organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-Benzotriazol-1-yl)-1-(2-fluoro­benzo­yl)ethyl 4-methyl­benzoate

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wulanzeng@163.com

(Received 17 June 2009; accepted 24 July 2009; online 29 July 2009)

In the crystal structure of the title compound, C23H18FN3O3, inter­molecular C—H⋯N hydrogen bonds link the mol­ecules into chains extended along the c axis. The packing is further stabilized by weak C—H⋯O and C—H⋯F inter­actions. The F atom is disordered over two equally occupied 1- and 5-positions of the benzene ring.

Related literature

For the pharmacological activity of 1H-benzotriazole and its derivatives, see: Chen & Wu (2005[Chen, Z.-Y. & Wu, M.-J. (2005). Org. Lett. 7, 475-477.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C23H18FN3O3

  • Mr = 403.40

  • Monoclinic, C 2/c

  • a = 20.478 (4) Å

  • b = 19.570 (4) Å

  • c = 9.969 (2) Å

  • β = 107.12 (3)°

  • V = 3818.0 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.10 × 0.06 × 0.02 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.990, Tmax = 0.998

  • 19476 measured reflections

  • 3368 independent reflections

  • 2698 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.177

  • S = 1.08

  • 3368 reflections

  • 282 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯F1 0.98 2.24 2.938 (5) 127
C9—H9A⋯N2i 0.97 2.55 3.515 (3) 174
C12—H12⋯O1ii 0.93 2.48 3.118 (4) 126
C22—H22⋯O3iii 0.93 2.48 3.259 (4) 142
C23—H23C⋯F1′iv 0.96 2.37 3.090 (5) 131
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x, -y, z-{\script{1\over 2}}]; (iii) -x+1, -y, -z+1; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1H-Benzotriazoles and its derivatives are an important class of compounds because they exhibit a broad spectrum of pharmacological activities such as antifungal, antitumor and antineoplastic activities (Chen & Wu, 2005). We report here the synthesis and structure of the title compound, (I) (Fig. 1), as part of our ongoing studies on new benzotriazole compounds with higher bioactivity.

All the bond lengths (Allen et al., 1987) and angles in (I) are within their normal ranges. The dihedral angle between the triazole ring (N1–N3/C10/C15) and the benzene ring (C10–C15) is 2.86 (12)°. The dihedral angles between the triazole ring and the C1–C6 and C17–C22 aromatic rings are 4.78 (13)° and 65.34 (13)°, respectively. The dihedral angle between the C1—C6 and C17–C22 rings is 62.04 (14)°. Molecule (I) is chiral. In the crystal structure, intermolecular C—H···N hydrogen bonds (Table1) link the molecules into chains extended along the c axis. The packing (Fig. 2) is further stabilized by weak C—H···O and C—H···F interactions (Table 1).

Related literature top

For the pharmacological activity of 1H-benzotriazole and its derivatives, see: Chen & Wu (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

Bromine (3.2 g, 0.02 mol) was added dropwise to a solution of 3-(1H-benzo[d][1,2,3]triazol-1-yl)-1-(2-fluorophenyl)propan-1-one (5.38 g, 0.02 mol) and sodium acetate (1.6 g, 0.02 mol) in acetic acid (50 ml). The reaction proceeded for 7 h. Water (50 ml) and chloroform (20 ml) were then added. The organic layer was washed successively with saturated sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfate and the chloroform solution filtered. It was cooled with ice-water, and then an acetone solution (10 ml) of 4-methylbenzoic acid (2.72 g, 0.02 mol) and triethylamine (2.8 ml) was added. The mixture was stirred with ice-water for 6 h. The solution was then filtered and concentrated. Single crystals of (I) were obtained by slow evaporation of an acetone-ethylacetate (3:1 v/v) solution at room temperature over a period of one week.

Refinement top

All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(methyl C) H atoms. The F atom is disordered over two equally occupied positions on the 1 and 5-positions of the benzene ring.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids.
2-(1H-Benzotriazol-1-yl)-1-(2-fluorobenzoyl)ethyl 4-methylbenzoate top
Crystal data top
C23H18FN3O3F(000) = 1680
Mr = 403.40Dx = 1.404 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3992 reflections
a = 20.478 (4) Åθ = 2.1–25.0°
b = 19.570 (4) ŵ = 0.10 mm1
c = 9.969 (2) ÅT = 293 K
β = 107.12 (3)°Block, colourless
V = 3818.0 (13) Å30.10 × 0.06 × 0.02 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
3368 independent reflections
Radiation source: fine-focus sealed tube2698 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 2424
Tmin = 0.990, Tmax = 0.998k = 2323
19476 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.0959P)2 + 1.3136P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.031
3368 reflectionsΔρmax = 0.38 e Å3
282 parametersΔρmin = 0.27 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (6)
Crystal data top
C23H18FN3O3V = 3818.0 (13) Å3
Mr = 403.40Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.478 (4) ŵ = 0.10 mm1
b = 19.570 (4) ÅT = 293 K
c = 9.969 (2) Å0.10 × 0.06 × 0.02 mm
β = 107.12 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3368 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2698 reflections with I > 2σ(I)
Tmin = 0.990, Tmax = 0.998Rint = 0.058
19476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0642 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.08Δρmax = 0.38 e Å3
3368 reflectionsΔρmin = 0.27 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.46661 (19)0.21126 (19)0.3054 (4)0.0709 (10)0.50
F1'0.24580 (17)0.2535 (2)0.3171 (4)0.0717 (12)0.50
O10.29447 (10)0.12509 (10)0.30001 (18)0.0462 (5)
O20.35449 (9)0.05690 (8)0.13268 (16)0.0371 (5)
O30.43939 (11)0.06667 (10)0.3332 (2)0.0622 (7)
N10.23322 (11)0.12861 (10)0.02778 (19)0.0326 (5)
N20.19010 (12)0.17037 (10)0.0132 (2)0.0378 (5)
N30.13058 (12)0.14092 (11)0.0135 (2)0.0401 (6)
C10.41929 (16)0.25100 (14)0.3243 (3)0.0452 (7)
H1A0.45180.22100.30240.054*0.50
C20.44099 (19)0.31500 (17)0.3776 (3)0.0602 (9)
H20.48620.32860.39360.072*
C30.3935 (2)0.35812 (16)0.4063 (3)0.0649 (10)
H30.40640.40180.44050.078*
C40.3281 (2)0.33705 (15)0.3850 (3)0.0603 (9)
H40.29640.36620.40530.072*
C50.30868 (16)0.27283 (14)0.3337 (3)0.0487 (8)
H5A0.26240.25850.32040.058*0.50
C60.35371 (14)0.22830 (13)0.3012 (2)0.0367 (6)
C70.33146 (13)0.15790 (13)0.2505 (2)0.0349 (6)
C80.35328 (14)0.12962 (12)0.1289 (2)0.0358 (6)
H80.39890.14690.13390.043*
C90.30282 (13)0.15017 (12)0.0110 (2)0.0365 (6)
H9A0.30360.19950.01990.044*
H9B0.31780.13070.08640.044*
C100.20015 (13)0.07007 (12)0.0843 (2)0.0312 (6)
C110.21918 (14)0.01290 (12)0.1472 (2)0.0361 (6)
H110.26320.00750.15380.043*
C120.16911 (14)0.03490 (13)0.1989 (3)0.0397 (7)
H120.17950.07400.24170.048*
C130.10262 (14)0.02655 (14)0.1889 (3)0.0435 (7)
H130.07010.06000.22610.052*
C140.08430 (14)0.02928 (14)0.1262 (3)0.0418 (7)
H140.04030.03420.11870.050*
C150.13458 (13)0.07866 (12)0.0740 (2)0.0341 (6)
C160.40188 (14)0.03020 (14)0.2459 (3)0.0439 (7)
C170.40226 (13)0.04463 (13)0.2469 (2)0.0382 (6)
C180.36063 (14)0.08304 (13)0.1382 (3)0.0391 (6)
H180.33050.06130.06180.047*
C190.36382 (15)0.15284 (13)0.1430 (3)0.0397 (6)
H190.33580.17810.06920.048*
C200.40830 (14)0.18695 (14)0.2562 (3)0.0418 (7)
C210.44946 (15)0.14802 (15)0.3646 (3)0.0448 (7)
H210.47950.16970.44120.054*
C220.44658 (14)0.07813 (14)0.3607 (3)0.0449 (7)
H220.47450.05290.43460.054*
C230.41090 (17)0.26339 (14)0.2594 (3)0.0553 (8)
H23A0.44990.27810.33380.083*
H23B0.41450.28010.17140.083*
H23C0.37000.28090.27510.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.056 (2)0.074 (2)0.086 (3)0.018 (2)0.027 (2)0.013 (2)
F1'0.034 (2)0.099 (3)0.070 (2)0.0195 (19)0.0037 (17)0.037 (2)
O10.0466 (12)0.0547 (12)0.0385 (10)0.0151 (9)0.0143 (9)0.0042 (9)
O20.0374 (10)0.0336 (9)0.0341 (9)0.0032 (8)0.0012 (8)0.0012 (7)
O30.0624 (15)0.0522 (12)0.0512 (13)0.0025 (11)0.0156 (11)0.0096 (10)
N10.0364 (12)0.0303 (11)0.0287 (11)0.0038 (9)0.0059 (9)0.0007 (8)
N20.0453 (14)0.0351 (11)0.0301 (11)0.0105 (10)0.0065 (10)0.0004 (9)
N30.0426 (14)0.0419 (13)0.0333 (12)0.0087 (10)0.0069 (10)0.0014 (9)
C10.0571 (19)0.0436 (16)0.0391 (15)0.0061 (14)0.0209 (14)0.0011 (12)
C20.078 (2)0.060 (2)0.0430 (17)0.0303 (18)0.0181 (16)0.0019 (14)
C30.113 (3)0.0395 (17)0.0376 (17)0.0130 (19)0.0156 (19)0.0022 (13)
C40.089 (3)0.0447 (17)0.0426 (17)0.0191 (18)0.0129 (17)0.0022 (14)
C50.057 (2)0.0470 (17)0.0339 (14)0.0092 (14)0.0009 (13)0.0034 (12)
C60.0462 (17)0.0371 (14)0.0244 (12)0.0004 (12)0.0069 (11)0.0021 (10)
C70.0308 (14)0.0422 (14)0.0285 (12)0.0025 (11)0.0039 (11)0.0057 (11)
C80.0369 (15)0.0328 (13)0.0361 (14)0.0027 (11)0.0082 (12)0.0007 (11)
C90.0429 (16)0.0329 (13)0.0321 (13)0.0008 (11)0.0082 (12)0.0018 (10)
C100.0348 (14)0.0309 (13)0.0245 (12)0.0034 (10)0.0034 (10)0.0022 (10)
C110.0377 (15)0.0378 (14)0.0314 (13)0.0071 (11)0.0079 (11)0.0006 (11)
C120.0440 (17)0.0340 (14)0.0365 (14)0.0032 (11)0.0046 (12)0.0061 (11)
C130.0387 (16)0.0416 (15)0.0413 (15)0.0038 (12)0.0020 (12)0.0023 (12)
C140.0334 (15)0.0512 (17)0.0378 (14)0.0042 (12)0.0058 (12)0.0023 (12)
C150.0370 (15)0.0344 (13)0.0268 (12)0.0075 (11)0.0029 (11)0.0016 (10)
C160.0405 (16)0.0475 (16)0.0356 (15)0.0056 (13)0.0012 (13)0.0016 (12)
C170.0388 (15)0.0419 (15)0.0310 (13)0.0085 (12)0.0058 (11)0.0004 (11)
C180.0425 (16)0.0430 (15)0.0285 (13)0.0082 (12)0.0055 (12)0.0028 (11)
C190.0514 (17)0.0407 (15)0.0268 (13)0.0093 (12)0.0110 (12)0.0001 (11)
C200.0509 (18)0.0456 (16)0.0364 (14)0.0138 (13)0.0244 (13)0.0071 (12)
C210.0438 (17)0.0564 (18)0.0339 (14)0.0192 (14)0.0109 (13)0.0098 (13)
C220.0388 (16)0.0559 (18)0.0347 (14)0.0100 (13)0.0025 (12)0.0005 (12)
C230.072 (2)0.0493 (17)0.0518 (17)0.0197 (15)0.0292 (16)0.0130 (14)
Geometric parameters (Å, º) top
F1—C11.298 (4)C9—H9A0.9700
F1—H1A0.3515C9—H9B0.9700
F1'—C51.305 (4)C10—C151.387 (3)
F1'—H5A0.3449C10—C111.393 (3)
O1—C71.204 (3)C11—C121.371 (4)
O2—C161.358 (3)C11—H110.9300
O2—C81.424 (3)C12—C131.403 (4)
O3—C161.209 (3)C12—H120.9300
N1—N21.352 (3)C13—C141.365 (4)
N1—C101.365 (3)C13—H130.9300
N1—C91.448 (3)C14—C151.396 (4)
N2—N31.303 (3)C14—H140.9300
N3—C151.373 (3)C16—C171.465 (4)
C1—C61.368 (4)C17—C181.387 (4)
C1—C21.382 (4)C17—C221.390 (4)
C1—H1A0.9599C18—C191.368 (3)
C2—C31.379 (5)C18—H180.9300
C2—H20.9300C19—C201.394 (4)
C3—C41.357 (5)C19—H190.9300
C3—H30.9300C20—C211.386 (4)
C4—C51.371 (4)C20—C231.497 (4)
C4—H40.9300C21—C221.369 (4)
C5—C61.375 (4)C21—H210.9300
C5—H5A0.9601C22—H220.9300
C6—C71.492 (4)C23—H23A0.9600
C7—C81.515 (3)C23—H23B0.9600
C8—C91.525 (3)C23—H23C0.9600
C8—H80.9800
C1—F1—H1A13.4H9A—C9—H9B107.6
C5—F1'—H5A1.9N1—C10—C15104.0 (2)
C16—O2—C8114.16 (19)N1—C10—C11133.5 (2)
N2—N1—C10110.1 (2)C15—C10—C11122.4 (2)
N2—N1—C9119.8 (2)C12—C11—C10116.1 (2)
C10—N1—C9130.1 (2)C12—C11—H11122.0
N3—N2—N1109.03 (19)C10—C11—H11122.0
N2—N3—C15108.0 (2)C11—C12—C13121.9 (2)
F1—C1—C6121.2 (3)C11—C12—H12119.1
F1—C1—C2115.4 (3)C13—C12—H12119.1
C6—C1—C2123.2 (3)C14—C13—C12121.9 (3)
F1—C1—H1A4.9C14—C13—H13119.0
C6—C1—H1A118.4C12—C13—H13119.0
C2—C1—H1A118.4C13—C14—C15116.9 (3)
C3—C2—C1117.9 (3)C13—C14—H14121.5
C3—C2—H2121.1C15—C14—H14121.5
C1—C2—H2121.1N3—C15—C10108.9 (2)
C4—C3—C2120.3 (3)N3—C15—C14130.2 (2)
C4—C3—H3119.8C10—C15—C14120.8 (2)
C2—C3—H3119.8O3—C16—O2121.2 (2)
C3—C4—C5120.1 (3)O3—C16—C17125.7 (2)
C3—C4—H4119.9O2—C16—C17113.1 (2)
C5—C4—H4119.9C18—C17—C22119.0 (2)
F1'—C5—C4118.7 (3)C18—C17—C16122.4 (2)
F1'—C5—C6119.5 (3)C22—C17—C16118.6 (2)
C4—C5—C6121.8 (3)C19—C18—C17120.1 (2)
F1'—C5—H5A0.7C19—C18—H18119.9
C4—C5—H5A119.1C17—C18—H18119.9
C6—C5—H5A119.1C18—C19—C20121.3 (2)
C1—C6—C5116.6 (3)C18—C19—H19119.3
C1—C6—C7122.9 (2)C20—C19—H19119.4
C5—C6—C7120.4 (3)C21—C20—C19118.0 (2)
O1—C7—C6121.3 (2)C21—C20—C23121.5 (3)
O1—C7—C8120.2 (2)C19—C20—C23120.4 (3)
C6—C7—C8118.4 (2)C22—C21—C20121.0 (2)
O2—C8—C7110.6 (2)C22—C21—H21119.5
O2—C8—C9106.83 (19)C20—C21—H21119.5
C7—C8—C9110.8 (2)C21—C22—C17120.4 (3)
O2—C8—H8109.5C21—C22—H22119.8
C7—C8—H8109.5C17—C22—H22119.8
C9—C8—H8109.5C20—C23—H23A109.5
N1—C9—C8114.0 (2)C20—C23—H23B109.5
N1—C9—H9A108.7H23A—C23—H23B109.5
C8—C9—H9A108.7C20—C23—H23C109.5
N1—C9—H9B108.7H23A—C23—H23C109.5
C8—C9—H9B108.7H23B—C23—H23C109.5
C10—N1—N2—N30.5 (2)C9—N1—C10—C15178.9 (2)
C9—N1—N2—N3179.16 (19)N2—N1—C10—C11176.5 (2)
N1—N2—N3—C150.3 (2)C9—N1—C10—C112.0 (4)
F1—C1—C2—C3176.8 (3)N1—C10—C11—C12176.5 (2)
C6—C1—C2—C31.2 (4)C15—C10—C11—C120.1 (3)
C1—C2—C3—C41.3 (4)C10—C11—C12—C130.1 (4)
C2—C3—C4—C50.5 (4)C11—C12—C13—C140.6 (4)
C3—C4—C5—F1'178.6 (3)C12—C13—C14—C151.0 (4)
C3—C4—C5—C60.6 (4)N2—N3—C15—C100.0 (3)
F1—C1—C6—C5175.6 (3)N2—N3—C15—C14177.3 (2)
C2—C1—C6—C50.1 (4)N1—C10—C15—N30.2 (2)
F1—C1—C6—C71.4 (4)C11—C10—C15—N3177.1 (2)
C2—C1—C6—C7176.8 (2)N1—C10—C15—C14177.9 (2)
F1'—C5—C6—C1178.4 (3)C11—C10—C15—C140.5 (4)
C4—C5—C6—C10.8 (4)C13—C14—C15—N3176.1 (2)
F1'—C5—C6—C71.4 (4)C13—C14—C15—C101.0 (4)
C4—C5—C6—C7177.8 (2)C8—O2—C16—O30.7 (4)
C1—C6—C7—O1137.2 (3)C8—O2—C16—C17179.7 (2)
C5—C6—C7—O139.6 (4)O3—C16—C17—C18175.6 (3)
C1—C6—C7—C846.1 (3)O2—C16—C17—C183.4 (4)
C5—C6—C7—C8137.1 (2)O3—C16—C17—C223.7 (4)
C16—O2—C8—C765.0 (3)O2—C16—C17—C22177.3 (2)
C16—O2—C8—C9174.4 (2)C22—C17—C18—C190.5 (4)
O1—C7—C8—O228.4 (3)C16—C17—C18—C19178.8 (2)
C6—C7—C8—O2154.9 (2)C17—C18—C19—C200.2 (4)
O1—C7—C8—C989.9 (3)C18—C19—C20—C210.0 (4)
C6—C7—C8—C986.8 (3)C18—C19—C20—C23179.9 (3)
N2—N1—C9—C890.5 (3)C19—C20—C21—C220.0 (4)
C10—N1—C9—C891.1 (3)C23—C20—C21—C22179.9 (3)
O2—C8—C9—N163.0 (3)C20—C21—C22—C170.3 (4)
C7—C8—C9—N157.5 (3)C18—C17—C22—C210.5 (4)
N2—N1—C10—C150.4 (2)C16—C17—C22—C21178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···F10.982.242.938 (5)127
C9—H9A···N2i0.972.553.515 (3)174
C12—H12···O1ii0.932.483.118 (4)126
C18—H18···O20.932.432.741 (3)100
C22—H22···O3iii0.932.483.259 (4)142
C23—H23C···F1iv0.962.373.090 (5)131
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z1/2; (iii) x+1, y, z+1; (iv) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H18FN3O3
Mr403.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)20.478 (4), 19.570 (4), 9.969 (2)
β (°) 107.12 (3)
V3)3818.0 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.10 × 0.06 × 0.02
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.990, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
19476, 3368, 2698
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.177, 1.08
No. of reflections3368
No. of parameters282
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.27

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···F10.98002.24002.938 (5)127.00
C9—H9A···N2i0.97002.55003.515 (3)174.00
C12—H12···O1ii0.93002.48003.118 (4)126.00
C18—H18···O20.93002.43002.741 (3)100.00
C22—H22···O3iii0.93002.48003.259 (4)142.00
C23—H23C···F1'iv0.96002.37003.090 (5)131.00
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z1/2; (iii) x+1, y, z+1; (iv) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This research has been supported by the Foundation of Weifang University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1997). SADABS, SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z.-Y. & Wu, M.-J. (2005). Org. Lett. 7, 475–477.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds