organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1738-o1739

Propiverinium picrate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 11 June 2009; accepted 15 June 2009; online 1 July 2009)

The title compound [systematic name: 4-(2,2-diphenyl-2-prop­oxyacet­oxy)-1-methyl­piperidin-1-ium picrate], C23H30NO3+·C6H2N3O7, crystallizes as a salt with one cation–anion (propiverinium picrate) pair in the asymmetric unit. A significant number of conformational changes are observed between the crystalline environment of this cation–anion salt and that of a density functional theory (DFT) calculation of the geometry-optimized structure. The angle between the dihedral planes of the two benzyl rings in the propiverinium cation increases by 14.4 (0)° from that of the crystalline environment. The dihedral angles between the mean planes of each of the benzyl rings and the mean plane of the piperidine increase by 2.0 (8) and 12.3 (5)°. The angles between the mean plane of the acetate group and the mean planes of the inter­connected piperidine group and the two benzyl rings decrease by 0.2 (1), 7.4 (6) and 3.2 (2)°, respectively. The mean plane of the phenolate group in the anion changes by +22.6 (9), +22.1 (1) and −2.8 (6)° from the mean planes of the piperidine and benzyl rings in the cation, respectively. In the crystal, a bifurcated N—H⋯(O,O) hydrogen bond and a weak C—H⋯π ring inter­action help to establish the packing. The two O atoms of the p-NO2 group are disordered with occupancies 0.825 (10):0.175 (10).

Related literature

For related structures, see: Bindya et al. (2007[Bindya, S., Wong, W.-T., Ashok, M. A., Yathirajan, H. S. & Rathore, R. S. (2007). Acta Cryst. C63, o546-o548.]); Harrison, Bindya et al. (2007[Harrison, W. T. A., Bindya, S., Ashok, M. A., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3143.]); Harrison, Sreevidya et al. (2007[Harrison, W. T. A., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3871.]); Swamy et al. (2007[Swamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o4919.]) Yathirajan et al. (2007[Yathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007). Acta Cryst. E63, o1691-o1692.]). For background, see: Chapple et al. (2008[Chapple, C. R., Khullar, V., Gabriel, Z., Muston, D., Bitoun, C. E. & Weinstein, D. (2008). Eur. Urol. 54, 543-562.]); Jünemann et al. (2006[Jünemann, K.-P., Hessdörfer, E., Unamba-Oparah, I., Berse, M., Brünjes, R., Madersbacher, H. & Gramatté, T. (2006). Urol. Int. 77, 334-339.]); Madersbacher & Gramatté, (2006[Madersbacher, H. & Gramatté, T. (2006). Urol. Int. 77, 334-339.]); Matsushima et al. (1997[Matsushima, S., Inada, H. & Asai, T. (1997). Eur. J. Pharmacol. 333, 93-94.]); Noguchi & Masuda, (1998[Noguchi, K. & Masuda, M. (1998). Hinyokika Kiyo, 44, 687-689.]); Okada & Sengodu, (1998[Okada, H. & Sengodu, J. (1998). Hinyokika Kiyo, 44, 65-66.]); Rong et al. (1999[Rong, X., Meng-Kwoon, S. & Mei-lin, G. (1999). Eur. J. Pharm. Sci. 8, 39-47.]). For density functional theory (DFT), see: Becke (1988[Becke, A. D. (1988). Phys. Rev. A, 38, 3098-100.], 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]); Frisch et al. (2004[Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.]); Hehre et al. (1986[Hehre, W. J., Radom, L., Schleyer, P.vR. & Pople, J. A. (1986). Ab Initio Molecular Orbital Theory. New York: Wiley.]); Lee et al. (1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]); Schmidt & Polik (2007[Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA, http://www.webmo.net.]); Szumma et al. (2000[Szumma, A., Jurczak, J. & Urbańczyk-Lipkowska, Z. (2000). J. Mol. Struct. 526, 165-175.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H30NO3+·C6H2N3O7

  • Mr = 596.59

  • Triclinic, [P \overline 1]

  • a = 8.9379 (4) Å

  • b = 9.2885 (4) Å

  • c = 18.0750 (7) Å

  • α = 97.652 (3)°

  • β = 97.630 (3)°

  • γ = 104.301 (4)°

  • V = 1419.54 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 110 K

  • 0.55 × 0.35 × 0.27 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.]) Tmin = 0.910, Tmax = 0.972

  • 18429 measured reflections

  • 9328 independent reflections

  • 6353 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.126

  • S = 1.03

  • 9328 reflections

  • 397 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1BD⋯O1A 0.93 1.81 2.6276 (12) 145
N1B—H1BD⋯O2A 0.93 2.33 3.0537 (15) 135
C20B—H20BCg2 0.99 2.77 3.7553 (13) 173
Cg2 is the centroid of the C5B–C10B ring.

Data collection: CrysAlisPro (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound,C29H32N4O10, crystallizes as a salt with one cation–anion (propiverinium picrate) pair [C23H30O3N+.C6H2N3O7-] in the asymmetric unit. Propiverine hydrochloride, [chemical name: (1-methylpiperidin-4-yl) 2,2-diphenyl-2-propoxyacetate hydrochloride], originally developed by Schering-Plough (Okada & Sengodu, 1998; Noguchi & Masuda, 1998), is widely used in the treatment of urinary incontinence (Matsushima et al. 1997; Rong et al. 1999). Propiverine is an anticholinergic drug used for the treatment of urinary urgency, frequency and urge incontinence, all symptoms of overactive bladder syndrome. A modified release preparation is also available, taken once daily. Propiverine, a benzylic acid derivative, has been used as a urospasmolytic since 1981. It is unique in having both anticholinergic and calcium channel blocking effects. The former effects are known to suppress neurogenic detrusor contraction while the latter have a direct spasmolytic effect on the bladder. Experiments on isolated human urinary bladder strips using acetylcholine, calcium and potassium chloride and electrical fields as stimuli for contraction (Jünemann et al. 2006), have shown that both propiverine and tolterodine have a greater maximum inhibitory effect on bladder contraction than either atropine or oxybutynin. In the case of propiverine, calcium channel blocking effects are believed to contribute to its enhanced spasmolytic action on bladder smooth muscle (Chapple et al. 2008; Madersbacher & Gramatté, 2006). The crystal structures of amitriptylinium picrate (Bindya et al. 2007), mepazinium picrate (Yathirajan et al. 2007), imipraminium picrate (Harrison, Bindya et al. 2007), nevirapinium picrate (Harrison, Sreevidya et al. 2007) and desipraminium picrate (Swamy et al. 2007) have been reported. In continuation of our work on the picrate salts of compounds of pharmaceutical importance, this paper reports a crystal structure of the title compound, (I), C23H30O3N+.C6H2N3O7-, a molecular salt arising from the reaction of propiverine and picric acid.

The title compound,C29H32N4O10, crystallizes as a salt with two cation (propiverinium)-anion (picrate) pairs [C23H30O3N+.C6H2N3O7-] in the asymmetric unit cell. The propiverinium cation contains two benzyl rings whose dihedral planes are separated by 72.5 (8)° and a 6-membered piperidine group which adopts a slightly distorted chair conformation (Cremer & Pople, 1975) with puckering parameters Q, θ and ϕ of 0.564 (4) Å, 177.0 (6)° and 177.084 (5)°, respectively (Fig. 1). For an ideal chair θ has a value of 0 or 180°. The dihedral angles between the mean planes of each of these benzyl rings and the mean plane of the piperidine group are 0.5 (6)° and 72.8 (8)°, respectively. The piperidine group and two benzyl rings are connected by an acetate group whose mean plane makes an angle of 83.8 (8)°, 78.5 (5)° and 84.3 (1)°, with the mean planes of the piperidine group and two benzyl rings, respectively. In the picrate anion, the mean plane of two o-NO2 groups are twisted by 15.6 (6)° and 38.5 (1)° with respect to the mean plane of the 6-membered benzyl ring (Fig. 2). The two oxygen atoms in the p-NO2 group are disordered with the major components [O(4 A A) (0.825 (10)) and O5AA (0.825 (10))] making a dihedral angle of 8.9 (7)° with the mean plane of the benzyl ring. The difference in the twist angles of the mean planes of the two o-NO2 groups can be attributed to an intermolecular hydrogen bonded interaction between the piperidine group of the propiverinium cation with one of these groups, O2A—N1A—O3A, on the picrate anion, in which the O2A atom forms an intermolecular "side" hydrogen bond [N1B—H1BD···O2A] with N1B from the piperidine group (Fig. 3, Table 1). N1B also forms an intermolecular hydrogen bond with the phenolate oxygen anion, O1A, making it a two-centered hydrogen bond. This observation, when NO2 groups in picrate related salts form "side" hydrogen bonds resulting in a torsion angle increase of several degrees, is also seen in other similar picrate-related salts (Szumma et al. 2000). The difference in angles between the mean planes of the o-O2A—N2A—O3A and o-O6A—N6—O7A groups in (I) with that of the phenolate group of the picrate anion is 22.8 (5)°, a direct result of the observed N1B—H1B···O2A hydrogen bond. Crystal packing is also influenced by π-ring C—H···Cg intermolecular interactions with the piperidine group [C20B—H6A···Cg2: H···Cg = 2.89 Å; X—H···Cg = 173°; X···Cg = 3.7553 Å; x, y, z, where Cg2 = C5B/C6B/C7B/C8B/C9B/C10B] in the unit cell (Fig. 4).

A density functional theory (DFT) geometry optimization molecular orbital calculation (Schmidt & Polik, 2007) was performed on the C23H30O3N+, C6H2N3O7- cation-anion pair of the title molecule, (I), with the GAUSSIAN03 program package (Frisch et al. 2004) employing the B3-LYP (Becke three parameter Lee-Yang-Parr) exchange correlation functional, which combines the hybrid exchange functional of Becke (Becke, 1988, 1993) with the gradient-correlation functional of Lee, Yang and Parr (Lee et al. 1988) and the 3–21 G basis set (Hehre et al., 1986). Starting geometries were taken from X-ray refinement data. The angle between the dihedral planes of the two benzyl rings in the propiverinium cation becomes 86.9 (8)°, an increase of 14.4 (0)° from that of the crystalline environment. The dihedral angles between the mean planes of each of the benzyl rings and the mean plane of the piperidine group become 2.6 (4)° and 85.2 (3)°, an increase of 2.0 (8)° and 12.3 (5)°, respectively. The angles between the mean plane of the acetate group and the mean planes of the piperidine group and two benzyl rings become 83.6 (7)° and 61.0 (9)°, 81.09°, respectively, only slightly changed from that in the crystal. A comparison of the mean planes of the phenolate group in the anion to the mean planes of the piperidine and benzyl rings in the propiverinium cation also show similar changes between the crystal and the DFT theoretical calculation [i.e. Phenolate-piperidine = 61.2 (1)°, crystal, versus 83.9 (0)° DFT; Phenolate-Benzyl = 61.2 (3)°, 33.9 (7)°, crystal versus 83.3 (4)°, 31.1 (1)°, DFT].

In conclusion, the significant number of conformational changes that are observed between the crystalline environment of this cation (propiverinium)-anion (picrate) salt and that of a density functional theory calculation of the geometry optimized structure support the effects of intermolecular hydrogen bonding interactions and π-ring C—H···Cg intermolecular interactions with the piperidine group as providing the major influence on packing effects in the crystalline environment of the title compound, propiverinium picrate,C23H30O3N+.C6H2N3O7-.

Related literature top

For related structures, see: Bindya et al. (2007); Harrison, Bindya et al. (2007); Harrison, Sreevidya et al. (2007); Swamy et al. (2007) Yathirajan et al. (2007). For background, see: Chapple et al. (2008); Jünemann et al. (2006); Madersbacher & Gramatté, (2006); Matsushima et al. (1997); Noguchi & Masuda, (1998); Okada & Sengodu, (1998); Rong et al. (1999). For density functional theory (DFT) , see: Becke (1988, 1993); Frisch et al. (2004); Hehre et al. (1986); Lee et al. (1988); Schmidt & Polik (2007); Szumma et al. (2000). For puckering parameters, see: Cremer & Pople (1975).Cg2 is the centroid of the C5B–C10B ring.

Experimental top

Propiverine hydrochloride (4.1 g, 0.01 mol) in 25 ml of methanol and picric acid (4.8 g, 0.01 mol) in 25 ml of methanol were mixed and stirred in a beaker at 318 K for two hours. The mixture was kept aside for 3 days at room temperature. The separated bright yellow salt was filtered, washed thoroughly with chloroform and dried in vacuum desiccator over phosphorous pentoxide. The salt was recrystallized from acetonitrile [m.p: 403–406 K]) by slow evaporation.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with N—H = 0.93, C—H = 0.95–0.99 Å, and with Uiso(H) = 1.172–1.49Ueq(C,N).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the C23H30O3N+ cation showing atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular structure of the C6H2N3O7- anion showing atom labeling scheme and 50% probability displacement ellipsoids. Both components of the disordered nitro group are displayed [O4AA(0.825 (10))-N2A—O5AA(0.825 (10)) & O4AB(0.175 (10))-N2A—O5AB (0.175 (10))].
[Figure 3] Fig. 3. Molecular structure of the C23H30O3N+, C6H2N3O7- cation-anion pair showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate N1B—H1BD···O1A and N1B—H1BD···O1B hydrogen bond interactions. Only the predominate nitro oxygen atoms are displayed for the disordered nitro group [O4AA(0.825 (10))-N2A—O5AA(0.825 (10))].
[Figure 4] Fig. 4. Packing diagram of the title compound, (I), viewed down the a axis. Dashed lines indicate intermolecular N1B—H1BD···O1A & N1B—H1BD···O2A hydrogen bond interactions which produces a network of infinite O—H···O—H···O—H chains arranged along the (011) plane of the unit cell.
4-(2,2-Diphenyl-2-propoxyacetoxy)-1-methylpiperidin-1-ium picrate top
Crystal data top
C23H30NO3+·C6H2N3O7Z = 2
Mr = 596.59F(000) = 628
Triclinic, P1Dx = 1.396 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9379 (4) ÅCell parameters from 8020 reflections
b = 9.2885 (4) Åθ = 4.7–32.6°
c = 18.0750 (7) ŵ = 0.11 mm1
α = 97.652 (3)°T = 110 K
β = 97.630 (3)°Prism, pale yellow
γ = 104.301 (4)°0.55 × 0.35 × 0.27 mm
V = 1419.54 (10) Å3
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
9328 independent reflections
Radiation source: fine-focus sealed tube6353 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10.5081 pixels mm-1θmax = 32.7°, θmin = 4.8°
ϕ and ω scansh = 1012
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1214
Tmin = 0.910, Tmax = 0.972l = 2526
18429 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0682P)2]
where P = (Fo2 + 2Fc2)/3
9328 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 0.39 e Å3
24 restraintsΔρmin = 0.31 e Å3
Crystal data top
C23H30NO3+·C6H2N3O7γ = 104.301 (4)°
Mr = 596.59V = 1419.54 (10) Å3
Triclinic, P1Z = 2
a = 8.9379 (4) ÅMo Kα radiation
b = 9.2885 (4) ŵ = 0.11 mm1
c = 18.0750 (7) ÅT = 110 K
α = 97.652 (3)°0.55 × 0.35 × 0.27 mm
β = 97.630 (3)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
9328 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
6353 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.972Rint = 0.022
18429 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04624 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.03Δρmax = 0.39 e Å3
9328 reflectionsΔρmin = 0.31 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.10752 (10)0.23733 (10)0.53343 (5)0.02465 (19)
O2A0.12422 (13)0.08237 (12)0.64704 (6)0.0414 (3)
O3A0.14903 (16)0.14166 (12)0.61794 (7)0.0549 (3)
O4AA0.4251 (3)0.2570 (3)0.4160 (2)0.0556 (8)0.825 (10)
O5AA0.4834 (4)0.0983 (5)0.33859 (12)0.0463 (8)0.825 (10)
O4AB0.4136 (17)0.2763 (15)0.4447 (10)0.0556 (8)0.175 (10)
O5AB0.4388 (16)0.1576 (18)0.3475 (7)0.0463 (8)0.175 (10)
O6A0.19712 (11)0.28535 (11)0.33215 (5)0.0302 (2)
O7A0.24781 (13)0.42205 (10)0.44357 (5)0.0365 (2)
N1A0.15738 (14)0.01478 (13)0.60401 (7)0.0341 (3)
N2A0.41627 (16)0.14450 (15)0.39320 (9)0.0470 (4)
N3A0.22611 (12)0.30132 (12)0.40164 (6)0.0234 (2)
C1A0.18060 (13)0.15168 (13)0.50522 (6)0.0197 (2)
C2A0.20815 (15)0.02039 (13)0.53354 (7)0.0251 (3)
C3A0.27856 (16)0.07744 (14)0.49621 (8)0.0318 (3)
H3AA0.29000.16450.51610.038*
C4A0.33233 (15)0.04861 (14)0.42997 (8)0.0301 (3)
C5A0.31226 (14)0.07552 (14)0.39838 (7)0.0245 (3)
H5AA0.34720.09380.35220.029*
C6A0.24091 (14)0.17030 (13)0.43558 (6)0.0193 (2)
O1B0.60822 (9)0.83673 (9)0.95805 (4)0.01743 (16)
O2B0.65404 (10)0.61445 (9)0.85595 (5)0.02139 (18)
O3B0.49768 (9)0.66911 (8)0.76153 (4)0.01681 (16)
N1B0.14290 (11)0.41809 (11)0.66309 (5)0.0195 (2)
H1BD0.14290.33070.63130.023*
C1B0.7672 (2)0.65985 (16)1.04798 (8)0.0374 (3)
H1BA0.65370.61941.03170.056*
H1BB0.79850.63051.09660.056*
H1BC0.82150.61931.00990.056*
C2B0.81046 (16)0.83003 (14)1.05690 (7)0.0266 (3)
H2BA0.92370.87031.07760.032*
H2BB0.75220.86961.09410.032*
C3B0.77559 (13)0.88685 (13)0.98354 (6)0.0199 (2)
H3BA0.81180.99840.99190.024*
H3BB0.83030.84610.94500.024*
C4B0.55382 (13)0.83591 (12)0.88023 (6)0.0144 (2)
C5B0.37558 (13)0.80952 (12)0.87150 (6)0.0161 (2)
C6B0.29341 (14)0.72390 (13)0.91802 (6)0.0210 (2)
H6BA0.34880.69010.95780.025*
C7B0.13033 (15)0.68740 (15)0.90661 (7)0.0270 (3)
H7BA0.07510.62950.93890.032*
C8B0.04823 (15)0.73485 (14)0.84858 (7)0.0273 (3)
H8BA0.06300.70920.84080.033*
C9B0.12932 (14)0.82027 (14)0.80174 (7)0.0252 (3)
H9BA0.07340.85310.76180.030*
C10B0.29213 (14)0.85778 (13)0.81321 (6)0.0195 (2)
H10A0.34700.91670.78120.023*
C11B0.63706 (13)0.98164 (12)0.85584 (6)0.0154 (2)
C12B0.60946 (14)1.11664 (13)0.88757 (6)0.0211 (2)
H12A0.53431.11460.92020.025*
C13B0.69100 (16)1.25303 (13)0.87166 (7)0.0256 (3)
H13A0.67111.34400.89320.031*
C14B0.80181 (16)1.25757 (14)0.82429 (7)0.0272 (3)
H14A0.85731.35130.81330.033*
C15B0.83122 (15)1.12444 (14)0.79297 (7)0.0239 (2)
H15A0.90751.12700.76090.029*
C16B0.74833 (13)0.98724 (12)0.80886 (6)0.0178 (2)
H16A0.76830.89640.78720.021*
C17B0.57857 (12)0.69440 (12)0.83240 (6)0.0154 (2)
C18B0.48344 (13)0.52459 (12)0.71359 (6)0.0174 (2)
H18A0.58940.50820.71140.021*
C19B0.38094 (14)0.39610 (12)0.74338 (7)0.0199 (2)
H19A0.37840.29900.71240.024*
H19B0.42770.39590.79620.024*
C20B0.21450 (14)0.40916 (13)0.74143 (6)0.0208 (2)
H20A0.15060.32040.75830.025*
H20B0.21530.50060.77670.025*
C21B0.02218 (15)0.42444 (16)0.65909 (8)0.0303 (3)
H21A0.02580.51570.69210.045*
H21B0.08330.33530.67580.045*
H21C0.06650.42640.60680.045*
C22B0.23950 (15)0.54977 (13)0.63493 (7)0.0216 (2)
H22A0.24110.64490.66750.026*
H22B0.19150.55220.58270.026*
C23B0.40595 (14)0.53774 (13)0.63573 (6)0.0208 (2)
H23A0.46860.62800.61950.025*
H23B0.40450.44820.59890.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0261 (5)0.0273 (5)0.0207 (4)0.0103 (4)0.0027 (3)0.0001 (3)
O2A0.0526 (7)0.0354 (6)0.0290 (5)0.0030 (5)0.0071 (5)0.0090 (4)
O3A0.0755 (9)0.0329 (6)0.0510 (7)0.0041 (6)0.0062 (6)0.0252 (5)
O4AA0.0423 (8)0.0202 (8)0.102 (2)0.0160 (7)0.0016 (12)0.0015 (11)
O5AA0.0380 (12)0.0642 (18)0.0363 (8)0.0307 (12)0.0025 (7)0.0156 (9)
O4AB0.0423 (8)0.0202 (8)0.102 (2)0.0160 (7)0.0016 (12)0.0015 (11)
O5AB0.0380 (12)0.0642 (18)0.0363 (8)0.0307 (12)0.0025 (7)0.0156 (9)
O6A0.0272 (5)0.0441 (6)0.0212 (4)0.0108 (4)0.0046 (3)0.0097 (4)
O7A0.0551 (7)0.0220 (5)0.0306 (5)0.0106 (4)0.0009 (4)0.0038 (4)
N1A0.0361 (7)0.0246 (6)0.0310 (6)0.0054 (5)0.0104 (5)0.0102 (5)
N2A0.0293 (7)0.0380 (8)0.0613 (10)0.0194 (6)0.0196 (6)0.0268 (7)
N3A0.0211 (5)0.0263 (5)0.0227 (5)0.0065 (4)0.0027 (4)0.0047 (4)
C1A0.0157 (6)0.0188 (5)0.0193 (5)0.0003 (4)0.0028 (4)0.0005 (4)
C2A0.0237 (6)0.0188 (6)0.0262 (6)0.0017 (5)0.0060 (5)0.0046 (5)
C3A0.0273 (7)0.0151 (6)0.0443 (8)0.0029 (5)0.0157 (6)0.0011 (5)
C4A0.0218 (7)0.0225 (6)0.0391 (7)0.0102 (5)0.0103 (5)0.0119 (5)
C5A0.0166 (6)0.0296 (6)0.0233 (6)0.0075 (5)0.0028 (4)0.0060 (5)
C6A0.0167 (6)0.0183 (5)0.0206 (5)0.0051 (4)0.0018 (4)0.0003 (4)
O1B0.0139 (4)0.0227 (4)0.0145 (4)0.0038 (3)0.0002 (3)0.0038 (3)
O2B0.0182 (4)0.0180 (4)0.0274 (4)0.0073 (3)0.0006 (3)0.0019 (3)
O3B0.0179 (4)0.0145 (4)0.0164 (4)0.0042 (3)0.0014 (3)0.0011 (3)
N1B0.0163 (5)0.0198 (5)0.0207 (5)0.0043 (4)0.0015 (4)0.0001 (4)
C1B0.0476 (10)0.0365 (8)0.0302 (7)0.0140 (7)0.0002 (6)0.0141 (6)
C2B0.0267 (7)0.0324 (7)0.0197 (6)0.0106 (5)0.0027 (5)0.0024 (5)
C3B0.0154 (6)0.0198 (5)0.0214 (5)0.0028 (4)0.0035 (4)0.0023 (4)
C4B0.0133 (5)0.0153 (5)0.0140 (5)0.0038 (4)0.0010 (4)0.0018 (4)
C5B0.0141 (5)0.0168 (5)0.0159 (5)0.0040 (4)0.0022 (4)0.0019 (4)
C6B0.0179 (6)0.0241 (6)0.0201 (5)0.0043 (4)0.0050 (4)0.0020 (4)
C7B0.0189 (6)0.0306 (7)0.0296 (6)0.0020 (5)0.0104 (5)0.0018 (5)
C8B0.0128 (6)0.0315 (7)0.0341 (7)0.0058 (5)0.0040 (5)0.0059 (5)
C9B0.0180 (6)0.0293 (6)0.0271 (6)0.0110 (5)0.0017 (4)0.0027 (5)
C10B0.0170 (6)0.0208 (5)0.0206 (5)0.0067 (4)0.0025 (4)0.0015 (4)
C11B0.0133 (5)0.0157 (5)0.0155 (5)0.0028 (4)0.0005 (4)0.0022 (4)
C12B0.0230 (6)0.0185 (5)0.0219 (6)0.0068 (4)0.0037 (4)0.0012 (4)
C13B0.0323 (7)0.0151 (5)0.0268 (6)0.0055 (5)0.0003 (5)0.0006 (4)
C14B0.0324 (7)0.0186 (6)0.0248 (6)0.0027 (5)0.0005 (5)0.0069 (5)
C15B0.0230 (6)0.0254 (6)0.0203 (6)0.0000 (5)0.0043 (4)0.0051 (4)
C16B0.0175 (6)0.0170 (5)0.0173 (5)0.0029 (4)0.0018 (4)0.0017 (4)
C17B0.0112 (5)0.0142 (5)0.0192 (5)0.0008 (4)0.0034 (4)0.0018 (4)
C18B0.0156 (5)0.0144 (5)0.0202 (5)0.0036 (4)0.0031 (4)0.0030 (4)
C19B0.0185 (6)0.0148 (5)0.0239 (6)0.0025 (4)0.0002 (4)0.0023 (4)
C20B0.0184 (6)0.0209 (6)0.0208 (5)0.0011 (4)0.0035 (4)0.0039 (4)
C21B0.0181 (6)0.0378 (7)0.0335 (7)0.0093 (5)0.0012 (5)0.0008 (6)
C22B0.0249 (6)0.0194 (5)0.0194 (5)0.0055 (5)0.0010 (4)0.0030 (4)
C23B0.0228 (6)0.0193 (5)0.0175 (5)0.0006 (4)0.0062 (4)0.0002 (4)
Geometric parameters (Å, º) top
O1A—C1A1.2477 (14)C4B—C17B1.5543 (14)
O2A—N1A1.2302 (16)C5B—C6B1.3901 (16)
O3A—N1A1.2241 (15)C5B—C10B1.3962 (15)
O4AA—N2A1.190 (4)C6B—C7B1.3927 (17)
O5AA—N2A1.289 (4)C6B—H6BA0.9500
O4AB—N2A1.632 (16)C7B—C8B1.3825 (19)
O5AB—N2A0.876 (12)C7B—H7BA0.9500
O6A—N3A1.2295 (12)C8B—C9B1.3891 (19)
O7A—N3A1.2235 (13)C8B—H8BA0.9500
N1A—C2A1.4580 (18)C9B—C10B1.3900 (17)
N2A—C4A1.4501 (18)C9B—H9BA0.9500
N3A—C6A1.4601 (15)C10B—H10A0.9500
C1A—C2A1.4461 (17)C11B—C16B1.3869 (16)
C1A—C6A1.4481 (16)C11B—C12B1.4004 (15)
C2A—C3A1.3817 (19)C12B—C13B1.3840 (17)
C3A—C4A1.382 (2)C12B—H12A0.9500
C3A—H3AA0.9500C13B—C14B1.3892 (19)
C4A—C5A1.3921 (19)C13B—H13A0.9500
C5A—C6A1.3665 (16)C14B—C15B1.3901 (18)
C5A—H5AA0.9500C14B—H14A0.9500
O1B—C4B1.4243 (12)C15B—C16B1.3939 (16)
O1B—C3B1.4431 (14)C15B—H15A0.9500
O2B—C17B1.2013 (13)C16B—H16A0.9500
O3B—C17B1.3450 (12)C18B—C23B1.5180 (16)
O3B—C18B1.4647 (12)C18B—C19B1.5217 (16)
N1B—C21B1.4838 (16)C18B—H18A1.0000
N1B—C20B1.4961 (14)C19B—C20B1.5183 (17)
N1B—C22B1.5039 (15)C19B—H19A0.9900
N1B—H1BD0.9300C19B—H19B0.9900
C1B—C2B1.5126 (19)C20B—H20A0.9900
C1B—H1BA0.9800C20B—H20B0.9900
C1B—H1BB0.9800C21B—H21A0.9800
C1B—H1BC0.9800C21B—H21B0.9800
C2B—C3B1.5140 (16)C21B—H21C0.9800
C2B—H2BA0.9900C22B—C23B1.5175 (17)
C2B—H2BB0.9900C22B—H22A0.9900
C3B—H3BA0.9900C22B—H22B0.9900
C3B—H3BB0.9900C23B—H23A0.9900
C4B—C11B1.5259 (15)C23B—H23B0.9900
C4B—C5B1.5339 (15)
O3A—N1A—O2A122.35 (13)C7B—C6B—H6BA119.8
O3A—N1A—C2A118.08 (13)C8B—C7B—C6B120.44 (12)
O2A—N1A—C2A119.58 (11)C8B—C7B—H7BA119.8
O5AB—N2A—O4AA104.2 (9)C6B—C7B—H7BA119.8
O5AB—N2A—O5AA27.2 (10)C7B—C8B—C9B119.64 (11)
O4AA—N2A—O5AA123.4 (2)C7B—C8B—H8BA120.2
O5AB—N2A—C4A133.0 (8)C9B—C8B—H8BA120.2
O4AA—N2A—C4A119.5 (3)C8B—C9B—C10B120.12 (11)
O5AA—N2A—C4A117.02 (17)C8B—C9B—H9BA119.9
O5AB—N2A—O4AB119.9 (9)C10B—C9B—H9BA119.9
O4AA—N2A—O4AB15.8 (6)C9B—C10B—C5B120.47 (11)
O5AA—N2A—O4AB138.1 (5)C9B—C10B—H10A119.8
C4A—N2A—O4AB104.3 (6)C5B—C10B—H10A119.8
O7A—N3A—O6A123.43 (10)C16B—C11B—C12B118.87 (10)
O7A—N3A—C6A118.42 (10)C16B—C11B—C4B122.62 (9)
O6A—N3A—C6A118.10 (10)C12B—C11B—C4B118.27 (10)
O1A—C1A—C2A125.93 (11)C13B—C12B—C11B120.43 (11)
O1A—C1A—C6A122.04 (10)C13B—C12B—H12A119.8
C2A—C1A—C6A111.94 (10)C11B—C12B—H12A119.8
C3A—C2A—C1A123.20 (12)C12B—C13B—C14B120.32 (11)
C3A—C2A—N1A117.22 (11)C12B—C13B—H13A119.8
C1A—C2A—N1A119.56 (12)C14B—C13B—H13A119.8
C2A—C3A—C4A120.02 (12)C13B—C14B—C15B119.78 (11)
C2A—C3A—H3AA120.0C13B—C14B—H14A120.1
C4A—C3A—H3AA120.0C15B—C14B—H14A120.1
C3A—C4A—C5A121.07 (12)C14B—C15B—C16B119.72 (11)
C3A—C4A—N2A120.50 (13)C14B—C15B—H15A120.1
C5A—C4A—N2A118.39 (14)C16B—C15B—H15A120.1
C6A—C5A—C4A118.15 (12)C11B—C16B—C15B120.87 (10)
C6A—C5A—H5AA120.9C11B—C16B—H16A119.6
C4A—C5A—H5AA120.9C15B—C16B—H16A119.6
C5A—C6A—C1A125.55 (11)O2B—C17B—O3B124.27 (10)
C5A—C6A—N3A116.38 (11)O2B—C17B—C4B125.00 (10)
C1A—C6A—N3A118.07 (10)O3B—C17B—C4B110.66 (8)
C4B—O1B—C3B116.70 (8)O3B—C18B—C23B105.04 (8)
C17B—O3B—C18B117.48 (8)O3B—C18B—C19B110.30 (9)
C21B—N1B—C20B111.66 (9)C23B—C18B—C19B110.25 (9)
C21B—N1B—C22B111.21 (9)O3B—C18B—H18A110.4
C20B—N1B—C22B110.85 (9)C23B—C18B—H18A110.4
C21B—N1B—H1BD107.6C19B—C18B—H18A110.4
C20B—N1B—H1BD107.6C20B—C19B—C18B112.27 (9)
C22B—N1B—H1BD107.6C20B—C19B—H19A109.1
C2B—C1B—H1BA109.5C18B—C19B—H19A109.1
C2B—C1B—H1BB109.5C20B—C19B—H19B109.1
H1BA—C1B—H1BB109.5C18B—C19B—H19B109.1
C2B—C1B—H1BC109.5H19A—C19B—H19B107.9
H1BA—C1B—H1BC109.5N1B—C20B—C19B110.68 (9)
H1BB—C1B—H1BC109.5N1B—C20B—H20A109.5
C1B—C2B—C3B113.52 (10)C19B—C20B—H20A109.5
C1B—C2B—H2BA108.9N1B—C20B—H20B109.5
C3B—C2B—H2BA108.9C19B—C20B—H20B109.5
C1B—C2B—H2BB108.9H20A—C20B—H20B108.1
C3B—C2B—H2BB108.9N1B—C21B—H21A109.5
H2BA—C2B—H2BB107.7N1B—C21B—H21B109.5
O1B—C3B—C2B107.54 (10)H21A—C21B—H21B109.5
O1B—C3B—H3BA110.2N1B—C21B—H21C109.5
C2B—C3B—H3BA110.2H21A—C21B—H21C109.5
O1B—C3B—H3BB110.2H21B—C21B—H21C109.5
C2B—C3B—H3BB110.2N1B—C22B—C23B110.62 (9)
H3BA—C3B—H3BB108.5N1B—C22B—H22A109.5
O1B—C4B—C11B110.90 (8)C23B—C22B—H22A109.5
O1B—C4B—C5B106.28 (8)N1B—C22B—H22B109.5
C11B—C4B—C5B113.50 (8)C23B—C22B—H22B109.5
O1B—C4B—C17B108.42 (8)H22A—C22B—H22B108.1
C11B—C4B—C17B112.01 (9)C22B—C23B—C18B112.20 (9)
C5B—C4B—C17B105.37 (8)C22B—C23B—H23A109.2
C6B—C5B—C10B119.00 (10)C18B—C23B—H23A109.2
C6B—C5B—C4B119.43 (10)C22B—C23B—H23B109.2
C10B—C5B—C4B121.29 (10)C18B—C23B—H23B109.2
C5B—C6B—C7B120.33 (11)H23A—C23B—H23B107.9
C5B—C6B—H6BA119.8
O1A—C1A—C2A—C3A174.36 (11)C10B—C5B—C6B—C7B0.18 (16)
C6A—C1A—C2A—C3A2.28 (16)C4B—C5B—C6B—C7B174.30 (10)
O1A—C1A—C2A—N1A4.32 (18)C5B—C6B—C7B—C8B0.50 (18)
C6A—C1A—C2A—N1A179.04 (10)C6B—C7B—C8B—C9B0.40 (18)
O3A—N1A—C2A—C3A15.05 (17)C7B—C8B—C9B—C10B0.01 (18)
O2A—N1A—C2A—C3A165.15 (12)C8B—C9B—C10B—C5B0.32 (17)
O3A—N1A—C2A—C1A163.71 (12)C6B—C5B—C10B—C9B0.22 (16)
O2A—N1A—C2A—C1A16.09 (17)C4B—C5B—C10B—C9B173.79 (10)
C1A—C2A—C3A—C4A2.68 (19)O1B—C4B—C11B—C16B107.93 (11)
N1A—C2A—C3A—C4A178.61 (11)C5B—C4B—C11B—C16B132.52 (10)
C2A—C3A—C4A—C5A2.15 (19)C17B—C4B—C11B—C16B13.34 (13)
C2A—C3A—C4A—N2A175.61 (11)O1B—C4B—C11B—C12B66.41 (12)
O5AB—N2A—C4A—C3A163.1 (14)C5B—C4B—C11B—C12B53.14 (12)
O4AA—N2A—C4A—C3A7.5 (2)C17B—C4B—C11B—C12B172.32 (9)
O5AA—N2A—C4A—C3A169.72 (17)C16B—C11B—C12B—C13B0.58 (16)
O4AB—N2A—C4A—C3A3.0 (6)C4B—C11B—C12B—C13B175.13 (10)
O5AB—N2A—C4A—C5A19.1 (15)C11B—C12B—C13B—C14B0.33 (18)
O4AA—N2A—C4A—C5A174.66 (18)C12B—C13B—C14B—C15B0.23 (18)
O5AA—N2A—C4A—C5A8.1 (2)C13B—C14B—C15B—C16B0.52 (18)
O4AB—N2A—C4A—C5A179.2 (5)C12B—C11B—C16B—C15B0.28 (16)
C3A—C4A—C5A—C6A1.44 (18)C4B—C11B—C16B—C15B174.59 (10)
N2A—C4A—C5A—C6A176.37 (11)C14B—C15B—C16B—C11B0.26 (17)
C4A—C5A—C6A—C1A1.26 (18)C18B—O3B—C17B—O2B8.72 (16)
C4A—C5A—C6A—N3A178.35 (11)C18B—O3B—C17B—C4B168.41 (9)
O1A—C1A—C6A—C5A175.18 (11)O1B—C4B—C17B—O2B11.26 (15)
C2A—C1A—C6A—C5A1.61 (16)C11B—C4B—C17B—O2B111.44 (12)
O1A—C1A—C6A—N3A5.21 (16)C5B—C4B—C17B—O2B124.70 (11)
C2A—C1A—C6A—N3A178.00 (10)O1B—C4B—C17B—O3B165.86 (8)
O7A—N3A—C6A—C5A140.18 (12)C11B—C4B—C17B—O3B71.45 (11)
O6A—N3A—C6A—C5A37.65 (15)C5B—C4B—C17B—O3B52.41 (11)
O7A—N3A—C6A—C1A39.47 (16)C17B—O3B—C18B—C23B172.99 (9)
O6A—N3A—C6A—C1A142.70 (11)C17B—O3B—C18B—C19B68.22 (12)
C4B—O1B—C3B—C2B161.04 (9)O3B—C18B—C19B—C20B62.58 (12)
C1B—C2B—C3B—O1B63.23 (14)C23B—C18B—C19B—C20B52.98 (12)
C3B—O1B—C4B—C11B45.26 (11)C21B—N1B—C20B—C19B177.60 (9)
C3B—O1B—C4B—C5B169.05 (8)C22B—N1B—C20B—C19B57.80 (12)
C3B—O1B—C4B—C17B78.11 (11)C18B—C19B—C20B—N1B55.83 (12)
O1B—C4B—C5B—C6B30.91 (13)C21B—N1B—C22B—C23B177.23 (9)
C11B—C4B—C5B—C6B153.07 (10)C20B—N1B—C22B—C23B57.92 (12)
C17B—C4B—C5B—C6B84.02 (11)N1B—C22B—C23B—C18B55.98 (12)
O1B—C4B—C5B—C10B155.10 (9)O3B—C18B—C23B—C22B65.73 (11)
C11B—C4B—C5B—C10B32.95 (13)C19B—C18B—C23B—C22B53.09 (12)
C17B—C4B—C5B—C10B89.96 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1BD···O1A0.931.812.6276 (12)145
N1B—H1BD···O2A0.932.333.0537 (15)135
C20B—H20B···Cg20.992.773.7553 (13)173

Experimental details

Crystal data
Chemical formulaC23H30NO3+·C6H2N3O7
Mr596.59
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)8.9379 (4), 9.2885 (4), 18.0750 (7)
α, β, γ (°)97.652 (3), 97.630 (3), 104.301 (4)
V3)1419.54 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.55 × 0.35 × 0.27
Data collection
DiffractometerOxford Diffraction Gemini R CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.910, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
18429, 9328, 6353
Rint0.022
(sin θ/λ)max1)0.760
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.126, 1.03
No. of reflections9328
No. of parameters397
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.31

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1BD···O1A0.931.812.6276 (12)144.6
N1B—H1BD···O2A0.932.333.0537 (15)134.5
C20B—H20B···Cg20.992.773.7553 (13)173
 

Acknowledgements

QNMHA thanks the University of Mysore for use of its research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationBecke, A. D. (1988). Phys. Rev. A, 38, 3098–100.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.  CrossRef CAS Web of Science Google Scholar
First citationBindya, S., Wong, W.-T., Ashok, M. A., Yathirajan, H. S. & Rathore, R. S. (2007). Acta Cryst. C63, o546–o548.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChapple, C. R., Khullar, V., Gabriel, Z., Muston, D., Bitoun, C. E. & Weinstein, D. (2008). Eur. Urol. 54, 543–562.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFrisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationHarrison, W. T. A., Bindya, S., Ashok, M. A., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHehre, W. J., Radom, L., Schleyer, P.vR. & Pople, J. A. (1986). Ab Initio Molecular Orbital Theory. New York: Wiley.  Google Scholar
First citationJünemann, K.-P., Hessdörfer, E., Unamba-Oparah, I., Berse, M., Brünjes, R., Madersbacher, H. & Gramatté, T. (2006). Urol. Int. 77, 334–339.  Web of Science PubMed Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationMadersbacher, H. & Gramatté, T. (2006). Urol. Int. 77, 334–339.  Web of Science PubMed Google Scholar
First citationMatsushima, S., Inada, H. & Asai, T. (1997). Eur. J. Pharmacol. 333, 93–94.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNoguchi, K. & Masuda, M. (1998). Hinyokika Kiyo, 44, 687–689.  CAS PubMed Google Scholar
First citationOkada, H. & Sengodu, J. (1998). Hinyokika Kiyo, 44, 65–66.  CAS PubMed Google Scholar
First citationOxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.  Google Scholar
First citationRong, X., Meng-Kwoon, S. & Mei-lin, G. (1999). Eur. J. Pharm. Sci. 8, 39–47.  Web of Science CrossRef PubMed Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA, http://www.webmo.net.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o4919.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSzumma, A., Jurczak, J. & Urbańczyk-Lipkowska, Z. (2000). J. Mol. Struct. 526, 165–175.  Web of Science CSD CrossRef Google Scholar
First citationYathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007). Acta Cryst. E63, o1691–o1692.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages o1738-o1739
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds