organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Nitro­phen­yl)benzamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 18 June 2009; accepted 24 June 2009; online 11 July 2009)

In the title compound, C13H10N2O3, the central C–C(=O)–N–C amide unit makes dihedral angles of 21.68 (4) and 19.08 (4)°, respectively, with the phenyl and nitro­benzene rings. The two aromatic rings are inclined at 3.74 (3)° and the nitro group is skewed out of the attached benzene ring plane by 18.55 (8)°. An intra­molecular N—H⋯O inter­action to an O atom of the nitro substituent generates an S(6) ring motif. In the crystal, C—H⋯O contacts generate two centrosymmetric ring systems with R22(14) and R22(20) graph-set motifs, forming zigzag chains down the a axis. ππ inter­actions between adjacent phenyl and nitro­benzene rings [centroid–centroid distance = 3.6849 (6) Å] also form centrosymmetric dimers. These and an additional C—H⋯O hydrogen bond generate an extensive three-dimensional network structure.

Related literature

For the biological activity of benzamide derivatives see Saeed et al. (2008[Saeed, A., Khera, R. A., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o1934.]). For related structures, see: Cronin et al. (2000[Cronin, L., Adams, D. A., Nightingale, D. J. & Clark, J. H. (2000). Acta Cryst. C56, 244-245.]); Glidewell et al. (2004[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o120-o124.]); Wardell et al. (2005[Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o634-o638.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N2O3

  • Mr = 242.23

  • Monoclinic, P 21 /n

  • a = 7.2061 (5) Å

  • b = 7.4253 (5) Å

  • c = 20.6031 (13) Å

  • β = 93.560 (4)°

  • V = 1100.29 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 89 K

  • 0.24 × 0.17 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.852, Tmax = 0.991

  • 20195 measured reflections

  • 3948 independent reflections

  • 3098 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.118

  • S = 1.06

  • 3948 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3 0.887 (16) 1.927 (15) 2.6361 (11) 135.7 (13)
C10—H10⋯O2i 0.95 2.57 3.2254 (12) 126
C6—H6⋯O3ii 0.95 2.65 3.5122 (12) 151
C12—H12⋯O1iii 0.95 2.48 3.3695 (12) 157
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y-1, -z+1; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The biological activity and applications of benzamide derivatives have been described in an earlier paper (Saeed et al. 2008a). This paper reports the structure of a nitrophenyl benzamide derivative, (I), Fig. 1. The C2–C1(O1)–N1–C8 amide unit makes dihedral angles of 21.68 (4) ° and 19.08 (4) ° with the C2–C7 and C8–C13 rings respectively. The two aromatic rings are inclined at 3.74 (3)° with the nitro group skewed out of the C8–C13 ring plane by 18.55 (8)°. An intramolecular N1—H1N···O3 interaction generates an S6 ring motif. Bond lengths in the molecule are normal (Allen et al. 1987) and comparable to those observed in similar structures (Cronin et al., 2000; Glidewell et al., 2004; Wardell et al., 2005).

In the crystal C12—H12···O1 and C6—H6···O3 contacts generate two centrosymmetric ring systems with R22(14) and R22(20) graph set motifs respectively, forming zigzag chains down the a axis, Fig 2. ππ interactions between adjacent C2–C7 and C8–C13 rings [Cg···Cg distance 3.6849 (6) Å] also form centrosymmetric dimers, Fig 3. These and an additional C10—H10···O2 hydrogen bond generate an extensive three dimensional network structure, Fig. 4.

Related literature top

For the biological activity of benzamide derivatives see Saeed et al. (2008). For related structures, see: Cronin et al. (2000); Glidewell et al. (2004); Wardell et al. (2005). For reference structural data, see: Allen et al. (1987).

Experimental top

Freshly distilled benzoyl chloride (5.4 mmol) in CHCl3 was treated with 2-nitroaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded the title compound (81%) as white plates: Analysis calculated for C13H10N2O3: C 64.46, H 4.16, N 11.56%; found: C 64.39, H 4.21, N 11.71%

Refinement top

The H atom bound to N1 was located in a difference Fourier map and refined freely with an isotropic displacement parameter. The remaining aromatic H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C).

Computing details top

Data collection: APEX2 (Bruker 2006); cell refinement: APEX2 and SAINT (Bruker 2006); data reduction: SAINT (Bruker 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. An intramolecular hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. Pairs of centrosymmetric dimers forming a chain running down b axis. Hydrogen bonds are drawn as dashed lines.
[Figure 3] Fig. 3. Centrosymmetric dimers formed through ππ stacking interactions shown as dotted lines with coloured circles representing the ring centroids. The symmetry operation relating the two molecules is 1 - x, -y, 1 - z.
[Figure 4] Fig. 4. Crystal packing of (I) viewed down the a axis.
N-(2-Nitrophenyl)benzamide top
Crystal data top
C13H10N2O3F(000) = 504
Mr = 242.23Dx = 1.462 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4696 reflections
a = 7.2061 (5) Åθ = 2.8–31.8°
b = 7.4253 (5) ŵ = 0.11 mm1
c = 20.6031 (13) ÅT = 89 K
β = 93.560 (4)°Plate, colourless
V = 1100.29 (13) Å30.24 × 0.17 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3948 independent reflections
Radiation source: fine-focus sealed tube3098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 33.3°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1010
Tmin = 0.852, Tmax = 0.991k = 1110
20195 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0629P)2 + 0.2001P]
where P = (Fo2 + 2Fc2)/3
3948 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C13H10N2O3V = 1100.29 (13) Å3
Mr = 242.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2061 (5) ŵ = 0.11 mm1
b = 7.4253 (5) ÅT = 89 K
c = 20.6031 (13) Å0.24 × 0.17 × 0.09 mm
β = 93.560 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3948 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3098 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.991Rint = 0.037
20195 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.49 e Å3
3948 reflectionsΔρmin = 0.27 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.73812 (11)0.03317 (11)0.50049 (4)0.01315 (16)
H1N0.678 (2)0.064 (2)0.5129 (7)0.031 (4)*
O10.87401 (11)0.16410 (10)0.41448 (4)0.01879 (17)
C10.78498 (13)0.04075 (12)0.43690 (4)0.01259 (17)
C20.71690 (13)0.11570 (12)0.39614 (4)0.01239 (17)
C30.70064 (14)0.09052 (13)0.32883 (5)0.01564 (19)
H30.73150.02260.31090.019*
C40.63950 (14)0.23021 (14)0.28797 (5)0.01771 (19)
H40.62750.21200.24230.021*
C50.59588 (14)0.39666 (14)0.31405 (5)0.0176 (2)
H50.55430.49210.28610.021*
C60.61305 (14)0.42356 (13)0.38095 (5)0.01679 (19)
H60.58400.53760.39860.020*
C70.67274 (13)0.28349 (13)0.42198 (5)0.01451 (18)
H70.68360.30180.46770.017*
C80.78625 (12)0.15306 (12)0.55126 (4)0.01171 (17)
C90.78085 (13)0.09917 (12)0.61677 (4)0.01252 (17)
N20.72463 (12)0.08197 (11)0.63520 (4)0.01487 (17)
O20.76511 (13)0.13362 (11)0.69076 (4)0.0268 (2)
O30.63473 (11)0.17725 (10)0.59477 (3)0.01818 (16)
C100.82755 (13)0.21653 (14)0.66792 (5)0.01574 (19)
H100.82350.17650.71160.019*
C110.87973 (14)0.39107 (14)0.65503 (5)0.0184 (2)
H110.91120.47200.68970.022*
C120.88585 (14)0.44738 (13)0.59089 (5)0.01733 (19)
H120.92180.56750.58200.021*
C130.84023 (13)0.33090 (12)0.53965 (5)0.01466 (18)
H130.84570.37230.49620.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0166 (4)0.0113 (4)0.0116 (3)0.0039 (3)0.0014 (3)0.0001 (3)
O10.0249 (4)0.0136 (3)0.0186 (3)0.0056 (3)0.0078 (3)0.0007 (3)
C10.0126 (4)0.0114 (4)0.0139 (4)0.0010 (3)0.0017 (3)0.0002 (3)
C20.0119 (4)0.0119 (4)0.0133 (4)0.0005 (3)0.0010 (3)0.0004 (3)
C30.0179 (4)0.0153 (4)0.0140 (4)0.0009 (3)0.0023 (3)0.0007 (3)
C40.0190 (5)0.0201 (5)0.0139 (4)0.0021 (4)0.0000 (3)0.0023 (3)
C50.0149 (4)0.0179 (5)0.0198 (4)0.0004 (3)0.0011 (3)0.0060 (4)
C60.0162 (4)0.0127 (4)0.0214 (5)0.0012 (3)0.0006 (3)0.0013 (3)
C70.0154 (4)0.0128 (4)0.0153 (4)0.0001 (3)0.0010 (3)0.0005 (3)
C80.0102 (4)0.0115 (4)0.0135 (4)0.0003 (3)0.0009 (3)0.0008 (3)
C90.0126 (4)0.0109 (4)0.0140 (4)0.0005 (3)0.0009 (3)0.0002 (3)
N20.0181 (4)0.0137 (4)0.0130 (3)0.0016 (3)0.0023 (3)0.0012 (3)
O20.0434 (5)0.0226 (4)0.0139 (3)0.0000 (3)0.0016 (3)0.0063 (3)
O30.0239 (4)0.0138 (3)0.0168 (3)0.0041 (3)0.0013 (3)0.0000 (2)
C100.0149 (4)0.0179 (4)0.0143 (4)0.0022 (3)0.0001 (3)0.0030 (3)
C110.0158 (4)0.0182 (5)0.0212 (5)0.0008 (4)0.0016 (4)0.0082 (4)
C120.0148 (4)0.0125 (4)0.0252 (5)0.0023 (3)0.0054 (4)0.0038 (4)
C130.0145 (4)0.0117 (4)0.0180 (4)0.0009 (3)0.0035 (3)0.0000 (3)
Geometric parameters (Å, º) top
N1—C11.3742 (11)C7—H70.9500
N1—C81.4006 (12)C8—C131.4014 (13)
N1—H1N0.887 (16)C8—C91.4107 (13)
O1—C11.2250 (11)C9—C101.3925 (13)
C1—C21.4981 (13)C9—N21.4617 (12)
C2—C31.3971 (12)N2—O21.2251 (10)
C2—C71.3992 (13)N2—O31.2439 (11)
C3—C41.3902 (14)C10—C111.3799 (14)
C3—H30.9500C10—H100.9500
C4—C51.3915 (15)C11—C121.3893 (15)
C4—H40.9500C11—H110.9500
C5—C61.3906 (14)C12—C131.3883 (13)
C5—H50.9500C12—H120.9500
C6—C71.3914 (13)C13—H130.9500
C6—H60.9500
C1—N1—C8128.45 (8)C2—C7—H7119.9
C1—N1—H1N117.4 (10)N1—C8—C13122.01 (8)
C8—N1—H1N113.9 (10)N1—C8—C9120.93 (8)
O1—C1—N1123.75 (9)C13—C8—C9117.06 (8)
O1—C1—C2121.96 (8)C10—C9—C8121.79 (9)
N1—C1—C2114.29 (8)C10—C9—N2115.92 (8)
C3—C2—C7119.32 (9)C8—C9—N2122.29 (8)
C3—C2—C1117.20 (8)O2—N2—O3122.11 (9)
C7—C2—C1123.47 (8)O2—N2—C9118.49 (8)
C4—C3—C2120.34 (9)O3—N2—C9119.38 (8)
C4—C3—H3119.8C11—C10—C9119.87 (9)
C2—C3—H3119.8C11—C10—H10120.1
C3—C4—C5119.97 (9)C9—C10—H10120.1
C3—C4—H4120.0C10—C11—C12119.39 (9)
C5—C4—H4120.0C10—C11—H11120.3
C6—C5—C4120.13 (9)C12—C11—H11120.3
C6—C5—H5119.9C13—C12—C11121.05 (9)
C4—C5—H5119.9C13—C12—H12119.5
C5—C6—C7119.99 (9)C11—C12—H12119.5
C5—C6—H6120.0C12—C13—C8120.83 (9)
C7—C6—H6120.0C12—C13—H13119.6
C6—C7—C2120.23 (9)C8—C13—H13119.6
C6—C7—H7119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.887 (16)1.927 (15)2.6361 (11)135.7 (13)
C10—H10···O2i0.952.573.2254 (12)126
C6—H6···O3ii0.952.653.5122 (12)151
C12—H12···O1iii0.952.483.3695 (12)157
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y1, z+1; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H10N2O3
Mr242.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)89
a, b, c (Å)7.2061 (5), 7.4253 (5), 20.6031 (13)
β (°) 93.560 (4)
V3)1100.29 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.17 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.852, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
20195, 3948, 3098
Rint0.037
(sin θ/λ)max1)0.773
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.06
No. of reflections3948
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.27

Computer programs: APEX2 (Bruker 2006), APEX2 and SAINT (Bruker 2006), SAINT (Bruker 2006), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.887 (16)1.927 (15)2.6361 (11)135.7 (13)
C10—H10···O2i0.952.573.2254 (12)126.4
C6—H6···O3ii0.952.653.5122 (12)151.4
C12—H12···O1iii0.952.483.3695 (12)156.8
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y1, z+1; (iii) x+2, y+1, z+1.
 

Acknowledgements

We thank the University of Otago for purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCronin, L., Adams, D. A., Nightingale, D. J. & Clark, J. H. (2000). Acta Cryst. C56, 244–245.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o120–o124.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A., Gotoh, K. & Ishida, H. (2008). Acta Cryst. E64, o1934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o634–o638.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds