H6BA | 119.8 |
O3A—N1A—C2A | 118.08 (13) | C8B—C7B—C6B | 120.44 (12) |
O2A—N1A—C2A | 119.58 (11) | C8B—C7B—H7BA | 119.8 |
O5AB—N2A—O4AA | 104.2 (9) | C6B—C7B—H7BA | 119.8 |
O5AB—N2A—O5AA | 27.2 (10) | C7B—C8B—C9B | 119.64 (11) |
O4AA—N2A—O5AA | 123.4 (2) | C7B—C8B—H8BA | 120.2 |
O5AB—N2A—C4A | 133.0 (8) | C9B—C8B—H8BA | 120.2 |
O4AA—N2A—C4A | 119.5 (3) | C8B—C9B—C10B | 120.12 (11) |
O5AA—N2A—C4A | 117.02 (17) | C8B—C9B—H9BA | 119.9 |
O5AB—N2A—O4AB | 119.9 (9) | C10B—C9B—H9BA | 119.9 |
O4AA—N2A—O4AB | 15.8 (6) | C9B—C10B—C5B | 120.47 (11) |
O5AA—N2A—O4AB | 138.1 (5) | C9B—C10B—H10A | 119.8 |
C4A—N2A—O4AB | 104.3 (6) | C5B—C10B—H10A | 119.8 |
O7A—N3A—O6A | 123.43 (10) | C16B—C11B—C12B | 118.87 (10) |
O7A—N3A—C6A | 118.42 (10) | C16B—C11B—C4B | 122.62 (9) |
O6A—N3A—C6A | 118.10 (10) | C12B—C11B—C4B | 118.27 (10) |
O1A—C1A—C2A | 125.93 (11) | C13B—C12B—C11B | 120.43 (11) |
O1A—C1A—C6A | 122.04 (10) | C13B—C12B—H12A | 119.8 |
C2A—C1A—C6A | 111.94 (10) | C11B—C12B—H12A | 119.8 |
C3A—C2A—C1A | 123.20 (12) | C12B—C13B—C14B | 120.32 (11) |
C3A—C2A—N1A | 117.22 (11) | C12B—C13B—H13A | 119.8 |
C1A—C2A—N1A | 119.56 (12) | C14B—C13B—H13A | 119.8 |
C2A—C3A—C4A | 120.02 (12) | C13B—C14B—C15B | 119.78 (11) |
C2A—C3A—H3AA | 120.0 | C13B—C14B—H14A | 120.1 |
C4A—C3A—H3AA | 120.0 | C15B—C14B—H14A | 120.1 |
C3A—C4A—C5A | 121.07 (12) | C14B—C15B—C16B | 119.72 (11) |
C3A—C4A—N2A | 120.50 (13) | C14B—C15B—H15A | 120.1 |
C5A—C4A—N2A | 118.39 (14) | C16B—C15B—H15A | 120.1 |
C6A—C5A—C4A | 118.15 (12) | C11B—C16B—C15B | 120.87 (10) |
C6A—C5A—H5AA | 120.9 | C11B—C16B—H16A | 119.6 |
C4A—C5A—H5AA | 120.9 | C15B—C16B—H16A | 119.6 |
C5A—C6A—C1A | 125.55 (11) | O2B—C17B—O3B | 124.27 (10) |
C5A—C6A—N3A | 116.38 (11) | O2B—C17B—C4B | 125.00 (10) |
C1A—C6A—N3A | 118.07 (10) | O3B—C17B—C4B | 110.66 (8) |
C4B—O1B—C3B | 116.70 (8) | O3B—C18B—C23B | 105.04 (8) |
C17B—O3B—C18B | 117.48 (8) | O3B—C18B—C19B | 110.30 (9) |
C21B—N1B—C20B | 111.66 (9) | C23B—C18B—C19B | 110.25 (9) |
C21B—N1B—C22B | 111.21 (9) | O3B—C18B—H18A | 110.4 |
C20B—N1B—C22B | 110.85 (9) | C23B—C18B—H18A | 110.4 |
C21B—N1B—H1BD | 107.6 | C19B—C18B—H18A | 110.4 |
C20B—N1B—H1BD | 107.6 | C20B—C19B—C18B | 112.27 (9) |
C22B—N1B—H1BD | 107.6 | C20B—C19B—H19A | 109.1 |
C2B—C1B—H1BA | 109.5 | C18B—C19B—H19A | 109.1 |
C2B—C1B—H1BB | 109.5 | C20B—C19B—H19B | 109.1 |
H1BA—C1B—H1BB | 109.5 | C18B—C19B—H19B | 109.1 |
C2B—C1B—H1BC | 109.5 | H19A—C19B—H19B | 107.9 |
H1BA—C1B—H1BC | 109.5 | N1B—C20B—C19B | 110.68 (9) |
H1BB—C1B—H1BC | 109.5 | N1B—C20B—H20A | 109.5 |
C1B—C2B—C3B | 113.52 (10) | C19B—C20B—H20A | 109.5 |
C1B—C2B—H2BA | 108.9 | N1B—C20B—H20B | 109.5 |
C3B—C2B—H2BA | 108.9 | C19B—C20B—H20B | 109.5 |
C1B—C2B—H2BB | 108.9 | H20A—C20B—H20B | 108.1 |
C3B—C2B—H2BB | 108.9 | N1B—C21B—H21A | 109.5 |
H2BA—C2B—H2BB | 107.7 | N1B—C21B—H21B | 109.5 |
O1B—C3B—C2B | 107.54 (10) | H21A—C21B—H21B | 109.5 |
O1B—C3B—H3BA | 110.2 | N1B—C21B—H21C | 109.5 |
C2B—C3B—H3BA | 110.2 | H21A—C21B—H21C | 109.5 |
O1B—C3B—H3BB | 110.2 | H21B—C21B—H21C | 109.5 |
C2B—C3B—H3BB | 110.2 | N1B—C22B—C23B | 110.62 (9) |
H3BA—C3B—H3BB | 108.5 | N1B—C22B—H22A | 109.5 |
O1B—C4B—C11B | 110.90 (8) | C23B—C22B—H22A | 109.5 |
O1B—C4B—C5B | 106.28 (8) | N1B—C22B—H22B | 109.5 |
C11B—C4B—C5B | 113.50 (8) | C23B—C22B—H22B | 109.5 |
O1B—C4B—C17B | 108.42 (8) | H22A—C22B—H22B | 108.1 |
C11B—C4B—C17B | 112.01 (9) | C22B—C23B—C18B | 112.20 (9) |
C5B—C4B—C17B | 105.37 (8) | C22B—C23B—H23A | 109.2 |
C6B—C5B—C10B | 119.00 (10) | C18B—C23B—H23A | 109.2 |
C6B—C5B—C4B | 119.43 (10) | C22B—C23B—H23B | 109.2 |
C10B—C5B—C4B | 121.29 (10) | C18B—C23B—H23B | 109.2 |
C5B—C6B—C7B | 120.33 (11) | H23A—C23B—H23B | 107.9 |
C5B—C6B—H6BA | 119.8 | ||
O1A—C1A—C2A—C3A | 174.36 (11) | C10B—C5B—C6B—C7B | −0.18 (16) |
C6A—C1A—C2A—C3A | −2.28 (16) | C4B—C5B—C6B—C7B | −174.30 (10) |
O1A—C1A—C2A—N1A | −4.32 (18) | C5B—C6B—C7B—C8B | 0.50 (18) |
C6A—C1A—C2A—N1A | 179.04 (10) | C6B—C7B—C8B—C9B | −0.40 (18) |
O3A—N1A—C2A—C3A | −15.05 (17) | C7B—C8B—C9B—C10B | −0.01 (18) |
O2A—N1A—C2A—C3A | 165.15 (12) | C8B—C9B—C10B—C5B | 0.32 (17) |
O3A—N1A—C2A—C1A | 163.71 (12) | C6B—C5B—C10B—C9B | −0.22 (16) |
O2A—N1A—C2A—C1A | −16.09 (17) | C4B—C5B—C10B—C9B | 173.79 (10) |
C1A—C2A—C3A—C4A | 2.68 (19) | O1B—C4B—C11B—C16B | 107.93 (11) |
N1A—C2A—C3A—C4A | −178.61 (11) | C5B—C4B—C11B—C16B | −132.52 (10) |
C2A—C3A—C4A—C5A | −2.15 (19) | C17B—C4B—C11B—C16B | −13.34 (13) |
C2A—C3A—C4A—N2A | 175.61 (11) | O1B—C4B—C11B—C12B | −66.41 (12) |
O5AB—N2A—C4A—C3A | 163.1 (14) | C5B—C4B—C11B—C12B | 53.14 (12) |
O4AA—N2A—C4A—C3A | 7.5 (2) | C17B—C4B—C11B—C12B | 172.32 (9) |
O5AA—N2A—C4A—C3A | −169.72 (17) | C16B—C11B—C12B—C13B | 0.58 (16) |
O4AB—N2A—C4A—C3A | 3.0 (6) | C4B—C11B—C12B—C13B | 175.13 (10) |
O5AB—N2A—C4A—C5A | −19.1 (15) | C11B—C12B—C13B—C14B | −0.33 (18) |
O4AA—N2A—C4A—C5A | −174.66 (18) | C12B—C13B—C14B—C15B | −0.23 (18) |
O5AA—N2A—C4A—C5A | 8.1 (2) | C13B—C14B—C15B—C16B | 0.52 (18) |
O4AB—N2A—C4A—C5A | −179.2 (5) | C12B—C11B—C16B—C15B | −0.28 (16) |
C3A—C4A—C5A—C6A | 1.44 (18) | C4B—C11B—C16B—C15B | −174.59 (10) |
N2A—C4A—C5A—C6A | −176.37 (11) | C14B—C15B—C16B—C11B | −0.26 (17) |
C4A—C5A—C6A—C1A | −1.26 (18) | C18B—O3B—C17B—O2B | 8.72 (16) |
C4A—C5A—C6A—N3A | 178.35 (11) | C18B—O3B—C17B—C4B | −168.41 (9) |
O1A—C1A—C6A—C5A | −175.18 (11) | O1B—C4B—C17B—O2B | −11.26 (15) |
C2A—C1A—C6A—C5A | 1.61 (16) | C11B—C4B—C17B—O2B | 111.44 (12) |
O1A—C1A—C6A—N3A | 5.21 (16) | C5B—C4B—C17B—O2B | −124.70 (11) |
C2A—C1A—C6A—N3A | −178.00 (10) | O1B—C4B—C17B—O3B | 165.86 (8) |
O7A—N3A—C6A—C5A | −140.18 (12) | C11B—C4B—C17B—O3B | −71.45 (11) |
O6A—N3A—C6A—C5A | 37.65 (15) | C5B—C4B—C17B—O3B | 52.41 (11) |
O7A—N3A—C6A—C1A | 39.47 (16) | C17B—O3B—C18B—C23B | −172.99 (9) |
O6A—N3A—C6A—C1A | −142.70 (11) | C17B—O3B—C18B—C19B | 68.22 (12) |
C4B—O1B—C3B—C2B | −161.04 (9) | O3B—C18B—C19B—C20B | 62.58 (12) |
C1B—C2B—C3B—O1B | 63.23 (14) | C23B—C18B—C19B—C20B | −52.98 (12) |
C3B—O1B—C4B—C11B | −45.26 (11) | C21B—N1B—C20B—C19B | 177.60 (9) |
C3B—O1B—C4B—C5B | −169.05 (8) | C22B—N1B—C20B—C19B | −57.80 (12) |
C3B—O1B—C4B—C17B | 78.11 (11) | C18B—C19B—C20B—N1B | 55.83 (12) |
O1B—C4B—C5B—C6B | −30.91 (13) | C21B—N1B—C22B—C23B | −177.23 (9) |
C11B—C4B—C5B—C6B | −153.07 (10) | C20B—N1B—C22B—C23B | 57.92 (12) |
C17B—C4B—C5B—C6B | 84.02 (11) | N1B—C22B—C23B—C18B | −55.98 (12) |
O1B—C4B—C5B—C10B | 155.10 (9) | O3B—C18B—C23B—C22B | −65.73 (11) |
C11B—C4B—C5B—C10B | 32.95 (13) | C19B—C18B—C23B—C22B | 53.09 (12) |
C17B—C4B—C5B—C10B | −89.96 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1B—H1BD···O1A | 0.93 | 1.81 | 2.6276 (12) | 145 |
N1B—H1BD···O2A | 0.93 | 2.33 | 3.0537 (15) | 135 |
C20B—H20B···Cg2 | 0.99 | 2.77 | 3.7553 (13) | 173 |
Experimental details
Crystal data | |
Chemical formula | C23H30NO3+·C6H2N3O7− |
Mr | 596.59 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 110 |
a, b, c (Å) | 8.9379 (4), 9.2885 (4), 18.0750 (7) |
α, β, γ (°) | 97.652 (3), 97.630 (3), 104.301 (4) |
V (Å3) | 1419.54 (10) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.55 × 0.35 × 0.27 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.910, 0.972 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18429, 9328, 6353 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.760 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.126, 1.03 |
No. of reflections | 9328 |
No. of parameters | 397 |
No. of restraints | 24 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.31 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1B—H1BD···O1A | 0.93 | 1.81 | 2.6276 (12) | 144.6 |
N1B—H1BD···O2A | 0.93 | 2.33 | 3.0537 (15) | 134.5 |
C20B—H20B···Cg2 | 0.99 | 2.77 | 3.7553 (13) | 173 |
Acknowledgements
QNMHA thanks the University of Mysore for use of its research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.
References
Becke, A. D. (1988). Phys. Rev. A, 38, 3098–100. CrossRef CAS PubMed Web of Science Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652. CrossRef CAS Web of Science Google Scholar
Bindya, S., Wong, W.-T., Ashok, M. A., Yathirajan, H. S. & Rathore, R. S. (2007). Acta Cryst. C63, o546–o548. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Chapple, C. R., Khullar, V., Gabriel, Z., Muston, D., Bitoun, C. E. & Weinstein, D. (2008). Eur. Urol. 54, 543–562. Web of Science CrossRef PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Harrison, W. T. A., Bindya, S., Ashok, M. A., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3143. Web of Science CSD CrossRef IUCr Journals Google Scholar
Harrison, W. T. A., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3871. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hehre, W. J., Radom, L., Schleyer, P.vR. & Pople, J. A. (1986). Ab Initio Molecular Orbital Theory. New York: Wiley. Google Scholar
Jünemann, K.-P., Hessdörfer, E., Unamba-Oparah, I., Berse, M., Brünjes, R., Madersbacher, H. & Gramatté, T. (2006). Urol. Int. 77, 334–339. Web of Science PubMed Google Scholar
Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. CrossRef CAS Web of Science Google Scholar
Madersbacher, H. & Gramatté, T. (2006). Urol. Int. 77, 334–339. Web of Science PubMed Google Scholar
Matsushima, S., Inada, H. & Asai, T. (1997). Eur. J. Pharmacol. 333, 93–94. CrossRef CAS PubMed Web of Science Google Scholar
Noguchi, K. & Masuda, M. (1998). Hinyokika Kiyo, 44, 687–689. CAS PubMed Google Scholar
Okada, H. & Sengodu, J. (1998). Hinyokika Kiyo, 44, 65–66. CAS PubMed Google Scholar
Oxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England. Google Scholar
Rong, X., Meng-Kwoon, S. & Mei-lin, G. (1999). Eur. J. Pharm. Sci. 8, 39–47. Web of Science CrossRef PubMed Google Scholar
Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA, http://www.webmo.net. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Swamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o4919. Web of Science CSD CrossRef IUCr Journals Google Scholar
Szumma, A., Jurczak, J. & Urbańczyk-Lipkowska, Z. (2000). J. Mol. Struct. 526, 165–175. Web of Science CSD CrossRef Google Scholar
Yathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007). Acta Cryst. E63, o1691–o1692. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound,C29H32N4O10, crystallizes as a salt with one cation–anion (propiverinium picrate) pair [C23H30O3N+.C6H2N3O7-] in the asymmetric unit. Propiverine hydrochloride, [chemical name: (1-methylpiperidin-4-yl) 2,2-diphenyl-2-propoxyacetate hydrochloride], originally developed by Schering-Plough (Okada & Sengodu, 1998; Noguchi & Masuda, 1998), is widely used in the treatment of urinary incontinence (Matsushima et al. 1997; Rong et al. 1999). Propiverine is an anticholinergic drug used for the treatment of urinary urgency, frequency and urge incontinence, all symptoms of overactive bladder syndrome. A modified release preparation is also available, taken once daily. Propiverine, a benzylic acid derivative, has been used as a urospasmolytic since 1981. It is unique in having both anticholinergic and calcium channel blocking effects. The former effects are known to suppress neurogenic detrusor contraction while the latter have a direct spasmolytic effect on the bladder. Experiments on isolated human urinary bladder strips using acetylcholine, calcium and potassium chloride and electrical fields as stimuli for contraction (Jünemann et al. 2006), have shown that both propiverine and tolterodine have a greater maximum inhibitory effect on bladder contraction than either atropine or oxybutynin. In the case of propiverine, calcium channel blocking effects are believed to contribute to its enhanced spasmolytic action on bladder smooth muscle (Chapple et al. 2008; Madersbacher & Gramatté, 2006). The crystal structures of amitriptylinium picrate (Bindya et al. 2007), mepazinium picrate (Yathirajan et al. 2007), imipraminium picrate (Harrison, Bindya et al. 2007), nevirapinium picrate (Harrison, Sreevidya et al. 2007) and desipraminium picrate (Swamy et al. 2007) have been reported. In continuation of our work on the picrate salts of compounds of pharmaceutical importance, this paper reports a crystal structure of the title compound, (I), C23H30O3N+.C6H2N3O7-, a molecular salt arising from the reaction of propiverine and picric acid.
The title compound,C29H32N4O10, crystallizes as a salt with two cation (propiverinium)-anion (picrate) pairs [C23H30O3N+.C6H2N3O7-] in the asymmetric unit cell. The propiverinium cation contains two benzyl rings whose dihedral planes are separated by 72.5 (8)° and a 6-membered piperidine group which adopts a slightly distorted chair conformation (Cremer & Pople, 1975) with puckering parameters Q, θ and ϕ of 0.564 (4) Å, 177.0 (6)° and 177.084 (5)°, respectively (Fig. 1). For an ideal chair θ has a value of 0 or 180°. The dihedral angles between the mean planes of each of these benzyl rings and the mean plane of the piperidine group are 0.5 (6)° and 72.8 (8)°, respectively. The piperidine group and two benzyl rings are connected by an acetate group whose mean plane makes an angle of 83.8 (8)°, 78.5 (5)° and 84.3 (1)°, with the mean planes of the piperidine group and two benzyl rings, respectively. In the picrate anion, the mean plane of two o-NO2 groups are twisted by 15.6 (6)° and 38.5 (1)° with respect to the mean plane of the 6-membered benzyl ring (Fig. 2). The two oxygen atoms in the p-NO2 group are disordered with the major components [O(4 A A) (0.825 (10)) and O5AA (0.825 (10))] making a dihedral angle of 8.9 (7)° with the mean plane of the benzyl ring. The difference in the twist angles of the mean planes of the two o-NO2 groups can be attributed to an intermolecular hydrogen bonded interaction between the piperidine group of the propiverinium cation with one of these groups, O2A—N1A—O3A, on the picrate anion, in which the O2A atom forms an intermolecular "side" hydrogen bond [N1B—H1BD···O2A] with N1B from the piperidine group (Fig. 3, Table 1). N1B also forms an intermolecular hydrogen bond with the phenolate oxygen anion, O1A, making it a two-centered hydrogen bond. This observation, when NO2 groups in picrate related salts form "side" hydrogen bonds resulting in a torsion angle increase of several degrees, is also seen in other similar picrate-related salts (Szumma et al. 2000). The difference in angles between the mean planes of the o-O2A—N2A—O3A and o-O6A—N6—O7A groups in (I) with that of the phenolate group of the picrate anion is 22.8 (5)°, a direct result of the observed N1B—H1B···O2A hydrogen bond. Crystal packing is also influenced by π-ring C—H···Cg intermolecular interactions with the piperidine group [C20B—H6A···Cg2: H···Cg = 2.89 Å; X—H···Cg = 173°; X···Cg = 3.7553 Å; x, y, z, where Cg2 = C5B/C6B/C7B/C8B/C9B/C10B] in the unit cell (Fig. 4).
A density functional theory (DFT) geometry optimization molecular orbital calculation (Schmidt & Polik, 2007) was performed on the C23H30O3N+, C6H2N3O7- cation-anion pair of the title molecule, (I), with the GAUSSIAN03 program package (Frisch et al. 2004) employing the B3-LYP (Becke three parameter Lee-Yang-Parr) exchange correlation functional, which combines the hybrid exchange functional of Becke (Becke, 1988, 1993) with the gradient-correlation functional of Lee, Yang and Parr (Lee et al. 1988) and the 3–21 G basis set (Hehre et al., 1986). Starting geometries were taken from X-ray refinement data. The angle between the dihedral planes of the two benzyl rings in the propiverinium cation becomes 86.9 (8)°, an increase of 14.4 (0)° from that of the crystalline environment. The dihedral angles between the mean planes of each of the benzyl rings and the mean plane of the piperidine group become 2.6 (4)° and 85.2 (3)°, an increase of 2.0 (8)° and 12.3 (5)°, respectively. The angles between the mean plane of the acetate group and the mean planes of the piperidine group and two benzyl rings become 83.6 (7)° and 61.0 (9)°, 81.09°, respectively, only slightly changed from that in the crystal. A comparison of the mean planes of the phenolate group in the anion to the mean planes of the piperidine and benzyl rings in the propiverinium cation also show similar changes between the crystal and the DFT theoretical calculation [i.e. Phenolate-piperidine = 61.2 (1)°, crystal, versus 83.9 (0)° DFT; Phenolate-Benzyl = 61.2 (3)°, 33.9 (7)°, crystal versus 83.3 (4)°, 31.1 (1)°, DFT].
In conclusion, the significant number of conformational changes that are observed between the crystalline environment of this cation (propiverinium)-anion (picrate) salt and that of a density functional theory calculation of the geometry optimized structure support the effects of intermolecular hydrogen bonding interactions and π-ring C—H···Cg intermolecular interactions with the piperidine group as providing the major influence on packing effects in the crystalline environment of the title compound, propiverinium picrate,C23H30O3N+.C6H2N3O7-.