metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­nickel(II)]-bis­­(μ-pyridine-4-sulfinato)-κ2N,O;κ2O,N]

aDepartment of Chemistry, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China
*Correspondence e-mail: dzx6281@126.com

(Received 13 June 2009; accepted 24 June 2009; online 1 July 2009)

In the title coordination polymer, [Ni(C5H4NO2S)2(H2O)2]n, the NiII ion is located on an inversion centre and is octa­hedrally coordinated by two N and two O atoms of four symmetry-related and deprotonated pyridine-4-sulfinate (ps) ligands together with two water mol­ecules in axial positions. The ps anions, acting as μ2-bridging ligands, link neighbouring NiII ions into a chain structure along the c axis. These polymeric chains are extended into a three-dimensional framework via inter­molecular O—H⋯O hydrogen bonds with participation of the water mol­ecules.

Related literature

For metal complexes derived from pyridine-4-sulfonic acid, see: Lü et al. (2007[Lü, J., Li, H.-F., Xiao, F.-X. & Cao, R. (2007). Inorg. Chem. Commun. 10, 614-617.]); Leslie & George (2005a[Leslie, J. M. & George, K. H. S. (2005a). Chem. Commun. pp. 1270-1272.],b[Leslie, J. M. & George, K. H. S. (2005b). Chem. Mater. 17, 217-220.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C5H4NO2S)2(H2O)2]

  • Mr = 379.05

  • Triclinic, [P \overline 1]

  • a = 6.403 (5) Å

  • b = 7.309 (5) Å

  • c = 7.602 (5) Å

  • α = 96.784 (8)°

  • β = 95.140 (8)°

  • γ = 107.709 (8)°

  • V = 333.6 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 296 K

  • 0.25 × 0.17 × 0.14 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.662, Tmax = 0.787

  • 2417 measured reflections

  • 1180 independent reflections

  • 1043 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.080

  • S = 1.00

  • 1180 reflections

  • 97 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—N1i 2.008 (2)
Ni1—O3 2.026 (2)
Ni1—O1 2.362 (2)
Symmetry code: (i) x, y, z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯O2iv 0.84 2.00 2.826 (3) 168
O1—H2W⋯O2v 0.84 2.00 2.827 (3) 169
Symmetry codes: (iv) x, y-1, z; (v) -x, -y, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is well known that sulfinic acid is not stable compared with sulfonic acid, so it is much difficult to obtain complexes of sulfinic acid as they are easy to be oxidized. In the previous literatures, several metal complexes derived from pyridine-4-sulfonic acid have been reported (Leslie & George, 2005a,b; Lü et al., 2007), whereas the complexes of pyridine-4-sulfinic acid has been not seen so far. Here we describe a nickel(II) complex from pyridine-4-sulfinic acid, (I), (Fig. 1).

The NiII ion locates on a centre of symmetry and is in a distorted octahedral geometry with two water ligands in axial trans positions and two N and two O atoms of four symmetry-related ps- ligands in equatorial plane (Table 1). Each ps- ligand connects two NiII ions and thus forms one-dimensional chain structure along c axis (Fig.2), with adjacent Ni···Ni separation distance of 7.602 (3) Å.

Water molecules take part in hydrogen bonds as double donor, and SO of ps- ligands acts only as a single acceptor (Table 2, Fig.3). Hydrogen bonds interactions stabilizes and extends chain structure of (I) into a three-dimensional network.

Related literature top

For metal complexes derived from pyridine-4-sulfonic acid, see: Lü et al. (2007); Leslie & George (2005a,b).

Experimental top

A solution of NiCl2. 6H2O (1 mmol, 0.238 g) in anhydrous ethanol (10 ml) was injected dropwise into a solution of Hps (2 mol, 0.286 g) in methanol (15 ml) under argon. The resulting mixture was stirred at 343 K for 4 h, then cooled to room temperature. After filtration, the filtrate was left to stand at room temperature for slow evaporation. Green block-shaped crystals suitable for X-ray diffraction were obtained in a yield of 17%. Analysis, found: C 31.58, H 3.11, N 7.45, S 16.93%; C10H12N2NiO6S2 requires: C 31.66, H 3.17, N 7.39, S 16.88%.

Refinement top

H atoms bonded to C were positioned geometrically with C—H distance of 0.93 Å, and treated as riding atoms, with Uiso(H)=1.2Ueq(C). The O—H hydrogen atom was located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of NiII ion in (I).Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (A) (1 - x, -y, 2 - z);(B) (x, y, 1 + z); (C) (1 - x, -y, 1 - z).
[Figure 2] Fig. 2. The chain structure of (I) along c axis. H atoms on C atoms have been omitted.
[Figure 3] Fig. 3. Packing diagram for (1), showing hydrogen bonds as dashed lines in ab plane. H atoms on C have been deleted.
catena-Poly[[diaquanickel(II)]-bis(µ-pyridine-4-sulfinato)- κ2N,O;κ2O,N] top
Crystal data top
[Ni(C5H4NO2S)2(H2O)2]Z = 1
Mr = 379.05F(000) = 194
Triclinic, P1Dx = 1.887 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.403 (5) ÅCell parameters from 1414 reflections
b = 7.309 (5) Åθ = 2.7–27.9°
c = 7.602 (5) ŵ = 1.80 mm1
α = 96.784 (8)°T = 296 K
β = 95.140 (8)°Block, green
γ = 107.709 (8)°0.25 × 0.17 × 0.14 mm
V = 333.6 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1180 independent reflections
Radiation source: fine-focus sealed tube1043 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.662, Tmax = 0.787k = 88
2417 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0581P)2]
where P = (Fo2 + 2Fc2)/3
1180 reflections(Δ/σ)max < 0.001
97 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Ni(C5H4NO2S)2(H2O)2]γ = 107.709 (8)°
Mr = 379.05V = 333.6 (4) Å3
Triclinic, P1Z = 1
a = 6.403 (5) ÅMo Kα radiation
b = 7.309 (5) ŵ = 1.80 mm1
c = 7.602 (5) ÅT = 296 K
α = 96.784 (8)°0.25 × 0.17 × 0.14 mm
β = 95.140 (8)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1180 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1043 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 0.787Rint = 0.017
2417 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.00Δρmax = 0.68 e Å3
1180 reflectionsΔρmin = 0.36 e Å3
97 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00001.00000.02196 (18)
S10.37032 (11)0.32818 (9)0.81172 (8)0.0282 (2)
O10.1697 (3)0.2599 (3)0.9900 (3)0.0432 (5)
H1W0.15940.35950.91900.065*
H2W0.06600.28441.05220.065*
O20.1653 (3)0.3862 (3)0.7920 (3)0.0374 (5)
O30.3059 (3)0.1287 (3)0.8709 (2)0.0330 (4)
N10.4591 (3)0.1289 (3)0.2369 (3)0.0257 (5)
C10.2579 (4)0.1289 (4)0.2770 (4)0.0306 (6)
H10.13770.08410.18730.037*
C20.2257 (5)0.1933 (4)0.4472 (4)0.0320 (6)
H20.08570.19200.47210.038*
C30.4053 (4)0.2601 (3)0.5805 (3)0.0250 (5)
C40.6131 (4)0.2690 (4)0.5387 (3)0.0271 (6)
H40.73700.31910.62470.033*
C50.6316 (4)0.2014 (4)0.3656 (4)0.0304 (6)
H50.77130.20660.33690.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0291 (3)0.0292 (3)0.0131 (2)0.0168 (2)0.00585 (17)0.00249 (17)
S10.0353 (4)0.0309 (4)0.0215 (4)0.0151 (3)0.0082 (3)0.0004 (3)
O10.0457 (12)0.0320 (11)0.0528 (13)0.0108 (9)0.0236 (10)0.0015 (9)
O20.0473 (12)0.0441 (11)0.0339 (11)0.0299 (10)0.0164 (9)0.0075 (9)
O30.0414 (11)0.0401 (10)0.0251 (9)0.0212 (9)0.0098 (8)0.0081 (8)
N10.0288 (11)0.0309 (11)0.0210 (11)0.0141 (9)0.0055 (8)0.0047 (9)
C10.0284 (13)0.0412 (15)0.0254 (14)0.0162 (11)0.0033 (11)0.0040 (11)
C20.0277 (13)0.0435 (15)0.0299 (15)0.0176 (12)0.0089 (11)0.0047 (12)
C30.0328 (13)0.0246 (12)0.0217 (13)0.0134 (10)0.0079 (10)0.0047 (10)
C40.0271 (13)0.0327 (13)0.0217 (13)0.0106 (11)0.0036 (10)0.0015 (10)
C50.0304 (14)0.0377 (15)0.0275 (15)0.0160 (12)0.0084 (11)0.0053 (11)
Geometric parameters (Å, º) top
Ni1—N1i2.008 (2)N1—C51.336 (4)
Ni1—N1ii2.008 (2)N1—C11.350 (3)
Ni1—O3iii2.026 (2)N1—Ni1iv2.008 (2)
Ni1—O32.026 (2)C1—C21.379 (4)
Ni1—O1iii2.362 (2)C1—H10.9300
Ni1—O12.362 (2)C2—C31.386 (4)
S1—O21.498 (2)C2—H20.9300
S1—O31.523 (2)C3—C41.380 (4)
S1—C31.821 (3)C4—C51.378 (4)
O1—H1W0.8350C4—H40.9300
O1—H2W0.8371C5—H50.9300
N1i—Ni1—N1ii180.000 (1)H1W—O1—H2W109.3
N1i—Ni1—O3iii90.55 (9)S1—O3—Ni1128.93 (12)
N1ii—Ni1—O3iii89.45 (9)C5—N1—C1118.2 (2)
N1i—Ni1—O389.45 (9)C5—N1—Ni1iv119.50 (18)
N1ii—Ni1—O390.55 (9)C1—N1—Ni1iv121.99 (18)
O3iii—Ni1—O3180.000 (1)N1—C1—C2121.9 (2)
N1i—Ni1—O1iii92.01 (8)N1—C1—H1119.1
N1ii—Ni1—O1iii87.99 (8)C2—C1—H1119.1
O3iii—Ni1—O1iii85.24 (9)C1—C2—C3118.9 (2)
O3—Ni1—O1iii94.76 (9)C1—C2—H2120.5
N1i—Ni1—O187.99 (8)C3—C2—H2120.5
N1ii—Ni1—O192.01 (8)C4—C3—C2119.5 (2)
O3iii—Ni1—O194.76 (9)C4—C3—S1119.35 (19)
O3—Ni1—O185.24 (9)C2—C3—S1121.1 (2)
O1iii—Ni1—O1180.0C3—C4—C5118.0 (2)
O2—S1—O3107.19 (12)C3—C4—H4121.0
O2—S1—C3102.55 (12)C5—C4—H4121.0
O3—S1—C399.77 (11)N1—C5—C4123.3 (2)
Ni1—O1—H1W114.8N1—C5—H5118.3
Ni1—O1—H2W135.0C4—C5—H5118.3
O2—S1—O3—Ni1157.49 (13)C1—C2—C3—S1174.8 (2)
C3—S1—O3—Ni196.00 (15)O2—S1—C3—C4155.44 (19)
N1i—Ni1—O3—S193.25 (15)O3—S1—C3—C494.3 (2)
N1ii—Ni1—O3—S186.75 (15)O2—S1—C3—C226.8 (2)
O1iii—Ni1—O3—S11.28 (15)O3—S1—C3—C283.4 (2)
O1—Ni1—O3—S1178.72 (15)C2—C3—C4—C53.1 (4)
C5—N1—C1—C22.8 (4)S1—C3—C4—C5174.71 (19)
Ni1iv—N1—C1—C2170.9 (2)C1—N1—C5—C42.7 (4)
N1—C1—C2—C30.1 (4)Ni1iv—N1—C5—C4171.20 (19)
C1—C2—C3—C42.9 (4)C3—C4—C5—N10.3 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x+1, y, z+2; (iv) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O2v0.842.002.826 (3)168
O1—H2W···O2vi0.842.002.827 (3)169
Symmetry codes: (v) x, y1, z; (vi) x, y, z+2.

Experimental details

Crystal data
Chemical formula[Ni(C5H4NO2S)2(H2O)2]
Mr379.05
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.403 (5), 7.309 (5), 7.602 (5)
α, β, γ (°)96.784 (8), 95.140 (8), 107.709 (8)
V3)333.6 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.80
Crystal size (mm)0.25 × 0.17 × 0.14
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.662, 0.787
No. of measured, independent and
observed [I > 2σ(I)] reflections
2417, 1180, 1043
Rint0.017
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.00
No. of reflections1180
No. of parameters97
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.36

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—N1i2.008 (2)Ni1—O12.362 (2)
Ni1—O32.026 (2)
N1ii—Ni1—N1i180.000 (1)N1ii—Ni1—O187.99 (8)
N1ii—Ni1—O389.45 (9)O3—Ni1—O185.24 (9)
N1i—Ni1—O390.55 (9)O1iii—Ni1—O1180.0
O3iii—Ni1—O3180.000 (1)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O2iv0.842.002.826 (3)168.2
O1—H2W···O2v0.842.002.827 (3)169.4
Symmetry codes: (iv) x, y1, z; (v) x, y, z+2.
 

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 20771054).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLeslie, J. M. & George, K. H. S. (2005a). Chem. Commun. pp. 1270–1272.  Google Scholar
First citationLeslie, J. M. & George, K. H. S. (2005b). Chem. Mater. 17, 217–220.  Google Scholar
First citationLü, J., Li, H.-F., Xiao, F.-X. & Cao, R. (2007). Inorg. Chem. Commun. 10, 614–617.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds