organic compounds
N-(2-Nitrophenyl)benzamide
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: aamersaeed@yahoo.com
In the title compound, C13H10N2O3, the central C–C(=O)–N–C amide unit makes dihedral angles of 21.68 (4) and 19.08 (4)°, respectively, with the phenyl and nitrobenzene rings. The two aromatic rings are inclined at 3.74 (3)° and the nitro group is skewed out of the attached benzene ring plane by 18.55 (8)°. An intramolecular N—H⋯O interaction to an O atom of the nitro substituent generates an S(6) ring motif. In the crystal, C—H⋯O contacts generate two centrosymmetric ring systems with R22(14) and R22(20) graph-set motifs, forming zigzag chains down the a axis. π–π interactions between adjacent phenyl and nitrobenzene rings [centroid–centroid distance = 3.6849 (6) Å] also form centrosymmetric dimers. These and an additional C—H⋯O hydrogen bond generate an extensive three-dimensional network structure.
Related literature
For the biological activity of benzamide derivatives see Saeed et al. (2008). For related structures, see: Cronin et al. (2000); Glidewell et al. (2004); Wardell et al. (2005). For reference structural data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker 2006); cell APEX2 and SAINT (Bruker 2006); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809024271/at2824sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809024271/at2824Isup2.hkl
Freshly distilled benzoyl chloride (5.4 mmol) in CHCl3 was treated with 2-nitroaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded the title compound (81%) as white plates: Analysis calculated for C13H10N2O3: C 64.46, H 4.16, N 11.56%; found: C 64.39, H 4.21, N 11.71%
The H atom bound to N1 was located in a difference Fourier map and refined freely with an isotropic displacement parameter. The remaining aromatic H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C).
Data collection: APEX2 (Bruker 2006); cell
APEX2 and SAINT (Bruker 2006); data reduction: SAINT (Bruker 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).C13H10N2O3 | F(000) = 504 |
Mr = 242.23 | Dx = 1.462 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 4696 reflections |
a = 7.2061 (5) Å | θ = 2.8–31.8° |
b = 7.4253 (5) Å | µ = 0.11 mm−1 |
c = 20.6031 (13) Å | T = 89 K |
β = 93.560 (4)° | Plate, colourless |
V = 1100.29 (13) Å3 | 0.24 × 0.17 × 0.09 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 3948 independent reflections |
Radiation source: fine-focus sealed tube | 3098 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ω scans | θmax = 33.3°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −10→10 |
Tmin = 0.852, Tmax = 0.991 | k = −11→10 |
20195 measured reflections | l = −30→30 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0629P)2 + 0.2001P] where P = (Fo2 + 2Fc2)/3 |
3948 reflections | (Δ/σ)max = 0.001 |
167 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C13H10N2O3 | V = 1100.29 (13) Å3 |
Mr = 242.23 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.2061 (5) Å | µ = 0.11 mm−1 |
b = 7.4253 (5) Å | T = 89 K |
c = 20.6031 (13) Å | 0.24 × 0.17 × 0.09 mm |
β = 93.560 (4)° |
Bruker APEXII CCD area-detector diffractometer | 3948 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 3098 reflections with I > 2σ(I) |
Tmin = 0.852, Tmax = 0.991 | Rint = 0.037 |
20195 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.118 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.49 e Å−3 |
3948 reflections | Δρmin = −0.27 e Å−3 |
167 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.73812 (11) | 0.03317 (11) | 0.50049 (4) | 0.01315 (16) | |
H1N | 0.678 (2) | −0.064 (2) | 0.5129 (7) | 0.031 (4)* | |
O1 | 0.87401 (11) | 0.16410 (10) | 0.41448 (4) | 0.01879 (17) | |
C1 | 0.78498 (13) | 0.04075 (12) | 0.43690 (4) | 0.01259 (17) | |
C2 | 0.71690 (13) | −0.11570 (12) | 0.39614 (4) | 0.01239 (17) | |
C3 | 0.70064 (14) | −0.09052 (13) | 0.32883 (5) | 0.01564 (19) | |
H3 | 0.7315 | 0.0226 | 0.3109 | 0.019* | |
C4 | 0.63950 (14) | −0.23021 (14) | 0.28797 (5) | 0.01771 (19) | |
H4 | 0.6275 | −0.2120 | 0.2423 | 0.021* | |
C5 | 0.59588 (14) | −0.39666 (14) | 0.31405 (5) | 0.0176 (2) | |
H5 | 0.5543 | −0.4921 | 0.2861 | 0.021* | |
C6 | 0.61305 (14) | −0.42356 (13) | 0.38095 (5) | 0.01679 (19) | |
H6 | 0.5840 | −0.5376 | 0.3986 | 0.020* | |
C7 | 0.67274 (13) | −0.28349 (13) | 0.42198 (5) | 0.01451 (18) | |
H7 | 0.6836 | −0.3018 | 0.4677 | 0.017* | |
C8 | 0.78625 (12) | 0.15306 (12) | 0.55126 (4) | 0.01171 (17) | |
C9 | 0.78085 (13) | 0.09917 (12) | 0.61677 (4) | 0.01252 (17) | |
N2 | 0.72463 (12) | −0.08197 (11) | 0.63520 (4) | 0.01487 (17) | |
O2 | 0.76511 (13) | −0.13362 (11) | 0.69076 (4) | 0.0268 (2) | |
O3 | 0.63473 (11) | −0.17725 (10) | 0.59477 (3) | 0.01818 (16) | |
C10 | 0.82755 (13) | 0.21653 (14) | 0.66792 (5) | 0.01574 (19) | |
H10 | 0.8235 | 0.1765 | 0.7116 | 0.019* | |
C11 | 0.87973 (14) | 0.39107 (14) | 0.65503 (5) | 0.0184 (2) | |
H11 | 0.9112 | 0.4720 | 0.6897 | 0.022* | |
C12 | 0.88585 (14) | 0.44738 (13) | 0.59089 (5) | 0.01733 (19) | |
H12 | 0.9218 | 0.5675 | 0.5820 | 0.021* | |
C13 | 0.84023 (13) | 0.33090 (12) | 0.53965 (5) | 0.01466 (18) | |
H13 | 0.8457 | 0.3723 | 0.4962 | 0.018* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0166 (4) | 0.0113 (4) | 0.0116 (3) | −0.0039 (3) | 0.0014 (3) | −0.0001 (3) |
O1 | 0.0249 (4) | 0.0136 (3) | 0.0186 (3) | −0.0056 (3) | 0.0078 (3) | −0.0007 (3) |
C1 | 0.0126 (4) | 0.0114 (4) | 0.0139 (4) | 0.0010 (3) | 0.0017 (3) | 0.0002 (3) |
C2 | 0.0119 (4) | 0.0119 (4) | 0.0133 (4) | 0.0005 (3) | 0.0010 (3) | −0.0004 (3) |
C3 | 0.0179 (4) | 0.0153 (4) | 0.0140 (4) | 0.0009 (3) | 0.0023 (3) | 0.0007 (3) |
C4 | 0.0190 (5) | 0.0201 (5) | 0.0139 (4) | 0.0021 (4) | 0.0000 (3) | −0.0023 (3) |
C5 | 0.0149 (4) | 0.0179 (5) | 0.0198 (4) | 0.0004 (3) | −0.0011 (3) | −0.0060 (4) |
C6 | 0.0162 (4) | 0.0127 (4) | 0.0214 (5) | −0.0012 (3) | 0.0006 (3) | −0.0013 (3) |
C7 | 0.0154 (4) | 0.0128 (4) | 0.0153 (4) | −0.0001 (3) | 0.0010 (3) | 0.0005 (3) |
C8 | 0.0102 (4) | 0.0115 (4) | 0.0135 (4) | 0.0003 (3) | 0.0009 (3) | −0.0008 (3) |
C9 | 0.0126 (4) | 0.0109 (4) | 0.0140 (4) | 0.0005 (3) | 0.0009 (3) | −0.0002 (3) |
N2 | 0.0181 (4) | 0.0137 (4) | 0.0130 (3) | 0.0016 (3) | 0.0023 (3) | 0.0012 (3) |
O2 | 0.0434 (5) | 0.0226 (4) | 0.0139 (3) | 0.0000 (3) | −0.0016 (3) | 0.0063 (3) |
O3 | 0.0239 (4) | 0.0138 (3) | 0.0168 (3) | −0.0041 (3) | 0.0013 (3) | 0.0000 (2) |
C10 | 0.0149 (4) | 0.0179 (4) | 0.0143 (4) | 0.0022 (3) | −0.0001 (3) | −0.0030 (3) |
C11 | 0.0158 (4) | 0.0182 (5) | 0.0212 (5) | −0.0008 (4) | 0.0016 (4) | −0.0082 (4) |
C12 | 0.0148 (4) | 0.0125 (4) | 0.0252 (5) | −0.0023 (3) | 0.0054 (4) | −0.0038 (4) |
C13 | 0.0145 (4) | 0.0117 (4) | 0.0180 (4) | −0.0009 (3) | 0.0035 (3) | 0.0000 (3) |
N1—C1 | 1.3742 (11) | C7—H7 | 0.9500 |
N1—C8 | 1.4006 (12) | C8—C13 | 1.4014 (13) |
N1—H1N | 0.887 (16) | C8—C9 | 1.4107 (13) |
O1—C1 | 1.2250 (11) | C9—C10 | 1.3925 (13) |
C1—C2 | 1.4981 (13) | C9—N2 | 1.4617 (12) |
C2—C3 | 1.3971 (12) | N2—O2 | 1.2251 (10) |
C2—C7 | 1.3992 (13) | N2—O3 | 1.2439 (11) |
C3—C4 | 1.3902 (14) | C10—C11 | 1.3799 (14) |
C3—H3 | 0.9500 | C10—H10 | 0.9500 |
C4—C5 | 1.3915 (15) | C11—C12 | 1.3893 (15) |
C4—H4 | 0.9500 | C11—H11 | 0.9500 |
C5—C6 | 1.3906 (14) | C12—C13 | 1.3883 (13) |
C5—H5 | 0.9500 | C12—H12 | 0.9500 |
C6—C7 | 1.3914 (13) | C13—H13 | 0.9500 |
C6—H6 | 0.9500 | ||
C1—N1—C8 | 128.45 (8) | C2—C7—H7 | 119.9 |
C1—N1—H1N | 117.4 (10) | N1—C8—C13 | 122.01 (8) |
C8—N1—H1N | 113.9 (10) | N1—C8—C9 | 120.93 (8) |
O1—C1—N1 | 123.75 (9) | C13—C8—C9 | 117.06 (8) |
O1—C1—C2 | 121.96 (8) | C10—C9—C8 | 121.79 (9) |
N1—C1—C2 | 114.29 (8) | C10—C9—N2 | 115.92 (8) |
C3—C2—C7 | 119.32 (9) | C8—C9—N2 | 122.29 (8) |
C3—C2—C1 | 117.20 (8) | O2—N2—O3 | 122.11 (9) |
C7—C2—C1 | 123.47 (8) | O2—N2—C9 | 118.49 (8) |
C4—C3—C2 | 120.34 (9) | O3—N2—C9 | 119.38 (8) |
C4—C3—H3 | 119.8 | C11—C10—C9 | 119.87 (9) |
C2—C3—H3 | 119.8 | C11—C10—H10 | 120.1 |
C3—C4—C5 | 119.97 (9) | C9—C10—H10 | 120.1 |
C3—C4—H4 | 120.0 | C10—C11—C12 | 119.39 (9) |
C5—C4—H4 | 120.0 | C10—C11—H11 | 120.3 |
C6—C5—C4 | 120.13 (9) | C12—C11—H11 | 120.3 |
C6—C5—H5 | 119.9 | C13—C12—C11 | 121.05 (9) |
C4—C5—H5 | 119.9 | C13—C12—H12 | 119.5 |
C5—C6—C7 | 119.99 (9) | C11—C12—H12 | 119.5 |
C5—C6—H6 | 120.0 | C12—C13—C8 | 120.83 (9) |
C7—C6—H6 | 120.0 | C12—C13—H13 | 119.6 |
C6—C7—C2 | 120.23 (9) | C8—C13—H13 | 119.6 |
C6—C7—H7 | 119.9 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O3 | 0.887 (16) | 1.927 (15) | 2.6361 (11) | 135.7 (13) |
C10—H10···O2i | 0.95 | 2.57 | 3.2254 (12) | 126 |
C6—H6···O3ii | 0.95 | 2.65 | 3.5122 (12) | 151 |
C12—H12···O1iii | 0.95 | 2.48 | 3.3695 (12) | 157 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+1, −y−1, −z+1; (iii) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C13H10N2O3 |
Mr | 242.23 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 89 |
a, b, c (Å) | 7.2061 (5), 7.4253 (5), 20.6031 (13) |
β (°) | 93.560 (4) |
V (Å3) | 1100.29 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.24 × 0.17 × 0.09 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2006) |
Tmin, Tmax | 0.852, 0.991 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20195, 3948, 3098 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.773 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.118, 1.06 |
No. of reflections | 3948 |
No. of parameters | 167 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.49, −0.27 |
Computer programs: APEX2 (Bruker 2006), APEX2 and SAINT (Bruker 2006), SAINT (Bruker 2006), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O3 | 0.887 (16) | 1.927 (15) | 2.6361 (11) | 135.7 (13) |
C10—H10···O2i | 0.95 | 2.57 | 3.2254 (12) | 126.4 |
C6—H6···O3ii | 0.95 | 2.65 | 3.5122 (12) | 151.4 |
C12—H12···O1iii | 0.95 | 2.48 | 3.3695 (12) | 156.8 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+1, −y−1, −z+1; (iii) −x+2, −y+1, −z+1. |
Acknowledgements
We thank the University of Otago for purchase of the diffractometer.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cronin, L., Adams, D. A., Nightingale, D. J. & Clark, J. H. (2000). Acta Cryst. C56, 244–245. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o120–o124. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Saeed, A., Khera, R. A., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o1934. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o634–o638. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The biological activity and applications of benzamide derivatives have been described in an earlier paper (Saeed et al. 2008a). This paper reports the structure of a nitrophenyl benzamide derivative, (I), Fig. 1. The C2–C1(O1)–N1–C8 amide unit makes dihedral angles of 21.68 (4) ° and 19.08 (4) ° with the C2–C7 and C8–C13 rings respectively. The two aromatic rings are inclined at 3.74 (3)° with the nitro group skewed out of the C8–C13 ring plane by 18.55 (8)°. An intramolecular N1—H1N···O3 interaction generates an S6 ring motif. Bond lengths in the molecule are normal (Allen et al. 1987) and comparable to those observed in similar structures (Cronin et al., 2000; Glidewell et al., 2004; Wardell et al., 2005).
In the crystal C12—H12···O1 and C6—H6···O3 contacts generate two centrosymmetric ring systems with R22(14) and R22(20) graph set motifs respectively, forming zigzag chains down the a axis, Fig 2. π–π interactions between adjacent C2–C7 and C8–C13 rings [Cg···Cg distance 3.6849 (6) Å] also form centrosymmetric dimers, Fig 3. These and an additional C10—H10···O2 hydrogen bond generate an extensive three dimensional network structure, Fig. 4.